blob: 9d303c27ff049eb2b30b54e8bbfdf9c2baf1f31e [file] [log] [blame]
Fred Drake295da241998-08-10 19:42:37 +00001\section{\module{random} ---
Fred Drake048b75b1999-04-21 18:14:22 +00002 Generate pseudo-random numbers}
Fred Drakeb91e9341998-07-23 17:59:49 +00003
Fred Drake048b75b1999-04-21 18:14:22 +00004\declaremodule{standard}{random}
Fred Drake295da241998-08-10 19:42:37 +00005\modulesynopsis{Generate pseudo-random numbers with various common
Fred Drake048b75b1999-04-21 18:14:22 +00006 distributions.}
Fred Drakeb91e9341998-07-23 17:59:49 +00007
Guido van Rossum571391b1997-04-03 22:41:49 +00008
9This module implements pseudo-random number generators for various
Tim Peters902446a2001-01-24 23:06:53 +000010distributions.
11For integers, uniform selection from a range.
12For sequences, uniform selection of a random element, and a function to
13generate a random permutation of a list in-place.
14On the real line, there are functions to compute uniform, normal (Gaussian),
15lognormal, negative exponential, gamma, and beta distributions.
16For generating distribution of angles, the circular uniform and
17von Mises distributions are available.
Guido van Rossum571391b1997-04-03 22:41:49 +000018
Tim Peters902446a2001-01-24 23:06:53 +000019Almost all module functions depend on the basic function
20\function{random()}, which generates a random float uniformly in
21the semi-open range [0.0, 1.0). Python uses the standard Wichmann-Hill
22generator, combining three pure multiplicative congruential
23generators of modulus 30269, 30307 and 30323. Its period (how many
24numbers it generates before repeating the sequence exactly) is
256,953,607,871,644. While of much higher quality than the \function{rand()}
26function supplied by most C libraries, the theoretical properties
27are much the same as for a single linear congruential generator of
28large modulus.
29
30The functions in this module are not threadsafe: if you want to call these
31functions from multiple threads, you should explicitly serialize the calls.
32Else, because no critical sections are implemented internally, calls
33from different threads may see the same return values.
34
Tim Petersd7b5e882001-01-25 03:36:26 +000035The functions supplied by this module are actually bound methods of a
Tim Petersd52269b2001-01-25 06:23:18 +000036hidden instance of the \var{random.Random} class. You can instantiate your
37own instances of \var{Random} to get generators that don't share state.
38This is especially useful for multi-threaded programs, creating a different
39instance of \var{Random} for each thread, and using the \method{jumpahead()}
40method to ensure that the generated sequences seen by each thread don't
41overlap. Class \var{Random} can also be subclassed if you want to use a
42different basic generator of your own devising: in that case, override the
43\method{random()}, \method{seed()}, \method{getstate()},
44\method{setstate()} and \method{jumpahead()} methods.
Tim Petersd7b5e882001-01-25 03:36:26 +000045
46
47Bookkeeping functions:
Tim Peters902446a2001-01-24 23:06:53 +000048
49\begin{funcdesc}{seed}{\optional{x}}
50 Initialize the basic random number generator.
51 Optional argument \var{x} can be any hashable object,
52 and the generator is seeded from its hash code.
53 It is not guaranteed that distinct hash codes will produce distinct
54 seeds.
55 If \var{x} is omitted or \code{None},
56 the seed is derived from the current system time.
57 The seed is also set from the current system time when
58 the module is first imported.
Barry Warsaw83125772001-01-25 00:39:16 +000059\end{funcdesc}
Guido van Rossum571391b1997-04-03 22:41:49 +000060
Tim Petersd7b5e882001-01-25 03:36:26 +000061\begin{funcdesc}{getstate}{}
62 Return an object capturing the current internal state of the generator.
63 This object can be passed to \code{setstate()} to restore the state.
64 \end{funcdesc}
Fred Drake5f0decf2001-01-22 18:18:30 +000065
Tim Petersd7b5e882001-01-25 03:36:26 +000066\begin{funcdesc}{setstate}{state}
67 \var{state} should have been obtained from a previous call to
68 \code{getstate()}, and \code{setstate()} restores the internal state
69 of the generate to what it was at the time \code{setstate()} was called.
70 \end{funcdesc}
71
Tim Petersd52269b2001-01-25 06:23:18 +000072\begin{funcdesc}{jumpahead}{n}
73 Change the internal state to what it would be if \code{random()} were
74 called n times, but do so quickly. \var{n} is a non-negative integer.
