blob: ca902917d1001ed62fc417a22c573702e245d55a [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
38 :const:`1.1` do not have an exact representation in binary floating point. End
39 users typically would not expect :const:`1.1` to display as
40 :const:`1.1000000000000001` as it does with binary floating point.
41
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60 >>> getcontext().prec = 6
61 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000062 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000063 >>> getcontext().prec = 28
64 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000065 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000066
67* Both binary and decimal floating point are implemented in terms of published
68 standards. While the built-in float type exposes only a modest portion of its
69 capabilities, the decimal module exposes all required parts of the standard.
70 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000071 This includes an option to enforce exact arithmetic by using exceptions
72 to block any inexact operations.
73
74* The decimal module was designed to support "without prejudice, both exact
75 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
76 and rounded floating-point arithmetic." -- excerpt from the decimal
77 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000078
79The module design is centered around three concepts: the decimal number, the
80context for arithmetic, and signals.
81
82A decimal number is immutable. It has a sign, coefficient digits, and an
83exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000084trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000085:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
86differentiates :const:`-0` from :const:`+0`.
87
88The context for arithmetic is an environment specifying precision, rounding
89rules, limits on exponents, flags indicating the results of operations, and trap
90enablers which determine whether signals are treated as exceptions. Rounding
91options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
92:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000093:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000094
95Signals are groups of exceptional conditions arising during the course of
96computation. Depending on the needs of the application, signals may be ignored,
97considered as informational, or treated as exceptions. The signals in the
98decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
99:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
100:const:`Overflow`, and :const:`Underflow`.
101
102For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000103encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000104set to one, an exception is raised. Flags are sticky, so the user needs to
105reset them before monitoring a calculation.
106
107
108.. seealso::
109
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000110 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Georg Brandl51b72162009-10-27 13:54:57 +0000111 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000112
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000113 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000114 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
Georg Brandlb19be572007-12-29 10:57:00 +0000116.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000117
118
119.. _decimal-tutorial:
120
121Quick-start Tutorial
122--------------------
123
124The usual start to using decimals is importing the module, viewing the current
125context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000126precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127
128 >>> from decimal import *
129 >>> getcontext()
130 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000131 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
132 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
134 >>> getcontext().prec = 7 # Set a new precision
135
136Decimal instances can be constructed from integers, strings, or tuples. To
137create a Decimal from a :class:`float`, first convert it to a string. This
138serves as an explicit reminder of the details of the conversion (including
139representation error). Decimal numbers include special values such as
140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000149 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('1.41421356237')
152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158
159The significance of a new Decimal is determined solely by the number of digits
160input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000161operations.
162
163.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164
165 >>> getcontext().prec = 6
166 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000167 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> getcontext().rounding = ROUND_UP
173 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000174 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000177floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178
Georg Brandl838b4b02008-03-22 13:07:06 +0000179.. doctest::
180 :options: +NORMALIZE_WHITESPACE
181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
183 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000184 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000187 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
189 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000191 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> a,b,c = data[:3]
193 >>> str(a)
194 '1.34'
195 >>> float(a)
196 1.3400000000000001
197 >>> round(a, 1) # round() first converts to binary floating point
198 1.3
199 >>> int(a)
200 1
201 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000202 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Georg Brandl9f662322008-03-22 11:47:10 +0000208And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000209
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000210 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000212 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('2.718281828459045235360287471')
215 >>> Decimal('10').ln()
216 Decimal('2.302585092994045684017991455')
217 >>> Decimal('10').log10()
218 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000219
Georg Brandl8ec7f652007-08-15 14:28:01 +0000220The :meth:`quantize` method rounds a number to a fixed exponent. This method is
221useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000222places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000223
224 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000225 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229As shown above, the :func:`getcontext` function accesses the current context and
230allows the settings to be changed. This approach meets the needs of most
231applications.
232
233For more advanced work, it may be useful to create alternate contexts using the
234Context() constructor. To make an alternate active, use the :func:`setcontext`
235function.
236
237In accordance with the standard, the :mod:`Decimal` module provides two ready to
238use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
239former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000240enabled:
241
242.. doctest:: newcontext
243 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000244
245 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
246 >>> setcontext(myothercontext)
247 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000248 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000249
250 >>> ExtendedContext
251 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
252 capitals=1, flags=[], traps=[])
253 >>> setcontext(ExtendedContext)
254 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000255 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
259 >>> setcontext(BasicContext)
260 >>> Decimal(42) / Decimal(0)
261 Traceback (most recent call last):
262 File "<pyshell#143>", line 1, in -toplevel-
263 Decimal(42) / Decimal(0)
264 DivisionByZero: x / 0
265
266Contexts also have signal flags for monitoring exceptional conditions
267encountered during computations. The flags remain set until explicitly cleared,
268so it is best to clear the flags before each set of monitored computations by
269using the :meth:`clear_flags` method. ::
270
271 >>> setcontext(ExtendedContext)
272 >>> getcontext().clear_flags()
273 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000274 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 >>> getcontext()
276 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000277 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
279The *flags* entry shows that the rational approximation to :const:`Pi` was
280rounded (digits beyond the context precision were thrown away) and that the
281result is inexact (some of the discarded digits were non-zero).
282
283Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000284context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000285
Georg Brandl9f662322008-03-22 11:47:10 +0000286.. doctest:: newcontext
287
288 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000290 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> getcontext().traps[DivisionByZero] = 1
292 >>> Decimal(1) / Decimal(0)
293 Traceback (most recent call last):
294 File "<pyshell#112>", line 1, in -toplevel-
295 Decimal(1) / Decimal(0)
296 DivisionByZero: x / 0
297
298Most programs adjust the current context only once, at the beginning of the
299program. And, in many applications, data is converted to :class:`Decimal` with
300a single cast inside a loop. With context set and decimals created, the bulk of
301the program manipulates the data no differently than with other Python numeric
302types.
303
Georg Brandlb19be572007-12-29 10:57:00 +0000304.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305
306
307.. _decimal-decimal:
308
309Decimal objects
310---------------
311
312
313.. class:: Decimal([value [, context]])
314
Georg Brandlb19be572007-12-29 10:57:00 +0000315 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000317 *value* can be an integer, string, tuple, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000318 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000319 string, it should conform to the decimal numeric string syntax after leading
320 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000321
322 sign ::= '+' | '-'
323 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
324 indicator ::= 'e' | 'E'
325 digits ::= digit [digit]...
