blob: 21f64768484427c7395738a06e5ee513e6558254 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`itertools` --- Functions creating iterators for efficient looping
3=======================================================================
4
5.. module:: itertools
6 :synopsis: Functions creating iterators for efficient looping.
7.. moduleauthor:: Raymond Hettinger <python@rcn.com>
8.. sectionauthor:: Raymond Hettinger <python@rcn.com>
9
10
Georg Brandl9afde1c2007-11-01 20:32:30 +000011This module implements a number of :term:`iterator` building blocks inspired by
Georg Brandl116aa622007-08-15 14:28:22 +000012constructs from the Haskell and SML programming languages. Each has been recast
13in a form suitable for Python.
14
15The module standardizes a core set of fast, memory efficient tools that are
16useful by themselves or in combination. Standardization helps avoid the
17readability and reliability problems which arise when many different individuals
18create their own slightly varying implementations, each with their own quirks
19and naming conventions.
20
21The tools are designed to combine readily with one another. This makes it easy
22to construct more specialized tools succinctly and efficiently in pure Python.
23
24For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
25sequence ``f(0), f(1), ...``. This toolbox provides :func:`imap` and
26:func:`count` which can be combined to form ``imap(f, count())`` and produce an
27equivalent result.
28
29Likewise, the functional tools are designed to work well with the high-speed
30functions provided by the :mod:`operator` module.
31
32The module author welcomes suggestions for other basic building blocks to be
33added to future versions of the module.
34
35Whether cast in pure python form or compiled code, tools that use iterators are
36more memory efficient (and faster) than their list based counterparts. Adopting
37the principles of just-in-time manufacturing, they create data when and where
38needed instead of consuming memory with the computer equivalent of "inventory".
39
40The performance advantage of iterators becomes more acute as the number of
41elements increases -- at some point, lists grow large enough to severely impact
42memory cache performance and start running slowly.
43
44
45.. seealso::
46
47 The Standard ML Basis Library, `The Standard ML Basis Library
48 <http://www.standardml.org/Basis/>`_.
49
50 Haskell, A Purely Functional Language, `Definition of Haskell and the Standard
51 Libraries <http://www.haskell.org/definition/>`_.
52
53
54.. _itertools-functions:
55
56Itertool functions
57------------------
58
59The following module functions all construct and return iterators. Some provide
60streams of infinite length, so they should only be accessed by functions or
61loops that truncate the stream.
62
63
64.. function:: chain(*iterables)
65
66 Make an iterator that returns elements from the first iterable until it is
67 exhausted, then proceeds to the next iterable, until all of the iterables are
68 exhausted. Used for treating consecutive sequences as a single sequence.
69 Equivalent to::
70
71 def chain(*iterables):
72 for it in iterables:
73 for element in it:
74 yield element
75
76
77.. function:: count([n])
78
79 Make an iterator that returns consecutive integers starting with *n*. If not
Georg Brandl9afde1c2007-11-01 20:32:30 +000080 specified *n* defaults to zero. Often used as an argument to :func:`imap` to
81 generate consecutive data points. Also, used with :func:`izip` to add sequence
82 numbers. Equivalent to::
Georg Brandl116aa622007-08-15 14:28:22 +000083
84 def count(n=0):
85 while True:
86 yield n
87 n += 1
88
Georg Brandl116aa622007-08-15 14:28:22 +000089
90.. function:: cycle(iterable)
91
92 Make an iterator returning elements from the iterable and saving a copy of each.
93 When the iterable is exhausted, return elements from the saved copy. Repeats
94 indefinitely. Equivalent to::
95
96 def cycle(iterable):
97 saved = []
98 for element in iterable:
99 yield element
100 saved.append(element)
101 while saved:
102 for element in saved:
103 yield element
104
105 Note, this member of the toolkit may require significant auxiliary storage
106 (depending on the length of the iterable).
