Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 1 | # Originally contributed by Sjoerd Mullender. |
| 2 | # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>. |
| 3 | |
| 4 | """Rational, infinite-precision, real numbers.""" |
| 5 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 6 | import math |
| 7 | import numbers |
| 8 | import operator |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 9 | import re |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 10 | |
| 11 | __all__ = ["Rational"] |
| 12 | |
| 13 | RationalAbc = numbers.Rational |
| 14 | |
| 15 | |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 16 | def gcd(a, b): |
| 17 | """Calculate the Greatest Common Divisor of a and b. |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 18 | |
| 19 | Unless b==0, the result will have the same sign as b (so that when |
| 20 | b is divided by it, the result comes out positive). |
| 21 | """ |
| 22 | while b: |
| 23 | a, b = b, a%b |
| 24 | return a |
| 25 | |
| 26 | |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 27 | _RATIONAL_FORMAT = re.compile( |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 28 | r'^\s*(?P<sign>[-+]?)(?P<num>\d+)' |
| 29 | r'(?:/(?P<denom>\d+)|\.(?P<decimal>\d+))?\s*$') |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 30 | |
| 31 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 32 | class Rational(RationalAbc): |
| 33 | """This class implements rational numbers. |
| 34 | |
| 35 | Rational(8, 6) will produce a rational number equivalent to |
| 36 | 4/3. Both arguments must be Integral. The numerator defaults to 0 |
| 37 | and the denominator defaults to 1 so that Rational(3) == 3 and |
| 38 | Rational() == 0. |
| 39 | |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 40 | Rationals can also be constructed from strings of the form |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 41 | '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces. |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 42 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 43 | """ |
| 44 | |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 45 | __slots__ = ('numerator', 'denominator') |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 46 | |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 47 | # We're immutable, so use __new__ not __init__ |
| 48 | def __new__(cls, numerator=0, denominator=1): |
| 49 | """Constructs a Rational. |
| 50 | |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 51 | Takes a string like '3/2' or '1.5', another Rational, or a |
| 52 | numerator/denominator pair. |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 53 | |
| 54 | """ |
| 55 | self = super(Rational, cls).__new__(cls) |
| 56 | |
| 57 | if denominator == 1: |
| 58 | if isinstance(numerator, str): |
| 59 | # Handle construction from strings. |
| 60 | input = numerator |
| 61 | m = _RATIONAL_FORMAT.match(input) |
| 62 | if m is None: |
| 63 | raise ValueError('Invalid literal for Rational: ' + input) |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 64 | numerator = m.group('num') |
| 65 | decimal = m.group('decimal') |
| 66 | if decimal: |
| 67 | # The literal is a decimal number. |
| 68 | numerator = int(numerator + decimal) |
| 69 | denominator = 10**len(decimal) |
| 70 | else: |
| 71 | # The literal is an integer or fraction. |
| 72 | numerator = int(numerator) |
| 73 | # Default denominator to 1. |
| 74 | denominator = int(m.group('denom') or 1) |
| 75 | |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 76 | if m.group('sign') == '-': |
| 77 | numerator = -numerator |
| 78 | |
| 79 | elif (not isinstance(numerator, numbers.Integral) and |
| 80 | isinstance(numerator, RationalAbc)): |
| 81 | # Handle copies from other rationals. |
| 82 | other_rational = numerator |
| 83 | numerator = other_rational.numerator |