326 decimal-part ::= digits '.' [digits] | ['.'] digits
327 exponent-part ::= indicator [sign] digits
328 infinity ::= 'Infinity' | 'Inf'
329 nan ::= 'NaN' [digits] | 'sNaN' [digits]
330 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl734373c2009-01-03 21:55:17 +0000331 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000332
Mark Dickinson9a6e6452009-08-02 11:01:01 +0000333 If *value* is a unicode string then other Unicode decimal digits
334 are also permitted where ``digit`` appears above. These include
335 decimal digits from various other alphabets (for example,
336 Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
337 ``u'\uff10'`` through ``u'\uff19'``.
338
Georg Brandl8ec7f652007-08-15 14:28:01 +0000339 If *value* is a :class:`tuple`, it should have three components, a sign
340 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
341 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000342 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000343
344 The *context* precision does not affect how many digits are stored. That is
345 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000346 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000347 only three.
348
349 The purpose of the *context* argument is determining what to do if *value* is a
350 malformed string. If the context traps :const:`InvalidOperation`, an exception
351 is raised; otherwise, the constructor returns a new Decimal with the value of
352 :const:`NaN`.
353
354 Once constructed, :class:`Decimal` objects are immutable.
355
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000356 .. versionchanged:: 2.6
357 leading and trailing whitespace characters are permitted when
358 creating a Decimal instance from a string.
359
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000360 Decimal floating point objects share many properties with the other built-in
361 numeric types such as :class:`float` and :class:`int`. All of the usual math
362 operations and special methods apply. Likewise, decimal objects can be
363 copied, pickled, printed, used as dictionary keys, used as set elements,
364 compared, sorted, and coerced to another type (such as :class:`float` or
365 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000366
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000367 In addition to the standard numeric properties, decimal floating point
368 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000369
370
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000371 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000372
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000373 Return the adjusted exponent after shifting out the coefficient's
374 rightmost digits until only the lead digit remains:
375 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
376 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000377
378
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000379 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000380
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000381 Return a :term:`named tuple` representation of the number:
382 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000383
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000384 .. versionchanged:: 2.6
385 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000386
387
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000388 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000389
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000390 Return the canonical encoding of the argument. Currently, the encoding of
391 a :class:`Decimal` instance is always canonical, so this operation returns
392 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000393
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000394 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000395
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000396 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000397
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000398 Compare the values of two Decimal instances. This operation behaves in
399 the same way as the usual comparison method :meth:`__cmp__`, except that
400 :meth:`compare` returns a Decimal instance rather than an integer, and if
401 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000402
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000403 a or b is a NaN ==> Decimal('NaN')
404 a < b ==> Decimal('-1')
405 a == b ==> Decimal('0')
406 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 This operation is identical to the :meth:`compare` method, except that all
411 NaNs signal. That is, if neither operand is a signaling NaN then any
412 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000413
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000414 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000415
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000416 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000417
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000418 Compare two operands using their abstract representation rather than their
419 numerical value. Similar to the :meth:`compare` method, but the result
420 gives a total ordering on :class:`Decimal` instances. Two
421 :class:`Decimal` instances with the same numeric value but different
422 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000423
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000424 >>> Decimal('12.0').compare_total(Decimal('12'))
425 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000426
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000427 Quiet and signaling NaNs are also included in the total ordering. The
428 result of this function is ``Decimal('0')`` if both operands have the same
429 representation, ``Decimal('-1')`` if the first operand is lower in the
430 total order than the second, and ``Decimal('1')`` if the first operand is
431 higher in the total order than the second operand. See the specification
432 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000433
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000434 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000435
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000436 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000437
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000438 Compare two operands using their abstract representation rather than their
439 value as in :meth:`compare_total`, but ignoring the sign of each operand.
440 ``x.compare_total_mag(y)`` is equivalent to
441 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000442
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000443 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000444
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000445 .. method:: conjugate()
446
447 Just returns self, this method is only to comply with the Decimal
448 Specification.
449
450 .. versionadded:: 2.6
451
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000452 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000453
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000454 Return the absolute value of the argument. This operation is unaffected
455 by the context and is quiet: no flags are changed and no rounding is
456 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000457
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000458 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000459
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000460 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000461
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000462 Return the negation of the argument. This operation is unaffected by the
463 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000464
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000465 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000466
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000467 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000468
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000469 Return a copy of the first operand with the sign set to be the same as the
470 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
473 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000474
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000475 This operation is unaffected by the context and is quiet: no flags are
476 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000477
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000478 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000479
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000480 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000481
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000482 Return the value of the (natural) exponential function ``e**x`` at the
483 given number. The result is correctly rounded using the
484 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000485
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000486 >>> Decimal(1).exp()
487 Decimal('2.718281828459045235360287471')
488 >>> Decimal(321).exp()
489 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000490
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000491 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000492
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000493 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000494
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000495 Fused multiply-add. Return self*other+third with no rounding of the
496 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000497
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000498 >>> Decimal(2).fma(3, 5)
499 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000500
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000501 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000502
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000503 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000504
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000505 Return :const:`True` if the argument is canonical and :const:`False`
506 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
507 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000508
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000509 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000510
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000511 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000512
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000513 Return :const:`True` if the argument is a finite number, and
514 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000515
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000516 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000517
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000518 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000519
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000520 Return :const:`True` if the argument is either positive or negative
521 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000522
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000523 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000524
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000525 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000526
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000527 Return :const:`True` if the argument is a (quiet or signaling) NaN and
528 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000529
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000530 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000531
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000532 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000533
Georg Brandl51b72162009-10-27 13:54:57 +0000534 Return :const:`True` if the argument is a *normal* finite non-zero
535 number with an adjusted exponent greater than or equal to *Emin*.