107
108
109.. function:: dropwhile(predicate, iterable)
110
111 Make an iterator that drops elements from the iterable as long as the predicate
112 is true; afterwards, returns every element. Note, the iterator does not produce
113 *any* output until the predicate first becomes false, so it may have a lengthy
114 start-up time. Equivalent to::
115
116 def dropwhile(predicate, iterable):
117 iterable = iter(iterable)
118 for x in iterable:
119 if not predicate(x):
120 yield x
121 break
122 for x in iterable:
123 yield x
124
125
126.. function:: groupby(iterable[, key])
127
128 Make an iterator that returns consecutive keys and groups from the *iterable*.
129 The *key* is a function computing a key value for each element. If not
130 specified or is ``None``, *key* defaults to an identity function and returns
131 the element unchanged. Generally, the iterable needs to already be sorted on
132 the same key function.
133
134 The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
135 generates a break or new group every time the value of the key function changes
136 (which is why it is usually necessary to have sorted the data using the same key
137 function). That behavior differs from SQL's GROUP BY which aggregates common
138 elements regardless of their input order.
139
140 The returned group is itself an iterator that shares the underlying iterable
141 with :func:`groupby`. Because the source is shared, when the :func:`groupby`
142 object is advanced, the previous group is no longer visible. So, if that data
143 is needed later, it should be stored as a list::
144
145 groups = []
146 uniquekeys = []
147 data = sorted(data, key=keyfunc)
148 for k, g in groupby(data, keyfunc):
149 groups.append(list(g)) # Store group iterator as a list
150 uniquekeys.append(k)
151
152 :func:`groupby` is equivalent to::
153
154 class groupby(object):
155 def __init__(self, iterable, key=None):
156 if key is None:
157 key = lambda x: x
158 self.keyfunc = key
159 self.it = iter(iterable)
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000160 self.tgtkey = self.currkey = self.currvalue = object()
Georg Brandl116aa622007-08-15 14:28:22 +0000161 def __iter__(self):
162 return self
163 def __next__(self):
164 while self.currkey == self.tgtkey:
165 self.currvalue = next(self.it) # Exit on StopIteration
166 self.currkey = self.keyfunc(self.currvalue)
167 self.tgtkey = self.currkey
168 return (self.currkey, self._grouper(self.tgtkey))
169 def _grouper(self, tgtkey):
170 while self.currkey == tgtkey:
171 yield self.currvalue
172 self.currvalue = next(self.it) # Exit on StopIteration
173 self.currkey = self.keyfunc(self.currvalue)
174
Georg Brandl116aa622007-08-15 14:28:22 +0000175
176.. function:: ifilter(predicate, iterable)
177
178 Make an iterator that filters elements from iterable returning only those for
179 which the predicate is ``True``. If *predicate* is ``None``, return the items
180 that are true. Equivalent to::
181
182 def ifilter(predicate, iterable):
183 if predicate is None:
184 predicate = bool
185 for x in iterable:
186 if predicate(x):
187 yield x
188
189
190.. function:: ifilterfalse(predicate, iterable)
191
192 Make an iterator that filters elements from iterable returning only those for
193 which the predicate is ``False``. If *predicate* is ``None``, return the items
194 that are false. Equivalent to::
195
196 def ifilterfalse(predicate, iterable):
197 if predicate is None:
198 predicate = bool
199 for x in iterable:
200 if not predicate(x):
201 yield x
202
203
204.. function:: imap(function, *iterables)
205
206 Make an iterator that computes the function using arguments from each of the
207 iterables. If *function* is set to ``None``, then :func:`imap` returns the
208 arguments as a tuple. Like :func:`map` but stops when the shortest iterable is
209 exhausted instead of filling in ``None`` for shorter iterables. The reason for
210 the difference is that infinite iterator arguments are typically an error for
211 :func:`map` (because the output is fully evaluated) but represent a common and
212 useful way of supplying arguments to :func:`imap`. Equivalent to::
213
214 def imap(function, *iterables):
215 iterables = map(iter, iterables)
216 while True:
217 args = [next(i) for i in iterables]
218 if function is None:
219 yield tuple(args)
220 else:
221 yield function(*args)
222
223
224.. function:: islice(iterable, [start,] stop [, step])
225
226 Make an iterator that returns selected elements from the iterable. If *start* is
227 non-zero, then elements from the iterable are skipped until start is reached.