| 84 | denominator = other_rational.denominator |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 85 | |
| 86 | if (not isinstance(numerator, numbers.Integral) or |
| 87 | not isinstance(denominator, numbers.Integral)): |
| 88 | raise TypeError("Rational(%(numerator)s, %(denominator)s):" |
| 89 | " Both arguments must be integral." % locals()) |
| 90 | |
| 91 | if denominator == 0: |
| 92 | raise ZeroDivisionError('Rational(%s, 0)' % numerator) |
| 93 | |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 94 | g = gcd(numerator, denominator) |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 95 | self.numerator = int(numerator // g) |
| 96 | self.denominator = int(denominator // g) |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 97 | return self |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 98 | |
| 99 | @classmethod |
| 100 | def from_float(cls, f): |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 101 | """Converts a finite float to a rational number, exactly. |
| 102 | |
| 103 | Beware that Rational.from_float(0.3) != Rational(3, 10). |
| 104 | |
| 105 | """ |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 106 | if not isinstance(f, float): |
| 107 | raise TypeError("%s.from_float() only takes floats, not %r (%s)" % |
| 108 | (cls.__name__, f, type(f).__name__)) |
| 109 | if math.isnan(f) or math.isinf(f): |
| 110 | raise TypeError("Cannot convert %r to %s." % (f, cls.__name__)) |
Christian Heimes | 2685563 | 2008-01-27 23:50:43 +0000 | [diff] [blame] | 111 | return cls(*f.as_integer_ratio()) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 112 | |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 113 | @classmethod |
| 114 | def from_decimal(cls, dec): |
| 115 | """Converts a finite Decimal instance to a rational number, exactly.""" |
| 116 | from decimal import Decimal |
| 117 | if not isinstance(dec, Decimal): |
| 118 | raise TypeError( |
| 119 | "%s.from_decimal() only takes Decimals, not %r (%s)" % |
| 120 | (cls.__name__, dec, type(dec).__name__)) |
| 121 | if not dec.is_finite(): |
| 122 | # Catches infinities and nans. |
| 123 | raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__)) |
| 124 | sign, digits, exp = dec.as_tuple() |
| 125 | digits = int(''.join(map(str, digits))) |
| 126 | if sign: |
| 127 | digits = -digits |
| 128 | if exp >= 0: |
| 129 | return cls(digits * 10 ** exp) |
| 130 | else: |
| 131 | return cls(digits, 10 ** -exp) |
| 132 | |
Christian Heimes | bbffeb6 | 2008-01-24 09:42:52 +0000 | [diff] [blame] | 133 | @classmethod |
| 134 | def from_continued_fraction(cls, seq): |
| 135 | 'Build a Rational from a continued fraction expessed as a sequence' |
| 136 | n, d = 1, 0 |
| 137 | for e in reversed(seq): |
| 138 | n, d = d, n |
| 139 | n += e * d |
| 140 | return cls(n, d) if seq else cls(0) |
| 141 | |
| 142 | def as_continued_fraction(self): |
| 143 | 'Return continued fraction expressed as a list' |
| 144 | n = self.numerator |
| 145 | d = self.denominator |
| 146 | cf = [] |
| 147 | while d: |
| 148 | e = int(n // d) |
| 149 | cf.append(e) |
| 150 | n -= e * d |
| 151 | n, d = d, n |
| 152 | return cf |
| 153 | |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 154 | def approximate(self, max_denominator): |
| 155 | 'Best rational approximation with a denominator <= max_denominator' |
Christian Heimes | bbffeb6 | 2008-01-24 09:42:52 +0000 | [diff] [blame] | 156 | # XXX First cut at algorithm |
| 157 | # Still needs rounding rules as specified at |
| 158 | # http://en.wikipedia.org/wiki/Continued_fraction |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 159 | if self.denominator <= max_denominator: |
| 160 | return self |
| 161 | cf = self.as_continued_fraction() |
Christian Heimes | bbffeb6 | 2008-01-24 09:42:52 +0000 | [diff] [blame] | 162 | result = Rational(0) |
| 163 | for i in range(1, len(cf)): |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 164 | new = self.from_continued_fraction(cf[:i]) |