536 Return :const:`False` if the argument is zero, subnormal, infinite or a
537 NaN. Note, the term *normal* is used here in a different sense with
538 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000539
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000540 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000541
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000542 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000543
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000544 Return :const:`True` if the argument is a quiet NaN, and
545 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000546
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000547 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000548
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000549 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000550
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000551 Return :const:`True` if the argument has a negative sign and
552 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000553
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000554 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000555
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000556 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000557
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000558 Return :const:`True` if the argument is a signaling NaN and :const:`False`
559 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000560
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000561 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000562
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000563 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000564
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000565 Return :const:`True` if the argument is subnormal, and :const:`False`
Georg Brandl51b72162009-10-27 13:54:57 +0000566 otherwise. A number is subnormal is if it is nonzero, finite, and has an
567 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000568
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000569 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000570
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000571 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000572
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000573 Return :const:`True` if the argument is a (positive or negative) zero and
574 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000575
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000576 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000577
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000578 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000579
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000580 Return the natural (base e) logarithm of the operand. The result is
581 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000582
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000583 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000584
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000585 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000586
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000587 Return the base ten logarithm of the operand. The result is correctly
588 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000589
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000590 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000591
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000592 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000593
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000594 For a nonzero number, return the adjusted exponent of its operand as a
595 :class:`Decimal` instance. If the operand is a zero then
596 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
597 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
598 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000599
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000600 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000601
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000602 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000603
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000604 :meth:`logical_and` is a logical operation which takes two *logical
605 operands* (see :ref:`logical_operands_label`). The result is the
606 digit-wise ``and`` of the two operands.
607
608 .. versionadded:: 2.6
609
Georg Brandlf18d5ce2009-10-27 14:29:22 +0000610 .. method:: logical_invert([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000611
Georg Brandlf18d5ce2009-10-27 14:29:22 +0000612 :meth:`logical_invert` is a logical operation. The
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000613 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000614
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000615 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000616
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000617 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000618
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000619 :meth:`logical_or` is a logical operation which takes two *logical
620 operands* (see :ref:`logical_operands_label`). The result is the
621 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000622
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000623 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000624
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000625 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000626
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000627 :meth:`logical_xor` is a logical operation which takes two *logical
628 operands* (see :ref:`logical_operands_label`). The result is the
629 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000630
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000631 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000632
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000633 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000634
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000635 Like ``max(self, other)`` except that the context rounding rule is applied
636 before returning and that :const:`NaN` values are either signaled or
637 ignored (depending on the context and whether they are signaling or
638 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000641
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000642 Similar to the :meth:`max` method, but the comparison is done using the
643 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000644
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000645 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000646
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000647 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000648
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000649 Like ``min(self, other)`` except that the context rounding rule is applied
650 before returning and that :const:`NaN` values are either signaled or
651 ignored (depending on the context and whether they are signaling or
652 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000653
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000654 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000655
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000656 Similar to the :meth:`min` method, but the comparison is done using the
657 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000658
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000659 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000660
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000661 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000662
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000663 Return the largest number representable in the given context (or in the
664 current thread's context if no context is given) that is smaller than the
665 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000666
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000667 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000668
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000669 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000670
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000671 Return the smallest number representable in the given context (or in the
672 current thread's context if no context is given) that is larger than the
673 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000674
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000675 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000676
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000677 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000678
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000679 If the two operands are unequal, return the number closest to the first
680 operand in the direction of the second operand. If both operands are
681 numerically equal, return a copy of the first operand with the sign set to
682 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000683
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000684 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000685
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000686 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000687
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000688 Normalize the number by stripping the rightmost trailing zeros and
689 converting any result equal to :const:`Decimal('0')` to
690 :const:`Decimal('0e0')`. Used for producing canonical values for members
691 of an equivalence class. For example, ``Decimal('32.100')`` and
692 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
693 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000694
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000695 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000696
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000697 Return a string describing the *class* of the operand. The returned value
698 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000699
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000700 * ``"-Infinity"``, indicating that the operand is negative infinity.
701 * ``"-Normal"``, indicating that the operand is a negative normal number.
702 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
703 * ``"-Zero"``, indicating that the operand is a negative zero.
704 * ``"+Zero"``, indicating that the operand is a positive zero.
705 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
706 * ``"+Normal"``, indicating that the operand is a positive normal number.
707 * ``"+Infinity"``, indicating that the operand is positive infinity.
708 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
709 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000710
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000711 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000712
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000713 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000714
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000715 Return a value equal to the first operand after rounding and having the
716 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000717
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
719 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000720
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000721 Unlike other operations, if the length of the coefficient after the
722 quantize operation would be greater than precision, then an
723 :const:`InvalidOperation` is signaled. This guarantees that, unless there
724 is an error condition, the quantized exponent is always equal to that of
725 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000726
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000727 Also unlike other operations, quantize never signals Underflow, even if
728 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000729
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000730 If the exponent of the second operand is larger than that of the first
731 then rounding may be necessary. In this case, the rounding mode is
732 determined by the ``rounding`` argument if given, else by the given
733 ``context`` argument; if neither argument is given the rounding mode of
734 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000735
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000736 If *watchexp* is set (default), then an error is returned whenever the
737 resulting exponent is greater than :attr:`Emax` or less than
738 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000739
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000740 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000741
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000742 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
743 class does all its arithmetic. Included for compatibility with the
744 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000745
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000746 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000747
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000748 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000749
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000750 Compute the modulo as either a positive or negative value depending on
751 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
752 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000753
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000754 If both are equally close, the one chosen will have the same sign as
755 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000756
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000757 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000758
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000759 Return the result of rotating the digits of the first operand by an amount
760 specified by the second operand. The second operand must be an integer in
761 the range -precision through precision. The absolute value of the second
762 operand gives the number of places to rotate. If the second operand is
763 positive then rotation is to the left; otherwise rotation is to the right.
764 The coefficient of the first operand is padded on the left with zeros to
765 length precision if necessary. The sign and exponent of the first operand
766 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000767
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000768 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000769
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000770 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000771
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000772 Test whether self and other have the same exponent or whether both are
773 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000774
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000775 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000776
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000777 Return the first operand with exponent adjusted by the second.
778 Equivalently, return the first operand multiplied by ``10**other``. The
779 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000780
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000781 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000782
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000783 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000784
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000785 Return the result of shifting the digits of the first operand by an amount
786 specified by the second operand. The second operand must be an integer in
787 the range -precision through precision. The absolute value of the second
788 operand gives the number of places to shift. If the second operand is
789 positive then the shift is to the left; otherwise the shift is to the
790 right. Digits shifted into the coefficient are zeros. The sign and
791 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000792
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000793 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000794
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000795 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000796
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000797 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000798
799
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000800 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000801
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000802 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000803
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000804 Engineering notation has an exponent which is a multiple of 3, so there
805 are up to 3 digits left of the decimal place. For example, converts
806 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000807
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000808 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000809
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000810 Identical to the :meth:`to_integral_value` method. The ``to_integral``
811 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000812
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000813 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000814
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000815 Round to the nearest integer, signaling :const:`Inexact` or
816 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
817 determined by the ``rounding`` parameter if given, else by the given
818 ``context``. If neither parameter is given then the rounding mode of the
819 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000820
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000821 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000822
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000823 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000824
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000825 Round to the nearest integer without signaling :const:`Inexact` or
826 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
827 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000828
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000829 .. versionchanged:: 2.6
830 renamed from ``to_integral`` to ``to_integral_value``. The old name
831 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000832
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000833.. _logical_operands_label:
834
835Logical operands
836^^^^^^^^^^^^^^^^
837
838The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
839and :meth:`logical_xor` methods expect their arguments to be *logical
840operands*. A *logical operand* is a :class:`Decimal` instance whose
841exponent and sign are both zero, and whose digits are all either
842:const:`0` or :const:`1`.