228 Afterward, elements are returned consecutively unless *step* is set higher than
229 one which results in items being skipped. If *stop* is ``None``, then iteration
230 continues until the iterator is exhausted, if at all; otherwise, it stops at the
231 specified position. Unlike regular slicing, :func:`islice` does not support
232 negative values for *start*, *stop*, or *step*. Can be used to extract related
233 fields from data where the internal structure has been flattened (for example, a
234 multi-line report may list a name field on every third line). Equivalent to::
235
236 def islice(iterable, *args):
237 s = slice(*args)
Christian Heimesa37d4c62007-12-04 23:02:19 +0000238 it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
Georg Brandl116aa622007-08-15 14:28:22 +0000239 nexti = next(it)
240 for i, element in enumerate(iterable):
241 if i == nexti:
242 yield element
243 nexti = next(it)
244
245 If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
246 then the step defaults to one.
247
Georg Brandl116aa622007-08-15 14:28:22 +0000248
249.. function:: izip(*iterables)
250
251 Make an iterator that aggregates elements from each of the iterables. Like
252 :func:`zip` except that it returns an iterator instead of a list. Used for
253 lock-step iteration over several iterables at a time. Equivalent to::
254
255 def izip(*iterables):
256 iterables = map(iter, iterables)
257 while iterables:
258 result = [next(it) for it in iterables]
259 yield tuple(result)
260
Georg Brandl55ac8f02007-09-01 13:51:09 +0000261 When no iterables are specified, return a zero length iterator.
Georg Brandl116aa622007-08-15 14:28:22 +0000262
263 Note, the left-to-right evaluation order of the iterables is guaranteed. This
264 makes possible an idiom for clustering a data series into n-length groups using
265 ``izip(*[iter(s)]*n)``. For data that doesn't fit n-length groups exactly, the
266 last tuple can be pre-padded with fill values using ``izip(*[chain(s,
267 [None]*(n-1))]*n)``.
268
269 Note, when :func:`izip` is used with unequal length inputs, subsequent
270 iteration over the longer iterables cannot reliably be continued after
271 :func:`izip` terminates. Potentially, up to one entry will be missing from
272 each of the left-over iterables. This occurs because a value is fetched from
273 each iterator in- turn, but the process ends when one of the iterators
274 terminates. This leaves the last fetched values in limbo (they cannot be
275 returned in a final, incomplete tuple and they are cannot be pushed back into
276 the iterator for retrieval with ``next(it)``). In general, :func:`izip`
277 should only be used with unequal length inputs when you don't care about
278 trailing, unmatched values from the longer iterables.
279
280
281.. function:: izip_longest(*iterables[, fillvalue])
282
283 Make an iterator that aggregates elements from each of the iterables. If the
284 iterables are of uneven length, missing values are filled-in with *fillvalue*.
285 Iteration continues until the longest iterable is exhausted. Equivalent to::
286
287 def izip_longest(*args, **kwds):
288 fillvalue = kwds.get('fillvalue')
289 def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
290 yield counter() # yields the fillvalue, or raises IndexError
291 fillers = repeat(fillvalue)
292 iters = [chain(it, sentinel(), fillers) for it in args]
293 try:
294 for tup in izip(*iters):
295 yield tup
296 except IndexError:
297 pass
298
299 If one of the iterables is potentially infinite, then the :func:`izip_longest`
300 function should be wrapped with something that limits the number of calls (for
301 example :func:`islice` or :func:`takewhile`).