Christian Heimes | bbffeb6 | 2008-01-24 09:42:52 +0000 | [diff] [blame] | 165 | if new.denominator > max_denominator: |
| 166 | break |
| 167 | result = new |
| 168 | return result |
| 169 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 170 | def __repr__(self): |
| 171 | """repr(self)""" |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 172 | return ('Rational(%r,%r)' % (self.numerator, self.denominator)) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 173 | |
| 174 | def __str__(self): |
| 175 | """str(self)""" |
| 176 | if self.denominator == 1: |
| 177 | return str(self.numerator) |
| 178 | else: |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 179 | return '%s/%s' % (self.numerator, self.denominator) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 180 | |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 181 | """ XXX This section needs a lot more commentary |
| 182 | |
| 183 | * Explain the typical sequence of checks, calls, and fallbacks. |
| 184 | * Explain the subtle reasons why this logic was needed. |
| 185 | * It is not clear how common cases are handled (for example, how |
| 186 | does the ratio of two huge integers get converted to a float |
| 187 | without overflowing the long-->float conversion. |
| 188 | |
| 189 | """ |
| 190 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 191 | def _operator_fallbacks(monomorphic_operator, fallback_operator): |
| 192 | """Generates forward and reverse operators given a purely-rational |
| 193 | operator and a function from the operator module. |
| 194 | |
| 195 | Use this like: |
| 196 | __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) |
| 197 | |
| 198 | """ |
| 199 | def forward(a, b): |
| 200 | if isinstance(b, RationalAbc): |
| 201 | # Includes ints. |
| 202 | return monomorphic_operator(a, b) |
| 203 | elif isinstance(b, float): |
| 204 | return fallback_operator(float(a), b) |
| 205 | elif isinstance(b, complex): |
| 206 | return fallback_operator(complex(a), b) |
| 207 | else: |
| 208 | return NotImplemented |
| 209 | forward.__name__ = '__' + fallback_operator.__name__ + '__' |
| 210 | forward.__doc__ = monomorphic_operator.__doc__ |
| 211 | |
| 212 | def reverse(b, a): |
| 213 | if isinstance(a, RationalAbc): |
| 214 | # Includes ints. |
| 215 | return monomorphic_operator(a, b) |
| 216 | elif isinstance(a, numbers.Real): |
| 217 | return fallback_operator(float(a), float(b)) |
| 218 | elif isinstance(a, numbers.Complex): |
| 219 | return fallback_operator(complex(a), complex(b)) |
| 220 | else: |
| 221 | return NotImplemented |
| 222 | reverse.__name__ = '__r' + fallback_operator.__name__ + '__' |
| 223 | reverse.__doc__ = monomorphic_operator.__doc__ |
| 224 | |
| 225 | return forward, reverse |
| 226 | |
| 227 | def _add(a, b): |
| 228 | """a + b""" |
| 229 | return Rational(a.numerator * b.denominator + |
| 230 | b.numerator * a.denominator, |
| 231 | a.denominator * b.denominator) |
| 232 | |
| 233 | __add__, __radd__ = _operator_fallbacks(_add, operator.add) |
| 234 | |
| 235 | def _sub(a, b): |
| 236 | """a - b""" |
| 237 | return Rational(a.numerator * b.denominator - |
| 238 | b.numerator * a.denominator, |
| 239 | a.denominator * b.denominator) |
| 240 | |
| 241 | __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) |
| 242 | |
| 243 | def _mul(a, b): |
| 244 | """a * b""" |
| 245 | return Rational(a.numerator * b.numerator, a.denominator * b.denominator) |
| 246 | |
| 247 | __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) |
| 248 | |
| 249 | def _div(a, b): |
| 250 | """a / b""" |
| 251 | return Rational(a.numerator * b.denominator, |
| 252 | a.denominator * b.numerator) |
| 253 | |
| 254 | __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 255 | |
| 256 | def __floordiv__(a, b): |
| 257 | """a // b""" |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 258 | return math.floor(a / b) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 259 | |