843
Georg Brandlb19be572007-12-29 10:57:00 +0000844.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000845
846
847.. _decimal-context:
848
849Context objects
850---------------
851
852Contexts are environments for arithmetic operations. They govern precision, set
853rules for rounding, determine which signals are treated as exceptions, and limit
854the range for exponents.
855
856Each thread has its own current context which is accessed or changed using the
857:func:`getcontext` and :func:`setcontext` functions:
858
859
860.. function:: getcontext()
861
862 Return the current context for the active thread.
863
864
865.. function:: setcontext(c)
866
867 Set the current context for the active thread to *c*.
868
869Beginning with Python 2.5, you can also use the :keyword:`with` statement and
870the :func:`localcontext` function to temporarily change the active context.
871
872
873.. function:: localcontext([c])
874
875 Return a context manager that will set the current context for the active thread
876 to a copy of *c* on entry to the with-statement and restore the previous context
877 when exiting the with-statement. If no context is specified, a copy of the
878 current context is used.
879
880 .. versionadded:: 2.5
881
882 For example, the following code sets the current decimal precision to 42 places,
883 performs a calculation, and then automatically restores the previous context::
884
Georg Brandl8ec7f652007-08-15 14:28:01 +0000885 from decimal import localcontext
886
887 with localcontext() as ctx:
888 ctx.prec = 42 # Perform a high precision calculation
889 s = calculate_something()
890 s = +s # Round the final result back to the default precision
891
892New contexts can also be created using the :class:`Context` constructor
893described below. In addition, the module provides three pre-made contexts:
894
895
896.. class:: BasicContext
897
898 This is a standard context defined by the General Decimal Arithmetic
899 Specification. Precision is set to nine. Rounding is set to
900 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
901 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
902 :const:`Subnormal`.
903
904 Because many of the traps are enabled, this context is useful for debugging.
905
906
907.. class:: ExtendedContext
908
909 This is a standard context defined by the General Decimal Arithmetic
910 Specification. Precision is set to nine. Rounding is set to
911 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
912 exceptions are not raised during computations).
913
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000914 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000915 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
916 raising exceptions. This allows an application to complete a run in the
917 presence of conditions that would otherwise halt the program.
918
919
920.. class:: DefaultContext
921
922 This context is used by the :class:`Context` constructor as a prototype for new
923 contexts. Changing a field (such a precision) has the effect of changing the
924 default for new contexts creating by the :class:`Context` constructor.
925
926 This context is most useful in multi-threaded environments. Changing one of the
927 fields before threads are started has the effect of setting system-wide
928 defaults. Changing the fields after threads have started is not recommended as
929 it would require thread synchronization to prevent race conditions.
930
931 In single threaded environments, it is preferable to not use this context at
932 all. Instead, simply create contexts explicitly as described below.
933
934 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
935 for Overflow, InvalidOperation, and DivisionByZero.
936
937In addition to the three supplied contexts, new contexts can be created with the
938:class:`Context` constructor.
939
940
941.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
942
943 Creates a new context. If a field is not specified or is :const:`None`, the
944 default values are copied from the :const:`DefaultContext`. If the *flags*
945 field is not specified or is :const:`None`, all flags are cleared.
946
947 The *prec* field is a positive integer that sets the precision for arithmetic
948 operations in the context.
949
950 The *rounding* option is one of:
951
952 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
953 * :const:`ROUND_DOWN` (towards zero),
954 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
955 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
956 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
957 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
958 * :const:`ROUND_UP` (away from zero).
Georg Brandl734373c2009-01-03 21:55:17 +0000959 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000960 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000961
962 The *traps* and *flags* fields list any signals to be set. Generally, new
963 contexts should only set traps and leave the flags clear.
964
965 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
966 for exponents.
967
968 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
969 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
970 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
971
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000972 .. versionchanged:: 2.6
973 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000974
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000975 The :class:`Context` class defines several general purpose methods as well as
976 a large number of methods for doing arithmetic directly in a given context.
977 In addition, for each of the :class:`Decimal` methods described above (with
978 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
979 a corresponding :class:`Context` method. For example, ``C.exp(x)`` is
980 equivalent to ``x.exp(context=C)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000981
982
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000983 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000984
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000985 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000986
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000987 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000988
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000989 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000990
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000991 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000992
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000993 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000994
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000995 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +0000996
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000997 Creates a new Decimal instance from *num* but using *self* as
998 context. Unlike the :class:`Decimal` constructor, the context precision,
999 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001000
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001001 This is useful because constants are often given to a greater precision
1002 than is needed by the application. Another benefit is that rounding
1003 immediately eliminates unintended effects from digits beyond the current
1004 precision. In the following example, using unrounded inputs means that
1005 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001006
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001007 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001008
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001009 >>> getcontext().prec = 3
1010 >>> Decimal('3.4445') + Decimal('1.0023')
1011 Decimal('4.45')
1012 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1013 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001014
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001015 This method implements the to-number operation of the IBM specification.
1016 If the argument is a string, no leading or trailing whitespace is
1017 permitted.