302
Georg Brandl116aa622007-08-15 14:28:22 +0000303
304.. function:: repeat(object[, times])
305
306 Make an iterator that returns *object* over and over again. Runs indefinitely
307 unless the *times* argument is specified. Used as argument to :func:`imap` for
308 invariant parameters to the called function. Also used with :func:`izip` to
309 create an invariant part of a tuple record. Equivalent to::
310
311 def repeat(object, times=None):
312 if times is None:
313 while True:
314 yield object
315 else:
316 for i in range(times):
317 yield object
318
319
320.. function:: starmap(function, iterable)
321
322 Make an iterator that computes the function using arguments tuples obtained from
323 the iterable. Used instead of :func:`imap` when argument parameters are already
324 grouped in tuples from a single iterable (the data has been "pre-zipped"). The
325 difference between :func:`imap` and :func:`starmap` parallels the distinction
326 between ``function(a,b)`` and ``function(*c)``. Equivalent to::
327
328 def starmap(function, iterable):
329 iterable = iter(iterable)
330 while True:
331 yield function(*next(iterable))
332
333
334.. function:: takewhile(predicate, iterable)
335
336 Make an iterator that returns elements from the iterable as long as the
337 predicate is true. Equivalent to::
338
339 def takewhile(predicate, iterable):
340 for x in iterable:
341 if predicate(x):
342 yield x
343 else:
344 break
345
346
347.. function:: tee(iterable[, n=2])
348
349 Return *n* independent iterators from a single iterable. The case where ``n==2``
350 is equivalent to::
351
352 def tee(iterable):
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000353 def gen(next, data={}):
Georg Brandl116aa622007-08-15 14:28:22 +0000354 for i in count():
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000355 if i in data:
356 yield data.pop(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000357 else:
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000358 data[i] = next()
359 yield data[i]
Georg Brandl116aa622007-08-15 14:28:22 +0000360 it = iter(iterable)
361 return (gen(it.__next__), gen(it.__next__))
362
363 Note, once :func:`tee` has made a split, the original *iterable* should not be
364 used anywhere else; otherwise, the *iterable* could get advanced without the tee
365 objects being informed.
366
367 Note, this member of the toolkit may require significant auxiliary storage
368 (depending on how much temporary data needs to be stored). In general, if one
369 iterator is going to use most or all of the data before the other iterator, it
370 is faster to use :func:`list` instead of :func:`tee`.
371
Georg Brandl116aa622007-08-15 14:28:22 +0000372
373.. _itertools-example:
374
375Examples
376--------
377
378The following examples show common uses for each tool and demonstrate ways they
379can be combined. ::
380
381 >>> amounts = [120.15, 764.05, 823.14]
382 >>> for checknum, amount in izip(count(1200), amounts):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000383 ... print('Check %d is for $%.2f' % (checknum, amount))
Georg Brandl116aa622007-08-15 14:28:22 +0000384 ...
385 Check 1200 is for $120.15
386 Check 1201 is for $764.05
387 Check 1202 is for $823.14
388
389 >>> import operator
390 >>> for cube in imap(operator.pow, range(1,5), repeat(3)):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000391 ... print(cube)
Georg Brandl116aa622007-08-15 14:28:22 +0000392 ...
393 1
394 8
395 27
396 64
397
398 >>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
399 ... '', 'martin', '', 'walter', '', 'mark']
400 >>> for name in islice(reportlines, 3, None, 2):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000401 ... print(name.title())
Georg Brandl116aa622007-08-15 14:28:22 +0000402 ...
403 Alex
404 Laura
405 Martin
406 Walter
407 Mark
408
409 # Show a dictionary sorted and grouped by value
410 >>> from operator import itemgetter
411 >>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
Fred Drake2e748782007-09-04 17:33:11 +0000412 >>> di = sorted(d.items(), key=itemgetter(1))
Georg Brandl116aa622007-08-15 14:28:22 +0000413 >>> for k, g in groupby(di, key=itemgetter(1)):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000414 ... print(k, map(itemgetter(0), g))
Georg Brandl116aa622007-08-15 14:28:22 +0000415 ...