75 This is most useful in multi-threaded programs, in conjuction with
76 multiple instances of the \var{Random} class: \method{setstate()} or
77 \method{seed()} can be used to force all instances into the same
78 internal state, and then \method{jumpahead()} can be used to force the
79 instances' states as far apart as you like (up to the period of the
80 generator).
81 \end{funcdesc}
Tim Petersd7b5e882001-01-25 03:36:26 +000082
83Functions for integers:
Fred Drake5f0decf2001-01-22 18:18:30 +000084
Fred Drake5f0decf2001-01-22 18:18:30 +000085\begin{funcdesc}{randrange}{\optional{start,} stop\optional{, step}}
86 Return a randomly selected element from \code{range(\var{start},
87 \var{stop}, \var{step})}. This is equivalent to
Tim Peters902446a2001-01-24 23:06:53 +000088 \code{choice(range(\var{start}, \var{stop}, \var{step}))},
89 but doesn't actually build a range object.
Fred Drake5f0decf2001-01-22 18:18:30 +000090 \versionadded{1.5.2}
91\end{funcdesc}
92
Tim Petersd7b5e882001-01-25 03:36:26 +000093\begin{funcdesc}{randint}{a, b}
94 \deprecated{2.0}{Use \function{randrange()} instead.}
95 Return a random integer \var{N} such that
96 \code{\var{a} <= \var{N} <= \var{b}}.
97\end{funcdesc}
98
99
100Functions for sequences:
101
102\begin{funcdesc}{choice}{seq}
103 Return a random element from the non-empty sequence \var{seq}.
104\end{funcdesc}
105
106\begin{funcdesc}{shuffle}{x\optional{, random}}
107 Shuffle the sequence \var{x} in place.
108 The optional argument \var{random} is a 0-argument function
109 returning a random float in [0.0, 1.0); by default, this is the
110 function \function{random()}.
111
112 Note that for even rather small \code{len(\var{x})}, the total
113 number of permutations of \var{x} is larger than the period of most
114 random number generators; this implies that most permutations of a
115 long sequence can never be generated.
116\end{funcdesc}
117
118
119The following functions generate specific real-valued distributions.
120Function parameters are named after the corresponding variables in the
121distribution's equation, as used in common mathematical practice; most of
122these equations can be found in any statistics text.
123
Tim Peters902446a2001-01-24 23:06:53 +0000124\begin{funcdesc}{random}{}
125 Return the next random floating point number in the range [0.0, 1.0).
126\end{funcdesc}
127
Fred Drake5f0decf2001-01-22 18:18:30 +0000128\begin{funcdesc}{uniform}{a, b}
Tim Peters902446a2001-01-24 23:06:53 +0000129 Return a random real number \var{N} such that
Fred Drake5f0decf2001-01-22 18:18:30 +0000130 \code{\var{a} <= \var{N} < \var{b}}.
131\end{funcdesc}
Fred Drake38e5d272000-04-03 20:13:55 +0000132
Fred Drake2eda4ca1998-03-08 08:13:53 +0000133\begin{funcdesc}{betavariate}{alpha, beta}
Fred Drake5f0decf2001-01-22 18:18:30 +0000134 Beta distribution. Conditions on the parameters are
135 \code{\var{alpha} > -1} and \code{\var{beta} > -1}.
136 Returned values range between 0 and 1.
Guido van Rossum571391b1997-04-03 22:41:49 +0000137\end{funcdesc}
138
Fred Drake2eda4ca1998-03-08 08:13:53 +0000139\begin{funcdesc}{cunifvariate}{mean, arc}
Fred Drake5f0decf2001-01-22 18:18:30 +0000140 Circular uniform distribution. \var{mean} is the mean angle, and
141 \var{arc} is the range of the distribution, centered around the mean
142 angle. Both values must be expressed in radians, and can range
Tim Peters902446a2001-01-24 23:06:53 +0000143 between 0 and \emph{pi}. Returned values range between
Fred Drake5f0decf2001-01-22 18:18:30 +0000144 \code{\var{mean} - \var{arc}/2} and \code{\var{mean} +
145 \var{arc}/2}.