1018
1019 .. method:: Etiny()
1020
1021 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1022 value for subnormal results. When underflow occurs, the exponent is set
1023 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001024
1025
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001026 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001027
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001028 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001029
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001030 The usual approach to working with decimals is to create :class:`Decimal`
1031 instances and then apply arithmetic operations which take place within the
1032 current context for the active thread. An alternative approach is to use
1033 context methods for calculating within a specific context. The methods are
1034 similar to those for the :class:`Decimal` class and are only briefly
1035 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001036
1037
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001038 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001039
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001040 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001041
1042
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001043 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001044
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001045 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001046
1047
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001048 .. method:: canonical(x)
1049
1050 Returns the same Decimal object *x*.
1051
1052
1053 .. method:: compare(x, y)
1054
1055 Compares *x* and *y* numerically.
1056
1057
1058 .. method:: compare_signal(x, y)
1059
1060 Compares the values of the two operands numerically.
1061
1062
1063 .. method:: compare_total(x, y)
1064
1065 Compares two operands using their abstract representation.
1066
1067
1068 .. method:: compare_total_mag(x, y)
1069
1070 Compares two operands using their abstract representation, ignoring sign.
1071
1072
1073 .. method:: copy_abs(x)
1074
1075 Returns a copy of *x* with the sign set to 0.
1076
1077
1078 .. method:: copy_negate(x)
1079
1080 Returns a copy of *x* with the sign inverted.
1081
1082
1083 .. method:: copy_sign(x, y)
1084
1085 Copies the sign from *y* to *x*.
1086
1087
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001088 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001089
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001090 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001091
1092
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001093 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001094
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001095 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001096
1097
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001098 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001099
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001100 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001101
1102
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001103 .. method:: exp(x)
1104
1105 Returns `e ** x`.
1106
1107
1108 .. method:: fma(x, y, z)
1109
1110 Returns *x* multiplied by *y*, plus *z*.
1111
1112
1113 .. method:: is_canonical(x)
1114
1115 Returns True if *x* is canonical; otherwise returns False.
1116
1117
1118 .. method:: is_finite(x)
1119
1120 Returns True if *x* is finite; otherwise returns False.
1121
1122
1123 .. method:: is_infinite(x)
1124
1125 Returns True if *x* is infinite; otherwise returns False.
1126
1127
1128 .. method:: is_nan(x)
1129
1130 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1131
1132
1133 .. method:: is_normal(x)
1134
1135 Returns True if *x* is a normal number; otherwise returns False.
1136
1137
1138 .. method:: is_qnan(x)
1139
1140 Returns True if *x* is a quiet NaN; otherwise returns False.
1141
1142
1143 .. method:: is_signed(x)
1144
1145 Returns True if *x* is negative; otherwise returns False.
1146
1147
1148 .. method:: is_snan(x)
1149
1150 Returns True if *x* is a signaling NaN; otherwise returns False.
1151
1152
1153 .. method:: is_subnormal(x)
1154
1155 Returns True if *x* is subnormal; otherwise returns False.
1156
1157
1158 .. method:: is_zero(x)
1159
1160 Returns True if *x* is a zero; otherwise returns False.
1161
1162
1163 .. method:: ln(x)
1164
1165 Returns the natural (base e) logarithm of *x*.
1166
1167
1168 .. method:: log10(x)
1169
1170 Returns the base 10 logarithm of *x*.
1171
1172
1173 .. method:: logb(x)
1174
1175 Returns the exponent of the magnitude of the operand's MSD.
1176
1177
1178 .. method:: logical_and(x, y)
1179
Georg Brandl734373c2009-01-03 21:55:17 +00001180 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001181
1182
1183 .. method:: logical_invert(x)
1184
1185 Invert all the digits in *x*.
1186
1187
1188 .. method:: logical_or(x, y)
1189
Georg Brandl734373c2009-01-03 21:55:17 +00001190 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001191
1192
1193 .. method:: logical_xor(x, y)
1194
Georg Brandl734373c2009-01-03 21:55:17 +00001195 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001196
1197
1198 .. method:: max(x, y)
1199
1200 Compares two values numerically and returns the maximum.
1201
1202
1203 .. method:: max_mag(x, y)
1204
1205 Compares the values numerically with their sign ignored.
1206
1207
1208 .. method:: min(x, y)
1209
1210 Compares two values numerically and returns the minimum.
1211
1212
1213 .. method:: min_mag(x, y)
1214
1215 Compares the values numerically with their sign ignored.
1216
1217
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001218 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001219
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001220 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001221
1222
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001223 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001224
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001225 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001226
1227
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001228 .. method:: next_minus(x)
1229
1230 Returns the largest representable number smaller than *x*.
1231
1232
1233 .. method:: next_plus(x)
1234
1235 Returns the smallest representable number larger than *x*.
1236
1237
1238 .. method:: next_toward(x, y)
1239
1240 Returns the number closest to *x*, in direction towards *y*.
1241
1242
1243 .. method:: normalize(x)
1244
1245 Reduces *x* to its simplest form.
1246
1247
1248 .. method:: number_class(x)
1249
1250 Returns an indication of the class of *x*.
1251
1252
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001253 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001254
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001255 Plus corresponds to the unary prefix plus operator in Python. This
1256 operation applies the context precision and rounding, so it is *not* an
1257 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001258
1259
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001260 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001261
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001262 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001263
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001264 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1265 must be integral. The result will be inexact unless ``y`` is integral and
1266 the result is finite and can be expressed exactly in 'precision' digits.
1267 The result should always be correctly rounded, using the rounding mode of
1268 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001269
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001270 With three arguments, compute ``(x**y) % modulo``. For the three argument
1271 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001272
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001273 - all three arguments must be integral
1274 - ``y`` must be nonnegative
1275 - at least one of ``x`` or ``y`` must be nonzero
1276 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001277
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001278 The result of ``Context.power(x, y, modulo)`` is identical to the result
1279 that would be obtained by computing ``(x**y) % modulo`` with unbounded
1280 precision, but is computed more efficiently. It is always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001281
Georg Brandl734373c2009-01-03 21:55:17 +00001282 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001283 ``y`` may now be nonintegral in ``x**y``.
1284 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001285
1286
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001287 .. method:: quantize(x, y)
1288
1289 Returns a value equal to *x* (rounded), having the exponent of *y*.
1290
1291
1292 .. method:: radix()
1293
1294 Just returns 10, as this is Decimal, :)
1295
1296
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001297 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001298
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001299 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001300
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001301 The sign of the result, if non-zero, is the same as that of the original
1302 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001303
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001304 .. method:: remainder_near(x, y)
1305
Georg Brandl734373c2009-01-03 21:55:17 +00001306 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1307 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001308
1309
1310 .. method:: rotate(x, y)
1311
1312 Returns a rotated copy of *x*, *y* times.
1313
1314
1315 .. method:: same_quantum(x, y)
1316
1317 Returns True if the two operands have the same exponent.
1318
1319
1320 .. method:: scaleb (x, y)
1321
1322 Returns the first operand after adding the second value its exp.
1323
1324
1325 .. method:: shift(x, y)
1326
1327 Returns a shifted copy of *x*, *y* times.
1328
1329
1330 .. method:: sqrt(x)
1331
1332 Square root of a non-negative number to context precision.
1333
1334
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001335 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001336
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001337 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001338
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001339
1340 .. method:: to_eng_string(x)
1341
1342 Converts a number to a string, using scientific notation.
1343
1344
1345 .. method:: to_integral_exact(x)
1346
1347 Rounds to an integer.
1348
1349
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001350 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001351
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001352 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001353
Georg Brandlb19be572007-12-29 10:57:00 +00001354.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001355
1356
1357.. _decimal-signals:
1358
1359Signals
1360-------
1361
1362Signals represent conditions that arise during computation. Each corresponds to
1363one context flag and one context trap enabler.