| 260 | def __rfloordiv__(b, a): |
| 261 | """a // b""" |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 262 | return math.floor(a / b) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 263 | |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 264 | def __mod__(a, b): |
| 265 | """a % b""" |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 266 | div = a // b |
| 267 | return a - b * div |
| 268 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 269 | def __rmod__(b, a): |
| 270 | """a % b""" |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 271 | div = a // b |
| 272 | return a - b * div |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 273 | |
| 274 | def __pow__(a, b): |
| 275 | """a ** b |
| 276 | |
| 277 | If b is not an integer, the result will be a float or complex |
| 278 | since roots are generally irrational. If b is an integer, the |
| 279 | result will be rational. |
| 280 | |
| 281 | """ |
| 282 | if isinstance(b, RationalAbc): |
| 283 | if b.denominator == 1: |
| 284 | power = b.numerator |
| 285 | if power >= 0: |
| 286 | return Rational(a.numerator ** power, |
| 287 | a.denominator ** power) |
| 288 | else: |
| 289 | return Rational(a.denominator ** -power, |
| 290 | a.numerator ** -power) |
| 291 | else: |
| 292 | # A fractional power will generally produce an |
| 293 | # irrational number. |
| 294 | return float(a) ** float(b) |
| 295 | else: |
| 296 | return float(a) ** b |
| 297 | |
| 298 | def __rpow__(b, a): |
| 299 | """a ** b""" |
| 300 | if b.denominator == 1 and b.numerator >= 0: |
| 301 | # If a is an int, keep it that way if possible. |
| 302 | return a ** b.numerator |
| 303 | |
| 304 | if isinstance(a, RationalAbc): |
| 305 | return Rational(a.numerator, a.denominator) ** b |
| 306 | |
| 307 | if b.denominator == 1: |
| 308 | return a ** b.numerator |
| 309 | |
| 310 | return a ** float(b) |
| 311 | |
| 312 | def __pos__(a): |
| 313 | """+a: Coerces a subclass instance to Rational""" |
| 314 | return Rational(a.numerator, a.denominator) |
| 315 | |
| 316 | def __neg__(a): |
| 317 | """-a""" |
| 318 | return Rational(-a.numerator, a.denominator) |
| 319 | |
| 320 | def __abs__(a): |
| 321 | """abs(a)""" |
| 322 | return Rational(abs(a.numerator), a.denominator) |
| 323 | |
| 324 | def __trunc__(a): |
| 325 | """trunc(a)""" |
| 326 | if a.numerator < 0: |
| 327 | return -(-a.numerator // a.denominator) |
| 328 | else: |
| 329 | return a.numerator // a.denominator |
| 330 | |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 331 | __int__ = __trunc__ |
| 332 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 333 | def __floor__(a): |
| 334 | """Will be math.floor(a) in 3.0.""" |
| 335 | return a.numerator // a.denominator |
| 336 | |
| 337 | def __ceil__(a): |
| 338 | """Will be math.ceil(a) in 3.0.""" |
| 339 | # The negations cleverly convince floordiv to return the ceiling. |
| 340 | return -(-a.numerator // a.denominator) |
| 341 | |
| 342 | def __round__(self, ndigits=None): |
| 343 | """Will be round(self, ndigits) in 3.0. |
| 344 | |
| 345 | Rounds half toward even. |
| 346 | """ |
| 347 | if ndigits is None: |
| 348 | floor, remainder = divmod(self.numerator, self.denominator) |
| 349 | if remainder * 2 < self.denominator: |
| 350 | return floor |
| 351 | elif remainder * 2 > self.denominator: |
| 352 | return floor + 1 |
| 353 | # Deal with the half case: |
| 354 | elif floor % 2 == 0: |
| 355 | return floor |
| 356 | else: |
| 357 | return floor + 1 |
| 358 | shift = 10**abs(ndigits) |
| 359 | # See _operator_fallbacks.forward to check that the results of |
