blob: 3040411bb08ce3f744d759b207ae5a72c80a1946 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`random` --- Generate pseudo-random numbers
2================================================
3
4.. module:: random
5 :synopsis: Generate pseudo-random numbers with various common distributions.
6
Raymond Hettinger10480942011-01-10 03:26:08 +00007**Source code:** :source:`Lib/random.py`
Georg Brandl116aa622007-08-15 14:28:22 +00008
Raymond Hettinger4f707fd2011-01-10 19:54:11 +00009--------------
10
Georg Brandl116aa622007-08-15 14:28:22 +000011This module implements pseudo-random number generators for various
12distributions.
13
Raymond Hettingerb21dac12010-09-07 05:32:49 +000014For integers, there is uniform selection from a range. For sequences, there is
15uniform selection of a random element, a function to generate a random
16permutation of a list in-place, and a function for random sampling without
17replacement.
Georg Brandl116aa622007-08-15 14:28:22 +000018
19On the real line, there are functions to compute uniform, normal (Gaussian),
20lognormal, negative exponential, gamma, and beta distributions. For generating
21distributions of angles, the von Mises distribution is available.
22
23Almost all module functions depend on the basic function :func:`random`, which
24generates a random float uniformly in the semi-open range [0.0, 1.0). Python
25uses the Mersenne Twister as the core generator. It produces 53-bit precision
26floats and has a period of 2\*\*19937-1. The underlying implementation in C is
27both fast and threadsafe. The Mersenne Twister is one of the most extensively
28tested random number generators in existence. However, being completely
29deterministic, it is not suitable for all purposes, and is completely unsuitable
30for cryptographic purposes.
31
32The functions supplied by this module are actually bound methods of a hidden
33instance of the :class:`random.Random` class. You can instantiate your own
Raymond Hettinger28de64f2008-01-13 23:40:30 +000034instances of :class:`Random` to get generators that don't share state.
Georg Brandl116aa622007-08-15 14:28:22 +000035
36Class :class:`Random` can also be subclassed if you want to use a different
37basic generator of your own devising: in that case, override the :meth:`random`,
Raymond Hettingerafd30452009-02-24 10:57:02 +000038:meth:`seed`, :meth:`getstate`, and :meth:`setstate` methods.
Benjamin Petersond18de0e2008-07-31 20:21:46 +000039Optionally, a new generator can supply a :meth:`getrandbits` method --- this
Georg Brandl116aa622007-08-15 14:28:22 +000040allows :meth:`randrange` to produce selections over an arbitrarily large range.
41
Benjamin Peterson21896a32010-03-21 22:03:03 +000042The :mod:`random` module also provides the :class:`SystemRandom` class which
43uses the system function :func:`os.urandom` to generate random numbers
44from sources provided by the operating system.
Georg Brandl116aa622007-08-15 14:28:22 +000045
Victor Stinner19fb53c2011-05-24 21:32:40 +020046.. warning::
47
48 The generators of the :mod:`random` module should not be used for security
Victor Stinnerc58140c2011-05-25 13:13:55 +020049 purposes. Use :func:`ssl.RAND_bytes` if you require a cryptographically
50 secure pseudorandom number generator.
Victor Stinner19fb53c2011-05-24 21:32:40 +020051
Georg Brandl116aa622007-08-15 14:28:22 +000052
Raymond Hettinger10480942011-01-10 03:26:08 +000053Bookkeeping functions:
Georg Brandl116aa622007-08-15 14:28:22 +000054
Raymond Hettingerf763a722010-09-07 00:38:15 +000055.. function:: seed([x], version=2)
Georg Brandl116aa622007-08-15 14:28:22 +000056
Raymond Hettingerf763a722010-09-07 00:38:15 +000057 Initialize the random number generator.
Georg Brandl116aa622007-08-15 14:28:22 +000058
Raymond Hettingerf763a722010-09-07 00:38:15 +000059 If *x* is omitted or ``None``, the current system time is used. If
60 randomness sources are provided by the operating system, they are used
61 instead of the system time (see the :func:`os.urandom` function for details
62 on availability).