1364
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001365The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001366computation, flags may be checked for informational purposes (for instance, to
1367determine whether a computation was exact). After checking the flags, be sure to
1368clear all flags before starting the next computation.
1369
1370If the context's trap enabler is set for the signal, then the condition causes a
1371Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1372is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1373condition.
1374
1375
1376.. class:: Clamped
1377
1378 Altered an exponent to fit representation constraints.
1379
1380 Typically, clamping occurs when an exponent falls outside the context's
1381 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001382 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001383
1384
1385.. class:: DecimalException
1386
1387 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1388
1389
1390.. class:: DivisionByZero
1391
1392 Signals the division of a non-infinite number by zero.
1393
1394 Can occur with division, modulo division, or when raising a number to a negative
1395 power. If this signal is not trapped, returns :const:`Infinity` or
1396 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1397
1398
1399.. class:: Inexact
1400
1401 Indicates that rounding occurred and the result is not exact.
1402
1403 Signals when non-zero digits were discarded during rounding. The rounded result
1404 is returned. The signal flag or trap is used to detect when results are
1405 inexact.
1406
1407
1408.. class:: InvalidOperation
1409
1410 An invalid operation was performed.
1411
1412 Indicates that an operation was requested that does not make sense. If not
1413 trapped, returns :const:`NaN`. Possible causes include::
1414
1415 Infinity - Infinity
1416 0 * Infinity
1417 Infinity / Infinity
1418 x % 0
1419 Infinity % x
1420 x._rescale( non-integer )
1421 sqrt(-x) and x > 0
1422 0 ** 0
1423 x ** (non-integer)
Georg Brandl734373c2009-01-03 21:55:17 +00001424 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001425
1426
1427.. class:: Overflow
1428
1429 Numerical overflow.
1430
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001431 Indicates the exponent is larger than :attr:`Emax` after rounding has
1432 occurred. If not trapped, the result depends on the rounding mode, either
1433 pulling inward to the largest representable finite number or rounding outward
1434 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1435 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001436
1437
1438.. class:: Rounded
1439
1440 Rounding occurred though possibly no information was lost.
1441
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001442 Signaled whenever rounding discards digits; even if those digits are zero
1443 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1444 the result unchanged. This signal is used to detect loss of significant
1445 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001446
1447
1448.. class:: Subnormal
1449
1450 Exponent was lower than :attr:`Emin` prior to rounding.
1451
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001452 Occurs when an operation result is subnormal (the exponent is too small). If
1453 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001454
1455
1456.. class:: Underflow
1457
1458 Numerical underflow with result rounded to zero.
1459
1460 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1461 and :class:`Subnormal` are also signaled.
1462
1463The following table summarizes the hierarchy of signals::
1464
1465 exceptions.ArithmeticError(exceptions.StandardError)
1466 DecimalException
1467 Clamped
1468 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1469 Inexact
1470 Overflow(Inexact, Rounded)
1471 Underflow(Inexact, Rounded, Subnormal)
1472 InvalidOperation
1473 Rounded
1474 Subnormal
1475
Georg Brandlb19be572007-12-29 10:57:00 +00001476.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001477
1478
1479.. _decimal-notes:
1480
1481Floating Point Notes
1482--------------------
1483
1484
1485Mitigating round-off error with increased precision
1486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1487
1488The use of decimal floating point eliminates decimal representation error
1489(making it possible to represent :const:`0.1` exactly); however, some operations
1490can still incur round-off error when non-zero digits exceed the fixed precision.
1491
1492The effects of round-off error can be amplified by the addition or subtraction
1493of nearly offsetting quantities resulting in loss of significance. Knuth
1494provides two instructive examples where rounded floating point arithmetic with
1495insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001496properties of addition:
1497
1498.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001499
1500 # Examples from Seminumerical Algorithms, Section 4.2.2.
1501 >>> from decimal import Decimal, getcontext
1502 >>> getcontext().prec = 8
1503
1504 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1505 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001506 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001507 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001508 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001509
1510 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1511 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001512 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001513 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001514 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001515
1516The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001517expanding the precision sufficiently to avoid loss of significance:
1518
1519.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001520
1521 >>> getcontext().prec = 20
1522 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1523 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001524 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001525 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001526 Decimal('9.51111111')
Georg Brandl734373c2009-01-03 21:55:17 +00001527 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001528 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1529 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001530 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001531 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001532 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001533
1534
1535Special values
1536^^^^^^^^^^^^^^
1537
1538The number system for the :mod:`decimal` module provides special values
1539including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001540and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001541
1542Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1543they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1544not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1545can result from rounding beyond the limits of the largest representable number.
1546
1547The infinities are signed (affine) and can be used in arithmetic operations
1548where they get treated as very large, indeterminate numbers. For instance,
1549adding a constant to infinity gives another infinite result.
1550
1551Some operations are indeterminate and return :const:`NaN`, or if the
1552:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1553``0/0`` returns :const:`NaN` which means "not a number". This variety of
1554:const:`NaN` is quiet and, once created, will flow through other computations
1555always resulting in another :const:`NaN`. This behavior can be useful for a
1556series of computations that occasionally have missing inputs --- it allows the
1557calculation to proceed while flagging specific results as invalid.
1558
1559A variant is :const:`sNaN` which signals rather than remaining quiet after every
1560operation. This is a useful return value when an invalid result needs to
1561interrupt a calculation for special handling.
1562
Mark Dickinson2fc92632008-02-06 22:10:50 +00001563The behavior of Python's comparison operators can be a little surprising where a
1564:const:`NaN` is involved. A test for equality where one of the operands is a
1565quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1566``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001567:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001568``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1569if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001570not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001571specify the behavior of direct comparisons; these rules for comparisons
1572involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1573section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001574and :meth:`compare-signal` methods instead.