| 360 | # these operations will always be Rational and therefore have |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 361 | # round(). |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 362 | if ndigits > 0: |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 363 | return Rational(round(self * shift), shift) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 364 | else: |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 365 | return Rational(round(self / shift) * shift) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 366 | |
| 367 | def __hash__(self): |
| 368 | """hash(self) |
| 369 | |
| 370 | Tricky because values that are exactly representable as a |
| 371 | float must have the same hash as that float. |
| 372 | |
| 373 | """ |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 374 | # XXX since this method is expensive, consider caching the result |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 375 | if self.denominator == 1: |
| 376 | # Get integers right. |
| 377 | return hash(self.numerator) |
| 378 | # Expensive check, but definitely correct. |
| 379 | if self == float(self): |
| 380 | return hash(float(self)) |
| 381 | else: |
| 382 | # Use tuple's hash to avoid a high collision rate on |
| 383 | # simple fractions. |
| 384 | return hash((self.numerator, self.denominator)) |
| 385 | |
| 386 | def __eq__(a, b): |
| 387 | """a == b""" |
| 388 | if isinstance(b, RationalAbc): |
| 389 | return (a.numerator == b.numerator and |
| 390 | a.denominator == b.denominator) |
| 391 | if isinstance(b, numbers.Complex) and b.imag == 0: |
| 392 | b = b.real |
| 393 | if isinstance(b, float): |
| 394 | return a == a.from_float(b) |
| 395 | else: |
| 396 | # XXX: If b.__eq__ is implemented like this method, it may |
| 397 | # give the wrong answer after float(a) changes a's |
| 398 | # value. Better ways of doing this are welcome. |
| 399 | return float(a) == b |
| 400 | |
| 401 | def _subtractAndCompareToZero(a, b, op): |
| 402 | """Helper function for comparison operators. |
| 403 | |
| 404 | Subtracts b from a, exactly if possible, and compares the |
| 405 | result with 0 using op, in such a way that the comparison |
| 406 | won't recurse. If the difference raises a TypeError, returns |
| 407 | NotImplemented instead. |
| 408 | |
| 409 | """ |
| 410 | if isinstance(b, numbers.Complex) and b.imag == 0: |
| 411 | b = b.real |
| 412 | if isinstance(b, float): |
| 413 | b = a.from_float(b) |
| 414 | try: |
| 415 | # XXX: If b <: Real but not <: RationalAbc, this is likely |
| 416 | # to fall back to a float. If the actual values differ by |
| 417 | # less than MIN_FLOAT, this could falsely call them equal, |
| 418 | # which would make <= inconsistent with ==. Better ways of |
| 419 | # doing this are welcome. |
| 420 | diff = a - b |
| 421 | except TypeError: |
| 422 | return NotImplemented |
| 423 | if isinstance(diff, RationalAbc): |
| 424 | return op(diff.numerator, 0) |
| 425 | return op(diff, 0) |
| 426 | |
| 427 | def __lt__(a, b): |
| 428 | """a < b""" |
| 429 | return a._subtractAndCompareToZero(b, operator.lt) |
| 430 | |
| 431 | def __gt__(a, b): |
| 432 | """a > b""" |
| 433 | return a._subtractAndCompareToZero(b, operator.gt) |
| 434 | |
| 435 | def __le__(a, b): |
| 436 | """a <= b""" |
| 437 | return a._subtractAndCompareToZero(b, operator.le) |
| 438 | |
| 439 | def __ge__(a, b): |
| 440 | """a >= b""" |
| 441 | return a._subtractAndCompareToZero(b, operator.ge) |
| 442 | |
| 443 | def __bool__(a): |
| 444 | """a != 0""" |
| 445 | return a.numerator != 0 |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 446 | |
| 447 | # support for pickling, copy, and deepcopy |
| 448 | |
| 449 | def __reduce__(self): |
| 450 | return (self.__class__, (str(self),)) |
| 451 | |
| 452 | def __copy__(self): |
| 453 | if type(self) == Rational: |
| 454 | return self # I'm immutable; therefore I am my own clone |
| 455 | return self.__class__(self.numerator, self.denominator) |
| 456 | |
| 457 | def __deepcopy__(self, memo): |
| 458 | if type(self) == Rational: |
| 459 | return self # My components are also immutable |
| 460 | return self.__class__(self.numerator, self.denominator) |