blob: d057e862c525b8c6a0a2bfe49c452c6b542fc37e [file] [log] [blame]
Fred Drake295da241998-08-10 19:42:37 +00001\section{\module{math} ---
Fred Drake69fa5631999-04-21 16:29:57 +00002 Mathematical functions}
3
Fred Drakeb91e9341998-07-23 17:59:49 +00004\declaremodule{builtin}{math}
Fred Drakeb91e9341998-07-23 17:59:49 +00005\modulesynopsis{Mathematical functions (\function{sin()} etc.).}
6
Fred Drake69fa5631999-04-21 16:29:57 +00007This module is always available. It provides access to the
Fred Drake38e5d272000-04-03 20:13:55 +00008mathematical functions defined by the C standard.
9
10These functions cannot be used with complex numbers; use the functions
11of the same name from the \refmodule{cmath} module if you require
12support for complex numbers. The distinction between functions which
13support complex numbers and those which don't is made since most users
14do not want to learn quite as much mathematics as required to
15understand complex numbers. Receiving an exception instead of a
16complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how
18and why it was generated in the first place.
19
20The following functions provided by this module:
Fred Drakeb55e07f1997-09-30 21:59:27 +000021
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000022\begin{funcdesc}{acos}{x}
Fred Drakeb55e07f1997-09-30 21:59:27 +000023Return the arc cosine of \var{x}.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000024\end{funcdesc}
Fred Drakeb55e07f1997-09-30 21:59:27 +000025
26\begin{funcdesc}{asin}{x}
27Return the arc sine of \var{x}.
28\end{funcdesc}
29
30\begin{funcdesc}{atan}{x}
31Return the arc tangent of \var{x}.
32\end{funcdesc}
33
Fred Drake64583d31998-12-08 16:10:44 +000034\begin{funcdesc}{atan2}{y, x}
35Return \code{atan(\var{y} / \var{x})}.
Fred Drakeb55e07f1997-09-30 21:59:27 +000036\end{funcdesc}
37
38\begin{funcdesc}{ceil}{x}
Fred Drake7c418ed1998-01-22 17:37:50 +000039Return the ceiling of \var{x} as a real.
Fred Drakeb55e07f1997-09-30 21:59:27 +000040\end{funcdesc}
41
42\begin{funcdesc}{cos}{x}
43Return the cosine of \var{x}.
44\end{funcdesc}
45
46\begin{funcdesc}{cosh}{x}
47Return the hyperbolic cosine of \var{x}.
48\end{funcdesc}
49
50\begin{funcdesc}{exp}{x}
Guido van Rossumf259efe1997-11-25 01:00:40 +000051Return \code{e**\var{x}}.
Fred Drakeb55e07f1997-09-30 21:59:27 +000052\end{funcdesc}
53
54\begin{funcdesc}{fabs}{x}
55Return the absolute value of the real \var{x}.
56\end{funcdesc}
57
58\begin{funcdesc}{floor}{x}
Fred Drake7c418ed1998-01-22 17:37:50 +000059Return the floor of \var{x} as a real.
Fred Drakeb55e07f1997-09-30 21:59:27 +000060\end{funcdesc}
61
62\begin{funcdesc}{fmod}{x, y}
Fred Draked327a8d1998-01-09 21:26:51 +000063Return \code{\var{x} \%\ \var{y}}.
Fred Drakeb55e07f1997-09-30 21:59:27 +000064\end{funcdesc}
65
66\begin{funcdesc}{frexp}{x}
Fred Drakefcc95a42000-07-03 06:38:17 +000067% Blessed by Tim.
68Return the mantissa and exponent of \var{x} as the pair
69\code{(\var{m}, \var{e})}. \var{m} is a float and \var{e} is an
70integer such that \code{\var{x} == \var{m} * 2**\var{e}}.
71If \var{x} is zero, returns \code{(0.0, 0)}, otherwise
72\code{0.5 <= abs(\var{m}) < 1}.