1575
Georg Brandl8ec7f652007-08-15 14:28:01 +00001576The signed zeros can result from calculations that underflow. They keep the sign
1577that would have resulted if the calculation had been carried out to greater
1578precision. Since their magnitude is zero, both positive and negative zeros are
1579treated as equal and their sign is informational.
1580
1581In addition to the two signed zeros which are distinct yet equal, there are
1582various representations of zero with differing precisions yet equivalent in
1583value. This takes a bit of getting used to. For an eye accustomed to
1584normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001585the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001586
1587 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001588 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001589
Georg Brandlb19be572007-12-29 10:57:00 +00001590.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001591
1592
1593.. _decimal-threads:
1594
1595Working with threads
1596--------------------
1597
1598The :func:`getcontext` function accesses a different :class:`Context` object for
1599each thread. Having separate thread contexts means that threads may make
1600changes (such as ``getcontext.prec=10``) without interfering with other threads.
1601
1602Likewise, the :func:`setcontext` function automatically assigns its target to
1603the current thread.
1604
1605If :func:`setcontext` has not been called before :func:`getcontext`, then
1606:func:`getcontext` will automatically create a new context for use in the
1607current thread.
1608
1609The new context is copied from a prototype context called *DefaultContext*. To
1610control the defaults so that each thread will use the same values throughout the
1611application, directly modify the *DefaultContext* object. This should be done
1612*before* any threads are started so that there won't be a race condition between
1613threads calling :func:`getcontext`. For example::
1614
1615 # Set applicationwide defaults for all threads about to be launched
1616 DefaultContext.prec = 12
1617 DefaultContext.rounding = ROUND_DOWN
1618 DefaultContext.traps = ExtendedContext.traps.copy()
1619 DefaultContext.traps[InvalidOperation] = 1
1620 setcontext(DefaultContext)
1621
1622 # Afterwards, the threads can be started
1623 t1.start()
1624 t2.start()
1625 t3.start()
1626 . . .
1627
Georg Brandlb19be572007-12-29 10:57:00 +00001628.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001629
1630
1631.. _decimal-recipes:
1632
1633Recipes
1634-------
1635
1636Here are a few recipes that serve as utility functions and that demonstrate ways
1637to work with the :class:`Decimal` class::
1638
1639 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1640 pos='', neg='-', trailneg=''):
1641 """Convert Decimal to a money formatted string.
1642
1643 places: required number of places after the decimal point
1644 curr: optional currency symbol before the sign (may be blank)
1645 sep: optional grouping separator (comma, period, space, or blank)
1646 dp: decimal point indicator (comma or period)
1647 only specify as blank when places is zero
1648 pos: optional sign for positive numbers: '+', space or blank
1649 neg: optional sign for negative numbers: '-', '(', space or blank
1650 trailneg:optional trailing minus indicator: '-', ')', space or blank
1651
1652 >>> d = Decimal('-1234567.8901')
1653 >>> moneyfmt(d, curr='$')
1654 '-$1,234,567.89'
1655 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1656 '1.234.568-'
1657 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1658 '($1,234,567.89)'
1659 >>> moneyfmt(Decimal(123456789), sep=' ')
1660 '123 456 789.00'
1661 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001662 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001663
1664 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001665 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl734373c2009-01-03 21:55:17 +00001666 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001667 result = []
1668 digits = map(str, digits)
1669 build, next = result.append, digits.pop
1670 if sign:
1671 build(trailneg)
1672 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001673 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001674 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001675 if not digits:
1676 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001677 i = 0
1678 while digits:
1679 build(next())
1680 i += 1
1681 if i == 3 and digits:
1682 i = 0
1683 build(sep)
1684 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001685 build(neg if sign else pos)
1686 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001687
1688 def pi():
1689 """Compute Pi to the current precision.
1690
1691 >>> print pi()
1692 3.141592653589793238462643383
1693
1694 """
1695 getcontext().prec += 2 # extra digits for intermediate steps
1696 three = Decimal(3) # substitute "three=3.0" for regular floats
1697 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1698 while s != lasts:
1699 lasts = s
1700 n, na = n+na, na+8
1701 d, da = d+da, da+32
1702 t = (t * n) / d
1703 s += t
1704 getcontext().prec -= 2
1705 return +s # unary plus applies the new precision
1706
1707 def exp(x):
1708 """Return e raised to the power of x. Result type matches input type.
1709
1710 >>> print exp(Decimal(1))
1711 2.718281828459045235360287471
1712 >>> print exp(Decimal(2))
1713 7.389056098930650227230427461
1714 >>> print exp(2.0)
1715 7.38905609893
1716 >>> print exp(2+0j)
1717 (7.38905609893+0j)
1718
1719 """
1720 getcontext().prec += 2
1721 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1722 while s != lasts:
Georg Brandl734373c2009-01-03 21:55:17 +00001723 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001724 i += 1
1725 fact *= i
Georg Brandl734373c2009-01-03 21:55:17 +00001726 num *= x
1727 s += num / fact
1728 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001729 return +s
1730
1731 def cos(x):
1732 """Return the cosine of x as measured in radians.
1733
1734 >>> print cos(Decimal('0.5'))
1735 0.8775825618903727161162815826
1736 >>> print cos(0.5)
1737 0.87758256189
1738 >>> print cos(0.5+0j)
1739 (0.87758256189+0j)
1740
1741 """
1742 getcontext().prec += 2
1743 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1744 while s != lasts:
Georg Brandl734373c2009-01-03 21:55:17 +00001745 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001746 i += 2
1747 fact *= i * (i-1)
1748 num *= x * x
1749 sign *= -1
Georg Brandl734373c2009-01-03 21:55:17 +00001750 s += num / fact * sign
1751 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001752 return +s
1753
1754 def sin(x):
1755 """Return the sine of x as measured in radians.
1756
1757 >>> print sin(Decimal('0.5'))
1758 0.4794255386042030002732879352
1759 >>> print sin(0.5)
1760 0.479425538604
1761 >>> print sin(0.5+0j)
1762 (0.479425538604+0j)
1763
1764 """
1765 getcontext().prec += 2
1766 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1767 while s != lasts:
Georg Brandl734373c2009-01-03 21:55:17 +00001768 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001769 i += 2
1770 fact *= i * (i-1)
1771 num *= x * x
1772 sign *= -1
Georg Brandl734373c2009-01-03 21:55:17 +00001773 s += num / fact * sign
1774 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001775 return +s
1776
1777
Georg Brandlb19be572007-12-29 10:57:00 +00001778.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001779
1780
1781.. _decimal-faq:
1782
1783Decimal FAQ
1784-----------
1785
1786Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1787minimize typing when using the interactive interpreter?
