blob: 574075933b5bf029f115d00e4c2ef7e85e443319 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
24Number-theoretic and representation functions:
25
26
27.. function:: ceil(x)
28
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000029 Return the ceiling of *x* as a float, the smallest integer value greater than or
30 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
32
Christian Heimeseebb79c2008-01-03 22:32:26 +000033.. function:: copysign(x, y)
34
35 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
36 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
37
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000038 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000039
40
Georg Brandl8ec7f652007-08-15 14:28:01 +000041.. function:: fabs(x)
42
43 Return the absolute value of *x*.
44
Georg Brandl5da652e2008-06-18 09:28:22 +000045
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000046.. function:: factorial(x)
47
Mark Dickinsonf88f7392008-06-18 09:20:17 +000048 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000049 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000050
Georg Brandl5da652e2008-06-18 09:28:22 +000051 .. versionadded:: 2.6
52
53
Georg Brandl8ec7f652007-08-15 14:28:01 +000054.. function:: floor(x)
55
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000056 Return the floor of *x* as a float, the largest integer value less than or equal
57 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000058
Georg Brandl9749e152008-01-05 19:28:16 +000059 .. versionchanged:: 2.6
60 Added :meth:`__floor__` delegation.
61
Georg Brandl8ec7f652007-08-15 14:28:01 +000062
63.. function:: fmod(x, y)
64
65 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
66 Python expression ``x % y`` may not return the same result. The intent of the C
67 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
68 precision) equal to ``x - n*y`` for some integer *n* such that the result has
69 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
70 returns a result with the sign of *y* instead, and may not be exactly computable
71 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
72 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
73 represented exactly as a float, and rounds to the surprising ``1e100``. For
74 this reason, function :func:`fmod` is generally preferred when working with
75 floats, while Python's ``x % y`` is preferred when working with integers.
76
77
78.. function:: frexp(x)
79
80 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
81 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
82 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
83 apart" the internal representation of a float in a portable way.
84
85
Mark Dickinsonfef6b132008-07-30 16:20:10 +000086.. function:: fsum(iterable)
87
88 Return an accurate floating point sum of values in the iterable. Avoids
89 loss of precision by tracking multiple intermediate partial sums. The
90 algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
91 typical case where the rounding mode is half-even.
92
93 .. versionadded:: 2.6
94
95
Christian Heimese2ca4242008-01-03 20:23:15 +000096.. function:: isinf(x)
97
98 Checks if the float *x* is positive or negative infinite.
99
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000100 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000101
102
103.. function:: isnan(x)
104
105 Checks if the float *x* is a NaN (not a number). NaNs are part of the
106 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
107 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
108 a NaN.
109
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000110 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000111
112
Georg Brandl8ec7f652007-08-15 14:28:01 +0000113.. function:: ldexp(x, i)
114
115 Return ``x * (2**i)``. This is essentially the inverse of function
116 :func:`frexp`.
117
118
119.. function:: modf(x)
120
121 Return the fractional and integer parts of *x*. Both results carry the sign of
122 *x*, and both are floats.
123
Georg Brandl5da652e2008-06-18 09:28:22 +0000124
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000125.. function:: trunc(x)
126
127 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
128 a long integer). Delegates to ``x.__trunc__()``.
129
130 .. versionadded:: 2.6
131
Georg Brandl5da652e2008-06-18 09:28:22 +0000132
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133Note that :func:`frexp` and :func:`modf` have a different call/return pattern
134than their C equivalents: they take a single argument and return a pair of
135values, rather than returning their second return value through an 'output
136parameter' (there is no such thing in Python).
137
138For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
139floating-point numbers of sufficiently large magnitude are exact integers.
140Python floats typically carry no more than 53 bits of precision (the same as the
141platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
142necessarily has no fractional bits.
143
144Power and logarithmic functions:
145
Georg Brandl8ec7f652007-08-15 14:28:01 +0000146.. function:: exp(x)
147
148 Return ``e**x``.
149
150
151.. function:: log(x[, base])
152
153 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
154 return the natural logarithm of *x* (that is, the logarithm to base *e*).
155
156 .. versionchanged:: 2.3
157 *base* argument added.
158
159
Christian Heimes6f341092008-04-18 23:13:07 +0000160.. function:: log1p(x)
161
162 Return the natural logarithm of *1+x* (base *e*). The
163 result is calculated in a way which is accurate for *x* near zero.