Guido van Rossum571391b1997-04-03 22:41:49 +0000146\end{funcdesc}
147
148\begin{funcdesc}{expovariate}{lambd}
Fred Drake5f0decf2001-01-22 18:18:30 +0000149 Exponential distribution. \var{lambd} is 1.0 divided by the desired
150 mean. (The parameter would be called ``lambda'', but that is a
Tim Peters902446a2001-01-24 23:06:53 +0000151 reserved word in Python.) Returned values range from 0 to
Fred Drake5f0decf2001-01-22 18:18:30 +0000152 positive infinity.
Guido van Rossum571391b1997-04-03 22:41:49 +0000153\end{funcdesc}
154
Fred Drake2eda4ca1998-03-08 08:13:53 +0000155\begin{funcdesc}{gamma}{alpha, beta}
Fred Drake5f0decf2001-01-22 18:18:30 +0000156 Gamma distribution. (\emph{Not} the gamma function!) Conditions on
157 the parameters are \code{\var{alpha} > -1} and \code{\var{beta} > 0}.
Guido van Rossum571391b1997-04-03 22:41:49 +0000158\end{funcdesc}
159
Fred Drake2eda4ca1998-03-08 08:13:53 +0000160\begin{funcdesc}{gauss}{mu, sigma}
Fred Drake5f0decf2001-01-22 18:18:30 +0000161 Gaussian distribution. \var{mu} is the mean, and \var{sigma} is the
162 standard deviation. This is slightly faster than the
163 \function{normalvariate()} function defined below.
Guido van Rossum571391b1997-04-03 22:41:49 +0000164\end{funcdesc}
165
Fred Drake2eda4ca1998-03-08 08:13:53 +0000166\begin{funcdesc}{lognormvariate}{mu, sigma}
Fred Drake5f0decf2001-01-22 18:18:30 +0000167 Log normal distribution. If you take the natural logarithm of this
168 distribution, you'll get a normal distribution with mean \var{mu}
169 and standard deviation \var{sigma}. \var{mu} can have any value,
Tim Peters902446a2001-01-24 23:06:53 +0000170 and \var{sigma} must be greater than zero.
Guido van Rossum571391b1997-04-03 22:41:49 +0000171\end{funcdesc}
172
Fred Drake2eda4ca1998-03-08 08:13:53 +0000173\begin{funcdesc}{normalvariate}{mu, sigma}
Fred Drake5f0decf2001-01-22 18:18:30 +0000174 Normal distribution. \var{mu} is the mean, and \var{sigma} is the
175 standard deviation.
Guido van Rossum571391b1997-04-03 22:41:49 +0000176\end{funcdesc}
177
Fred Drake2eda4ca1998-03-08 08:13:53 +0000178\begin{funcdesc}{vonmisesvariate}{mu, kappa}
Fred Drake5f0decf2001-01-22 18:18:30 +0000179 \var{mu} is the mean angle, expressed in radians between 0 and
180 2*\emph{pi}, and \var{kappa} is the concentration parameter, which
181 must be greater than or equal to zero. If \var{kappa} is equal to
182 zero, this distribution reduces to a uniform random angle over the
183 range 0 to 2*\emph{pi}.
Guido van Rossum571391b1997-04-03 22:41:49 +0000184\end{funcdesc}
Guido van Rossume47da0a1997-07-17 16:34:52 +0000185
Guido van Rossum4f80b651997-12-30 17:38:05 +0000186\begin{funcdesc}{paretovariate}{alpha}
Fred Drake5f0decf2001-01-22 18:18:30 +0000187 Pareto distribution. \var{alpha} is the shape parameter.
Guido van Rossum4f80b651997-12-30 17:38:05 +0000188\end{funcdesc}
189
190\begin{funcdesc}{weibullvariate}{alpha, beta}
Fred Drake5f0decf2001-01-22 18:18:30 +0000191 Weibull distribution. \var{alpha} is the scale parameter and
192 \var{beta} is the shape parameter.
Guido van Rossum4f80b651997-12-30 17:38:05 +0000193\end{funcdesc}
Guido van Rossume47da0a1997-07-17 16:34:52 +0000194
Fred Drake065cba12000-12-15 19:07:17 +0000195
Guido van Rossume47da0a1997-07-17 16:34:52 +0000196\begin{seealso}
Tim Peters902446a2001-01-24 23:06:53 +0000197 \seetext{Wichmann, B. A. \& Hill, I. D., ``Algorithm AS 183:
198 An efficient and portable pseudo-random number generator'',
199 \citetitle{Applied Statistics} 31 (1982) 188-190.}
Guido van Rossume47da0a1997-07-17 16:34:52 +0000200\end{seealso}