1788
Georg Brandl9f662322008-03-22 11:47:10 +00001789A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001790
1791 >>> D = decimal.Decimal
1792 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001793 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001794
1795Q. In a fixed-point application with two decimal places, some inputs have many
1796places and need to be rounded. Others are not supposed to have excess digits
1797and need to be validated. What methods should be used?
1798
1799A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001800the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001801
1802 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1803
1804 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001805 >>> Decimal('3.214').quantize(TWOPLACES)
1806 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001807
Georg Brandl734373c2009-01-03 21:55:17 +00001808 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001809 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1810 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001811
Raymond Hettingerabe32372008-02-14 02:41:22 +00001812 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001813 Traceback (most recent call last):
1814 ...
Georg Brandl0b4d9452009-05-26 08:50:50 +00001815 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001816
1817Q. Once I have valid two place inputs, how do I maintain that invariant
1818throughout an application?
1819
Raymond Hettinger46314812008-02-14 10:46:57 +00001820A. Some operations like addition, subtraction, and multiplication by an integer
1821will automatically preserve fixed point. Others operations, like division and
1822non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001823be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001824
1825 >>> a = Decimal('102.72') # Initial fixed-point values
1826 >>> b = Decimal('3.17')
1827 >>> a + b # Addition preserves fixed-point
1828 Decimal('105.89')
1829 >>> a - b
1830 Decimal('99.55')
1831 >>> a * 42 # So does integer multiplication
1832 Decimal('4314.24')
1833 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1834 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001835 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001836 Decimal('0.03')
1837
1838In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001839to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001840
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001841 >>> def mul(x, y, fp=TWOPLACES):
1842 ... return (x * y).quantize(fp)
1843 >>> def div(x, y, fp=TWOPLACES):
1844 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001845
Raymond Hettinger46314812008-02-14 10:46:57 +00001846 >>> mul(a, b) # Automatically preserve fixed-point
1847 Decimal('325.62')
1848 >>> div(b, a)
1849 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001850
1851Q. There are many ways to express the same value. The numbers :const:`200`,
1852:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1853various precisions. Is there a way to transform them to a single recognizable
1854canonical value?
1855
1856A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001857representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001858
1859 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1860 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001861 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001862
1863Q. Some decimal values always print with exponential notation. Is there a way
1864to get a non-exponential representation?
1865
1866A. For some values, exponential notation is the only way to express the number
1867of significant places in the coefficient. For example, expressing
1868:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1869original's two-place significance.
1870
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001871If an application does not care about tracking significance, it is easy to
Georg Brandl907a7202008-02-22 12:31:45 +00001872remove the exponent and trailing zeroes, losing significance, but keeping the
Georg Brandl9f662322008-03-22 11:47:10 +00001873value unchanged:
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001874
1875 >>> def remove_exponent(d):
1876 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1877
1878 >>> remove_exponent(Decimal('5E+3'))
1879 Decimal('5000')
1880
Georg Brandl8ec7f652007-08-15 14:28:01 +00001881Q. Is there a way to convert a regular float to a :class:`Decimal`?
1882
1883A. Yes, all binary floating point numbers can be exactly expressed as a
1884Decimal. An exact conversion may take more precision than intuition would
Georg Brandl9f662322008-03-22 11:47:10 +00001885suggest, so we trap :const:`Inexact` to signal a need for more precision:
1886
Georg Brandl838b4b02008-03-22 13:07:06 +00001887.. testcode::
Georg Brandl8ec7f652007-08-15 14:28:01 +00001888
Raymond Hettingerff1f9732008-02-07 20:04:37 +00001889 def float_to_decimal(f):
1890 "Convert a floating point number to a Decimal with no loss of information"
1891 n, d = f.as_integer_ratio()
Raymond Hettingerb3833dd2009-01-03 07:46:36 +00001892 numerator, denominator = Decimal(n), Decimal(d)
1893 ctx = Context(prec=60)
1894 result = ctx.divide(numerator, denominator)
1895 while ctx.flags[Inexact]:
Raymond Hettingerc921dac2009-01-03 07:50:46 +00001896 ctx.flags[Inexact] = False
Raymond Hettingerb3833dd2009-01-03 07:46:36 +00001897 ctx.prec *= 2
1898 result = ctx.divide(numerator, denominator)
1899 return result
Georg Brandl8ec7f652007-08-15 14:28:01 +00001900
Georg Brandl838b4b02008-03-22 13:07:06 +00001901.. doctest::
Georg Brandl9f662322008-03-22 11:47:10 +00001902
Raymond Hettingerff1f9732008-02-07 20:04:37 +00001903 >>> float_to_decimal(math.pi)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001904 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001905
Raymond Hettinger23bdcc92008-02-07 20:10:49 +00001906Q. Why isn't the :func:`float_to_decimal` routine included in the module?
Georg Brandl8ec7f652007-08-15 14:28:01 +00001907
1908A. There is some question about whether it is advisable to mix binary and
1909decimal floating point. Also, its use requires some care to avoid the
Georg Brandl9f662322008-03-22 11:47:10 +00001910representation issues associated with binary floating point:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001911
Raymond Hettinger23bdcc92008-02-07 20:10:49 +00001912 >>> float_to_decimal(1.1)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001913 Decimal('1.100000000000000088817841970012523233890533447265625')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001914
1915Q. Within a complex calculation, how can I make sure that I haven't gotten a
1916spurious result because of insufficient precision or rounding anomalies.
1917
1918A. The decimal module makes it easy to test results. A best practice is to
1919re-run calculations using greater precision and with various rounding modes.
1920Widely differing results indicate insufficient precision, rounding mode issues,
1921ill-conditioned inputs, or a numerically unstable algorithm.
1922
1923Q. I noticed that context precision is applied to the results of operations but
1924not to the inputs. Is there anything to watch out for when mixing values of
1925different precisions?
1926
1927A. Yes. The principle is that all values are considered to be exact and so is
1928the arithmetic on those values. Only the results are rounded. The advantage
1929for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001930results can look odd if you forget that the inputs haven't been rounded:
1931
1932.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001933
1934 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001935 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001936 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001937 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001938 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001939
1940The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00001941using the unary plus operation:
1942
1943.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001944
1945 >>> getcontext().prec = 3
1946 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00001947 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001948
1949Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00001950:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001951
1952 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001953 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001954