Georg Brandl116aa622007-08-15 14:28:22 +000063
Raymond Hettingerf763a722010-09-07 00:38:15 +000064 If *x* is an int, it is used directly.
65
66 With version 2 (the default), a :class:`str`, :class:`bytes`, or :class:`bytearray`
Raymond Hettinger3149f9c2010-09-07 05:35:10 +000067 object gets converted to an :class:`int` and all of its bits are used. With version 1,
Raymond Hettingerf763a722010-09-07 00:38:15 +000068 the :func:`hash` of *x* is used instead.
69
70 .. versionchanged:: 3.2
71 Moved to the version 2 scheme which uses all of the bits in a string seed.
Georg Brandl116aa622007-08-15 14:28:22 +000072
73.. function:: getstate()
74
75 Return an object capturing the current internal state of the generator. This
76 object can be passed to :func:`setstate` to restore the state.
77
Georg Brandl116aa622007-08-15 14:28:22 +000078
79.. function:: setstate(state)
80
81 *state* should have been obtained from a previous call to :func:`getstate`, and
82 :func:`setstate` restores the internal state of the generator to what it was at
83 the time :func:`setstate` was called.
84
Georg Brandl116aa622007-08-15 14:28:22 +000085
Georg Brandl116aa622007-08-15 14:28:22 +000086.. function:: getrandbits(k)
87
Ezio Melotti0639d5a2009-12-19 23:26:38 +000088 Returns a Python integer with *k* random bits. This method is supplied with
Georg Brandl5c106642007-11-29 17:41:05 +000089 the MersenneTwister generator and some other generators may also provide it
Georg Brandl116aa622007-08-15 14:28:22 +000090 as an optional part of the API. When available, :meth:`getrandbits` enables
91 :meth:`randrange` to handle arbitrarily large ranges.
92
Georg Brandl116aa622007-08-15 14:28:22 +000093
94Functions for integers:
95
Georg Brandl116aa622007-08-15 14:28:22 +000096.. function:: randrange([start,] stop[, step])
97
98 Return a randomly selected element from ``range(start, stop, step)``. This is
99 equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
100 range object.
101
Raymond Hettinger05156612010-09-07 04:44:52 +0000102 The positional argument pattern matches that of :func:`range`. Keyword arguments
103 should not be used because the function may use them in unexpected ways.
104
105 .. versionchanged:: 3.2
106 :meth:`randrange` is more sophisticated about producing equally distributed
107 values. Formerly it used a style like ``int(random()*n)`` which could produce
108 slightly uneven distributions.
Georg Brandl116aa622007-08-15 14:28:22 +0000109
110.. function:: randint(a, b)
111
Raymond Hettingerafd30452009-02-24 10:57:02 +0000112 Return a random integer *N* such that ``a <= N <= b``. Alias for
113 ``randrange(a, b+1)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000114
Georg Brandl116aa622007-08-15 14:28:22 +0000115
Georg Brandl55ac8f02007-09-01 13:51:09 +0000116Functions for sequences:
Georg Brandl116aa622007-08-15 14:28:22 +0000117
118.. function:: choice(seq)
119
120 Return a random element from the non-empty sequence *seq*. If *seq* is empty,
121 raises :exc:`IndexError`.
122
123
124.. function:: shuffle(x[, random])
125
126 Shuffle the sequence *x* in place. The optional argument *random* is a
127 0-argument function returning a random float in [0.0, 1.0); by default, this is
128 the function :func:`random`.
129
130 Note that for even rather small ``len(x)``, the total number of permutations of
131 *x* is larger than the period of most random number generators; this implies
132 that most permutations of a long sequence can never be generated.
133
134
135.. function:: sample(population, k)
136
Raymond Hettinger1acde192008-01-14 01:00:53 +0000137 Return a *k* length list of unique elements chosen from the population sequence
138 or set. Used for random sampling without replacement.
