blob: 6f8d3c8aa05f0b0fdcbb970da81b99f405316376 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
24Number-theoretic and representation functions:
25
26
27.. function:: ceil(x)
28
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000029 Return the ceiling of *x* as a float, the smallest integer value greater than or
30 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
32
Christian Heimeseebb79c2008-01-03 22:32:26 +000033.. function:: copysign(x, y)
34
35 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
36 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
37
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000038 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000039
40
Georg Brandl8ec7f652007-08-15 14:28:01 +000041.. function:: fabs(x)
42
43 Return the absolute value of *x*.
44
Georg Brandl5da652e2008-06-18 09:28:22 +000045
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000046.. function:: factorial(x)
47
Mark Dickinsonf88f7392008-06-18 09:20:17 +000048 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000049 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000050
Georg Brandl5da652e2008-06-18 09:28:22 +000051 .. versionadded:: 2.6
52
53
Georg Brandl8ec7f652007-08-15 14:28:01 +000054.. function:: floor(x)
55
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000056 Return the floor of *x* as a float, the largest integer value less than or equal
57 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000058
Georg Brandl9749e152008-01-05 19:28:16 +000059 .. versionchanged:: 2.6
60 Added :meth:`__floor__` delegation.
61
Georg Brandl8ec7f652007-08-15 14:28:01 +000062
63.. function:: fmod(x, y)
64
65 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
66 Python expression ``x % y`` may not return the same result. The intent of the C
67 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
68 precision) equal to ``x - n*y`` for some integer *n* such that the result has
69 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
70 returns a result with the sign of *y* instead, and may not be exactly computable
71 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
72 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
73 represented exactly as a float, and rounds to the surprising ``1e100``. For
74 this reason, function :func:`fmod` is generally preferred when working with
75 floats, while Python's ``x % y`` is preferred when working with integers.
76
77
78.. function:: frexp(x)
79
80 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
81 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
82 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
83 apart" the internal representation of a float in a portable way.
84
85
Mark Dickinsonfef6b132008-07-30 16:20:10 +000086.. function:: fsum(iterable)
87
88 Return an accurate floating point sum of values in the iterable. Avoids
89 loss of precision by tracking multiple intermediate partial sums. The
90 algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
91 typical case where the rounding mode is half-even.
92
Mark Dickinson23957cb2008-07-30 20:23:15 +000093 .. note::
94
95 On platforms where arithmetic results are not correctly rounded,
96 :func:`fsum` may occasionally produce incorrect results; these
97 results should be no less accurate than those from the builtin
98 :func:`sum` function, but nevertheless may have arbitrarily
99 large relative error.
100
101 In particular, this affects some older Intel hardware (for
102 example Pentium and earlier x86 processors) that makes use of
103 'extended precision' floating-point registers with 64 bits of
104 precision instead of the 53 bits of precision provided by a C
105 double. Arithmetic operations using these registers may be
106 doubly rounded (rounded first to 64 bits, and then rerounded to
107 53 bits), leading to incorrectly rounded results. To test
108 whether your machine is one of those affected, try the following
109 at a Python prompt::
110
111 >>> 1e16 + 2.9999
112 10000000000000002.0
113
114 Machines subject to the double-rounding problem described above
115 are likely to print ``10000000000000004.0`` instead of
116 ``10000000000000002.0``.
117
118
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000119 .. versionadded:: 2.6
120
121
Christian Heimese2ca4242008-01-03 20:23:15 +0000122.. function:: isinf(x)
123
124 Checks if the float *x* is positive or negative infinite.
125
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000126 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000127
128
129.. function:: isnan(x)
130
131 Checks if the float *x* is a NaN (not a number). NaNs are part of the
132 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
133 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
134 a NaN.
135
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000136 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000137
138
Georg Brandl8ec7f652007-08-15 14:28:01 +0000139.. function:: ldexp(x, i)
140
141 Return ``x * (2**i)``. This is essentially the inverse of function
142 :func:`frexp`.
143
144
145.. function:: modf(x)
146
147 Return the fractional and integer parts of *x*. Both results carry the sign of
148 *x*, and both are floats.
149
Georg Brandl5da652e2008-06-18 09:28:22 +0000150
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000151.. function:: trunc(x)
152
153 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
154 a long integer). Delegates to ``x.__trunc__()``.
155
156 .. versionadded:: 2.6
157
Georg Brandl5da652e2008-06-18 09:28:22 +0000158
Georg Brandl8ec7f652007-08-15 14:28:01 +0000159Note that :func:`frexp` and :func:`modf` have a different call/return pattern
160than their C equivalents: they take a single argument and return a pair of
161values, rather than returning their second return value through an 'output
162parameter' (there is no such thing in Python).
163
164For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
165floating-point numbers of sufficiently large magnitude are exact integers.
166Python floats typically carry no more than 53 bits of precision (the same as the
167platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
168necessarily has no fractional bits.
169
170Power and logarithmic functions:
171
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172.. function:: exp(x)
173
174 Return ``e**x``.
175
176
177.. function:: log(x[, base])
178
179 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
180 return the natural logarithm of *x* (that is, the logarithm to base *e*).