Fred Drakeb55e07f1997-09-30 21:59:27 +000073\end{funcdesc}
74
75\begin{funcdesc}{hypot}{x, y}
Fred Draked327a8d1998-01-09 21:26:51 +000076Return the Euclidean distance, \code{sqrt(\var{x}*\var{x} + \var{y}*\var{y})}.
Fred Drakeb55e07f1997-09-30 21:59:27 +000077\end{funcdesc}
78
79\begin{funcdesc}{ldexp}{x, i}
Guido van Rossumf259efe1997-11-25 01:00:40 +000080Return \code{\var{x} * (2**\var{i})}.
Fred Drakeb55e07f1997-09-30 21:59:27 +000081\end{funcdesc}
82
Fred Drake7c418ed1998-01-22 17:37:50 +000083\begin{funcdesc}{log}{x}
84Return the natural logarithm of \var{x}.
85\end{funcdesc}
86
87\begin{funcdesc}{log10}{x}
88Return the base-10 logarithm of \var{x}.
89\end{funcdesc}
90
Fred Drakeb55e07f1997-09-30 21:59:27 +000091\begin{funcdesc}{modf}{x}
92Return the fractional and integer parts of \var{x}. Both results
Fred Drake7c418ed1998-01-22 17:37:50 +000093carry the sign of \var{x}. The integer part is returned as a real.
Fred Drakeb55e07f1997-09-30 21:59:27 +000094\end{funcdesc}
95
96\begin{funcdesc}{pow}{x, y}
Guido van Rossumf259efe1997-11-25 01:00:40 +000097Return \code{\var{x}**\var{y}}.
Fred Drakeb55e07f1997-09-30 21:59:27 +000098\end{funcdesc}
99
Guido van Rossum71260b82000-05-11 18:19:42 +0000100\begin{funcdesc}{rint}{x, y}
101Return the integer nearest to \var{x} as a real.
Guido van Rossumc9a5f342000-05-11 18:42:27 +0000102(Only available on platforms where this is in the standard C math library.)
Guido van Rossum71260b82000-05-11 18:19:42 +0000103\end{funcdesc}
104
Fred Drakeb55e07f1997-09-30 21:59:27 +0000105\begin{funcdesc}{sin}{x}
106Return the sine of \var{x}.
107\end{funcdesc}
108
109\begin{funcdesc}{sinh}{x}
110Return the hyperbolic sine of \var{x}.
111\end{funcdesc}
112
113\begin{funcdesc}{sqrt}{x}
114Return the square root of \var{x}.
115\end{funcdesc}
116
117\begin{funcdesc}{tan}{x}
118Return the tangent of \var{x}.
119\end{funcdesc}
120
121\begin{funcdesc}{tanh}{x}
122Return the hyperbolic tangent of \var{x}.
123\end{funcdesc}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000124
Fred Drake7c418ed1998-01-22 17:37:50 +0000125Note that \function{frexp()} and \function{modf()} have a different
Fred Drake69fa5631999-04-21 16:29:57 +0000126call/return pattern than their C equivalents: they take a single
Fred Drake7c418ed1998-01-22 17:37:50 +0000127argument and return a pair of values, rather than returning their
128second return value through an `output parameter' (there is no such
129thing in Python).
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000130
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000131The module also defines two mathematical constants:
Guido van Rossume47da0a1997-07-17 16:34:52 +0000132
Fred Drakeb55e07f1997-09-30 21:59:27 +0000133\begin{datadesc}{pi}
134The mathematical constant \emph{pi}.
135\end{datadesc}
136
137\begin{datadesc}{e}
138The mathematical constant \emph{e}.
139\end{datadesc}
140
Fred Drake2950b2d1997-10-13 22:06:17 +0000141\begin{seealso}
142 \seemodule{cmath}{Complex number versions of many of these functions.}
143\end{seealso}