164
165 .. versionadded:: 2.6
166
167
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168.. function:: log10(x)
169
170 Return the base-10 logarithm of *x*.
171
172
173.. function:: pow(x, y)
174
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000175 Return ``x`` raised to the power ``y``. Exceptional cases follow
176 Annex 'F' of the C99 standard as far as possible. In particular,
177 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
178 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
179 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
180 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000181
182 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000183 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000184
185
186.. function:: sqrt(x)
187
188 Return the square root of *x*.
189
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190
Georg Brandl5da652e2008-06-18 09:28:22 +0000191Trigonometric functions:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192
193.. function:: acos(x)
194
195 Return the arc cosine of *x*, in radians.
196
197
198.. function:: asin(x)
199
200 Return the arc sine of *x*, in radians.
201
202
203.. function:: atan(x)
204
205 Return the arc tangent of *x*, in radians.
206
207
208.. function:: atan2(y, x)
209
210 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
211 The vector in the plane from the origin to point ``(x, y)`` makes this angle
212 with the positive X axis. The point of :func:`atan2` is that the signs of both
213 inputs are known to it, so it can compute the correct quadrant for the angle.
214 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
215 -1)`` is ``-3*pi/4``.
216
217
218.. function:: cos(x)
219
220 Return the cosine of *x* radians.
221
222
223.. function:: hypot(x, y)
224
225 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
226 from the origin to point ``(x, y)``.
227
228
229.. function:: sin(x)
230
231 Return the sine of *x* radians.
232
233
234.. function:: tan(x)
235
236 Return the tangent of *x* radians.
237
Georg Brandl8ec7f652007-08-15 14:28:01 +0000238
Georg Brandl5da652e2008-06-18 09:28:22 +0000239Angular conversion:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000240
241.. function:: degrees(x)
242
243 Converts angle *x* from radians to degrees.
244
245
246.. function:: radians(x)
247
248 Converts angle *x* from degrees to radians.
249
Georg Brandl8ec7f652007-08-15 14:28:01 +0000250
Georg Brandl5da652e2008-06-18 09:28:22 +0000251Hyperbolic functions:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000252
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000253.. function:: acosh(x)
254
255 Return the inverse hyperbolic cosine of *x*.
256
257 .. versionadded:: 2.6
258
259
260.. function:: asinh(x)
261
262 Return the inverse hyperbolic sine of *x*.
263
264 .. versionadded:: 2.6
265
266
267.. function:: atanh(x)
268
269 Return the inverse hyperbolic tangent of *x*.
270
271 .. versionadded:: 2.6
272
273
Georg Brandl8ec7f652007-08-15 14:28:01 +0000274.. function:: cosh(x)
275
276 Return the hyperbolic cosine of *x*.
277
278
279.. function:: sinh(x)
280
281 Return the hyperbolic sine of *x*.
282
283
284.. function:: tanh(x)
285
286 Return the hyperbolic tangent of *x*.
287
Christian Heimes6f341092008-04-18 23:13:07 +0000288
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289The module also defines two mathematical constants:
290
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291.. data:: pi
292
293 The mathematical constant *pi*.
294
295
296.. data:: e
297
298 The mathematical constant *e*.
299
Christian Heimes6f341092008-04-18 23:13:07 +0000300
Georg Brandl8ec7f652007-08-15 14:28:01 +0000301.. note::
302
303 The :mod:`math` module consists mostly of thin wrappers around the platform C
304 math library functions. Behavior in exceptional cases is loosely specified
305 by the C standards, and Python inherits much of its math-function
306 error-reporting behavior from the platform C implementation. As a result,
307 the specific exceptions raised in error cases (and even whether some
308 arguments are considered to be exceptional at all) are not defined in any
309 useful cross-platform or cross-release way. For example, whether
310 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
311 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
312 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
313
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000314 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Christian Heimes6f341092008-04-18 23:13:07 +0000315 Signaling *NaN*s raise an exception. The exception type still depends on the
316 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
317 and :exc:`OverflowError` for errno *ERANGE*.
318
Georg Brandl173b7392008-05-12 17:43:13 +0000319 .. versionchanged:: 2.6
Christian Heimes6f341092008-04-18 23:13:07 +0000320 In earlier versions of Python the outcome of an operation with NaN as
321 input depended on platform and libm implementation.
322
Georg Brandl8ec7f652007-08-15 14:28:01 +0000323
324.. seealso::
325
326 Module :mod:`cmath`
327 Complex number versions of many of these functions.