181
182 .. versionchanged:: 2.3
183 *base* argument added.
184
185
Christian Heimes6f341092008-04-18 23:13:07 +0000186.. function:: log1p(x)
187
188 Return the natural logarithm of *1+x* (base *e*). The
189 result is calculated in a way which is accurate for *x* near zero.
190
191 .. versionadded:: 2.6
192
193
Georg Brandl8ec7f652007-08-15 14:28:01 +0000194.. function:: log10(x)
195
196 Return the base-10 logarithm of *x*.
197
198
199.. function:: pow(x, y)
200
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000201 Return ``x`` raised to the power ``y``. Exceptional cases follow
202 Annex 'F' of the C99 standard as far as possible. In particular,
203 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
204 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
205 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
206 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000207
208 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000209 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000210
211
212.. function:: sqrt(x)
213
214 Return the square root of *x*.
215
Georg Brandl8ec7f652007-08-15 14:28:01 +0000216
Georg Brandl5da652e2008-06-18 09:28:22 +0000217Trigonometric functions:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000218
219.. function:: acos(x)
220
221 Return the arc cosine of *x*, in radians.
222
223
224.. function:: asin(x)
225
226 Return the arc sine of *x*, in radians.
227
228
229.. function:: atan(x)
230
231 Return the arc tangent of *x*, in radians.
232
233
234.. function:: atan2(y, x)
235
236 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
237 The vector in the plane from the origin to point ``(x, y)`` makes this angle
238 with the positive X axis. The point of :func:`atan2` is that the signs of both
239 inputs are known to it, so it can compute the correct quadrant for the angle.
240 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
241 -1)`` is ``-3*pi/4``.
242
243
244.. function:: cos(x)
245
246 Return the cosine of *x* radians.
247
248
249.. function:: hypot(x, y)
250
251 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
252 from the origin to point ``(x, y)``.
253
254
255.. function:: sin(x)
256
257 Return the sine of *x* radians.
258
259
260.. function:: tan(x)
261
262 Return the tangent of *x* radians.
263
Georg Brandl8ec7f652007-08-15 14:28:01 +0000264
Georg Brandl5da652e2008-06-18 09:28:22 +0000265Angular conversion:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000266
267.. function:: degrees(x)
268
269 Converts angle *x* from radians to degrees.
270
271
272.. function:: radians(x)
273
274 Converts angle *x* from degrees to radians.
275
Georg Brandl8ec7f652007-08-15 14:28:01 +0000276
Georg Brandl5da652e2008-06-18 09:28:22 +0000277Hyperbolic functions:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000279.. function:: acosh(x)
280
281 Return the inverse hyperbolic cosine of *x*.
282
283 .. versionadded:: 2.6
284
285
286.. function:: asinh(x)
287
288 Return the inverse hyperbolic sine of *x*.
289
290 .. versionadded:: 2.6
291
292
293.. function:: atanh(x)
294
295 Return the inverse hyperbolic tangent of *x*.
296
297 .. versionadded:: 2.6
298
299
Georg Brandl8ec7f652007-08-15 14:28:01 +0000300.. function:: cosh(x)
301
302 Return the hyperbolic cosine of *x*.
303
304
305.. function:: sinh(x)
306
307 Return the hyperbolic sine of *x*.
308
309
310.. function:: tanh(x)
311
312 Return the hyperbolic tangent of *x*.
313
Christian Heimes6f341092008-04-18 23:13:07 +0000314
Georg Brandl8ec7f652007-08-15 14:28:01 +0000315The module also defines two mathematical constants:
316
Georg Brandl8ec7f652007-08-15 14:28:01 +0000317.. data:: pi
318
319 The mathematical constant *pi*.
320
321
322.. data:: e
323
324 The mathematical constant *e*.
325
Christian Heimes6f341092008-04-18 23:13:07 +0000326
Georg Brandl8ec7f652007-08-15 14:28:01 +0000327.. note::
328
329 The :mod:`math` module consists mostly of thin wrappers around the platform C
330 math library functions. Behavior in exceptional cases is loosely specified
331 by the C standards, and Python inherits much of its math-function
332 error-reporting behavior from the platform C implementation. As a result,
333 the specific exceptions raised in error cases (and even whether some
334 arguments are considered to be exceptional at all) are not defined in any
335 useful cross-platform or cross-release way. For example, whether
336 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
337 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
338 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
339
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000340 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Christian Heimes6f341092008-04-18 23:13:07 +0000341 Signaling *NaN*s raise an exception. The exception type still depends on the
342 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
343 and :exc:`OverflowError` for errno *ERANGE*.
344
Georg Brandl173b7392008-05-12 17:43:13 +0000345 .. versionchanged:: 2.6
Christian Heimes6f341092008-04-18 23:13:07 +0000346 In earlier versions of Python the outcome of an operation with NaN as
347 input depended on platform and libm implementation.
348
Georg Brandl8ec7f652007-08-15 14:28:01 +0000349
350.. seealso::
351
352 Module :mod:`cmath`
353 Complex number versions of many of these functions.