416 1 ['a', 'c', 'e']
417 2 ['b', 'd', 'f']
418 3 ['g']
419
420 # Find runs of consecutive numbers using groupby. The key to the solution
421 # is differencing with a range so that consecutive numbers all appear in
422 # same group.
423 >>> data = [ 1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
424 >>> for k, g in groupby(enumerate(data), lambda t:t[0]-t[1]):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000425 ... print(map(operator.itemgetter(1), g))
Georg Brandl116aa622007-08-15 14:28:22 +0000426 ...
427 [1]
428 [4, 5, 6]
429 [10]
430 [15, 16, 17, 18]
431 [22]
432 [25, 26, 27, 28]
433
434
435
436.. _itertools-recipes:
437
438Recipes
439-------
440
441This section shows recipes for creating an extended toolset using the existing
442itertools as building blocks.
443
444The extended tools offer the same high performance as the underlying toolset.
445The superior memory performance is kept by processing elements one at a time
446rather than bringing the whole iterable into memory all at once. Code volume is
447kept small by linking the tools together in a functional style which helps
448eliminate temporary variables. High speed is retained by preferring
Georg Brandl9afde1c2007-11-01 20:32:30 +0000449"vectorized" building blocks over the use of for-loops and :term:`generator`\s
450which incur interpreter overhead. ::
Georg Brandl116aa622007-08-15 14:28:22 +0000451
452 def take(n, seq):
453 return list(islice(seq, n))
454
455 def enumerate(iterable):
456 return izip(count(), iterable)
457
458 def tabulate(function):
459 "Return function(0), function(1), ..."
460 return imap(function, count())
461
Georg Brandl116aa622007-08-15 14:28:22 +0000462 def nth(iterable, n):
463 "Returns the nth item or raise StopIteration"
464 return islice(iterable, n, None).next()
465
466 def all(seq, pred=None):
467 "Returns True if pred(x) is true for every element in the iterable"
468 for elem in ifilterfalse(pred, seq):
469 return False
470 return True
471
472 def any(seq, pred=None):
473 "Returns True if pred(x) is true for at least one element in the iterable"
474 for elem in ifilter(pred, seq):
475 return True
476 return False
477
478 def no(seq, pred=None):
479 "Returns True if pred(x) is false for every element in the iterable"
480 for elem in ifilter(pred, seq):
481 return False
482 return True
483
484 def quantify(seq, pred=None):
485 "Count how many times the predicate is true in the sequence"
486 return sum(imap(pred, seq))
487
488 def padnone(seq):
489 """Returns the sequence elements and then returns None indefinitely.
490
491 Useful for emulating the behavior of the built-in map() function.
492 """
493 return chain(seq, repeat(None))
494
495 def ncycles(seq, n):
496 "Returns the sequence elements n times"
497 return chain(*repeat(seq, n))
498
499 def dotproduct(vec1, vec2):
500 return sum(imap(operator.mul, vec1, vec2))
501
502 def flatten(listOfLists):
503 return list(chain(*listOfLists))
504
505 def repeatfunc(func, times=None, *args):
506 """Repeat calls to func with specified arguments.
507
508 Example: repeatfunc(random.random)
509 """
510 if times is None:
511 return starmap(func, repeat(args))
512 else:
513 return starmap(func, repeat(args, times))
514
515 def pairwise(iterable):
516 "s -> (s0,s1), (s1,s2), (s2, s3), ..."
517 a, b = tee(iterable)
518 next(b, None)
519 return izip(a, b)
520
521 def grouper(n, iterable, padvalue=None):
522 "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
523 return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)
524
525
526