Georg Brandl116aa622007-08-15 14:28:22 +0000139
Georg Brandl116aa622007-08-15 14:28:22 +0000140 Returns a new list containing elements from the population while leaving the
141 original population unchanged. The resulting list is in selection order so that
142 all sub-slices will also be valid random samples. This allows raffle winners
143 (the sample) to be partitioned into grand prize and second place winners (the
144 subslices).
145
Guido van Rossum2cc30da2007-11-02 23:46:40 +0000146 Members of the population need not be :term:`hashable` or unique. If the population
Georg Brandl116aa622007-08-15 14:28:22 +0000147 contains repeats, then each occurrence is a possible selection in the sample.
148
149 To choose a sample from a range of integers, use an :func:`range` object as an
150 argument. This is especially fast and space efficient for sampling from a large
151 population: ``sample(range(10000000), 60)``.
152
153The following functions generate specific real-valued distributions. Function
154parameters are named after the corresponding variables in the distribution's
155equation, as used in common mathematical practice; most of these equations can
156be found in any statistics text.
157
158
159.. function:: random()
160
161 Return the next random floating point number in the range [0.0, 1.0).
162
163
164.. function:: uniform(a, b)
165
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000166 Return a random floating point number *N* such that ``a <= N <= b`` for
167 ``a <= b`` and ``b <= N <= a`` for ``b < a``.
Georg Brandl116aa622007-08-15 14:28:22 +0000168
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000169 The end-point value ``b`` may or may not be included in the range
170 depending on floating-point rounding in the equation ``a + (b-a) * random()``.
Benjamin Peterson35e8c462008-04-24 02:34:53 +0000171
Christian Heimesfe337bf2008-03-23 21:54:12 +0000172.. function:: triangular(low, high, mode)
173
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000174 Return a random floating point number *N* such that ``low <= N <= high`` and
Christian Heimescc47b052008-03-25 14:56:36 +0000175 with the specified *mode* between those bounds. The *low* and *high* bounds
176 default to zero and one. The *mode* argument defaults to the midpoint
177 between the bounds, giving a symmetric distribution.
Christian Heimesfe337bf2008-03-23 21:54:12 +0000178
Georg Brandl116aa622007-08-15 14:28:22 +0000179
180.. function:: betavariate(alpha, beta)
181
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000182 Beta distribution. Conditions on the parameters are ``alpha > 0`` and
183 ``beta > 0``. Returned values range between 0 and 1.
Georg Brandl116aa622007-08-15 14:28:22 +0000184
185
186.. function:: expovariate(lambd)
187
Mark Dickinson2f947362009-01-07 17:54:07 +0000188 Exponential distribution. *lambd* is 1.0 divided by the desired
189 mean. It should be nonzero. (The parameter would be called
190 "lambda", but that is a reserved word in Python.) Returned values
191 range from 0 to positive infinity if *lambd* is positive, and from
192 negative infinity to 0 if *lambd* is negative.
Georg Brandl116aa622007-08-15 14:28:22 +0000193
194
195.. function:: gammavariate(alpha, beta)
196
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000197 Gamma distribution. (*Not* the gamma function!) Conditions on the
198 parameters are ``alpha > 0`` and ``beta > 0``.
Georg Brandl116aa622007-08-15 14:28:22 +0000199
200
201.. function:: gauss(mu, sigma)
202
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000203 Gaussian distribution. *mu* is the mean, and *sigma* is the standard
204 deviation. This is slightly faster than the :func:`normalvariate` function
205 defined below.
Georg Brandl116aa622007-08-15 14:28:22 +0000206
207
208.. function:: lognormvariate(mu, sigma)
209
210 Log normal distribution. If you take the natural logarithm of this
211 distribution, you'll get a normal distribution with mean *mu* and standard
212 deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
213 zero.
214
215
216.. function:: normalvariate(mu, sigma)
217
218 Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
219
220
221.. function:: vonmisesvariate(mu, kappa)
222
223 *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
224 is the concentration parameter, which must be greater than or equal to zero. If
225 *kappa* is equal to zero, this distribution reduces to a uniform random angle
226 over the range 0 to 2\*\ *pi*.
227
228
229.. function:: paretovariate(alpha)
230
231 Pareto distribution. *alpha* is the shape parameter.
232
233
234.. function:: weibullvariate(alpha, beta)
235
236 Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
237 parameter.
238
239
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000240Alternative Generator:
Georg Brandl116aa622007-08-15 14:28:22 +0000241
Georg Brandl116aa622007-08-15 14:28:22 +0000242.. class:: SystemRandom([seed])
243
244 Class that uses the :func:`os.urandom` function for generating random numbers
245 from sources provided by the operating system. Not available on all systems.
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000246 Does not rely on software state, and sequences are not reproducible. Accordingly,
Raymond Hettingerafd30452009-02-24 10:57:02 +0000247 the :meth:`seed` method has no effect and is ignored.
Georg Brandl116aa622007-08-15 14:28:22 +0000248 The :meth:`getstate` and :meth:`setstate` methods raise
249 :exc:`NotImplementedError` if called.
250
Georg Brandl116aa622007-08-15 14:28:22 +0000251
Georg Brandl116aa622007-08-15 14:28:22 +0000252.. seealso::
253
254 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
255 equidistributed uniform pseudorandom number generator", ACM Transactions on
256 Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
257
Georg Brandl116aa622007-08-15 14:28:22 +0000258
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000259 `Complementary-Multiply-with-Carry recipe
Raymond Hettinger9743fd02009-04-03 05:47:33 +0000260 <http://code.activestate.com/recipes/576707/>`_ for a compatible alternative
261 random number generator with a long period and comparatively simple update
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000262 operations.
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000263
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000264
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000265Notes on Reproducibility
Antoine Pitroue72b5862010-12-12 20:13:31 +0000266------------------------
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000267
268Sometimes it is useful to be able to reproduce the sequences given by a pseudo
269random number generator. By re-using a seed value, the same sequence should be
270reproducible from run to run as long as multiple threads are not running.
271
272Most of the random module's algorithms and seeding functions are subject to
273change across Python versions, but two aspects are guaranteed not to change:
274
275* If a new seeding method is added, then a backward compatible seeder will be
276 offered.
277
278* The generator's :meth:`random` method will continue to produce the same
279 sequence when the compatible seeder is given the same seed.
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000280
Raymond Hettinger6e353942010-12-04 23:42:12 +0000281.. _random-examples:
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000282
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000283Examples and Recipes
Antoine Pitroue72b5862010-12-12 20:13:31 +0000284--------------------
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000285
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000286Basic usage::
287
288 >>> random.random() # Random float x, 0.0 <= x < 1.0
289 0.37444887175646646
290
291 >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
292 1.1800146073117523
293
294 >>> random.randrange(10) # Integer from 0 to 9
295 7
296
297 >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
298 26
299
300 >>> random.choice('abcdefghij') # Single random element
301 'c'
302
303 >>> items = [1, 2, 3, 4, 5, 6, 7]
304 >>> random.shuffle(items)
305 >>> items
306 [7, 3, 2, 5, 6, 4, 1]
307
308 >>> random.sample([1, 2, 3, 4, 5], 3) # Three samples without replacement
309 [4, 1, 5]
310
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000311A common task is to make a :func:`random.choice` with weighted probababilites.
312
313If the weights are small integer ratios, a simple technique is to build a sample
314population with repeats::
315
316 >>> weighted_choices = [('Red', 3), ('Blue', 2), ('Yellow', 1), ('Green', 4)]
317 >>> population = [val for val, cnt in weighted_choices for i in range(cnt)]
318 >>> random.choice(population)
319 'Green'
320
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000321A more general approach is to arrange the weights in a cumulative distribution
322with :func:`itertools.accumulate`, and then locate the random value with
323:func:`bisect.bisect`::
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000324
325 >>> choices, weights = zip(*weighted_choices)
326 >>> cumdist = list(itertools.accumulate(weights))
327 >>> x = random.random() * cumdist[-1]
328 >>> choices[bisect.bisect(cumdist, x)]
329 'Blue'