| /* |
| * Copyright (c) 2001-2012 Python Software Foundation. All Rights Reserved. |
| * Modified and extended by Stefan Krah. |
| */ |
| |
| |
| #ifndef DOCSTRINGS_H |
| #define DOCSTRINGS_H |
| |
| |
| #include "pymacro.h" |
| |
| |
| /******************************************************************************/ |
| /* Module */ |
| /******************************************************************************/ |
| |
| |
| PyDoc_STRVAR(doc__decimal, |
| "C decimal arithmetic module"); |
| |
| PyDoc_STRVAR(doc_getcontext,"\n\ |
| getcontext() - Get the current default context.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_setcontext,"\n\ |
| setcontext(c) - Set a new default context.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_localcontext,"\n\ |
| localcontext(c) - Return a context manager that will set the default context\n\ |
| to a copy of c on entry to the with-statement and restore the previous default\n\ |
| context when exiting the with-statement. If no context is specified, a copy of\n\ |
| the current default context is used.\n\ |
| \n"); |
| |
| #ifdef EXTRA_FUNCTIONALITY |
| PyDoc_STRVAR(doc_ieee_context,"\n\ |
| IEEEContext(bits) - Return a context object initialized to the proper values for\n\ |
| one of the IEEE interchange formats. The argument must be a multiple of 32 and\n\ |
| less than IEEE_CONTEXT_MAX_BITS. For the most common values, the constants\n\ |
| DECIMAL32, DECIMAL64 and DECIMAL128 are provided.\n\ |
| \n"); |
| #endif |
| |
| |
| /******************************************************************************/ |
| /* Decimal Object and Methods */ |
| /******************************************************************************/ |
| |
| PyDoc_STRVAR(doc_decimal,"\n\ |
| Decimal([value[, context]]): Construct a new Decimal object from value.\n\ |
| \n\ |
| value can be an integer, string, tuple, or another Decimal object.\n\ |
| If no value is given, return Decimal('0'). The context does not affect\n\ |
| the conversion and is only passed to determine if the InvalidOperation\n\ |
| trap is active.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_adjusted,"\n\ |
| adjusted() - Return the adjusted exponent of the number.\n\ |
| \n\ |
| Defined as exp + digits - 1.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_as_tuple,"\n\ |
| as_tuple() - Return a tuple representation of the number.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_canonical,"\n\ |
| canonical() - Return the canonical encoding of the argument. Currently,\n\ |
| the encoding of a Decimal instance is always canonical, so this operation\n\ |
| returns its argument unchanged.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_compare,"\n\ |
| compare(other[, context]) - Compare self to other. Return a decimal value:\n\ |
| \n\ |
| a or b is a NaN ==> Decimal('NaN')\n\ |
| a < b ==> Decimal('-1')\n\ |
| a == b ==> Decimal('0')\n\ |
| a > b ==> Decimal('1')\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_compare_signal,"\n\ |
| compare_signal(other[, context]) - Identical to compare, except that\n\ |
| all NaNs signal.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_compare_total,"\n\ |
| compare_total(other) - Compare two operands using their abstract representation\n\ |
| rather than their numerical value. Similar to the compare() method, but the\n\ |
| result gives a total ordering on Decimal instances. Two Decimal instances with\n\ |
| the same numeric value but different representations compare unequal in this\n\ |
| ordering:\n\ |
| \n\ |
| >>> Decimal('12.0').compare_total(Decimal('12'))\n\ |
| Decimal('-1')\n\ |
| \n\ |
| Quiet and signaling NaNs are also included in the total ordering. The result\n\ |
| of this function is Decimal('0') if both operands have the same representation,\n\ |
| Decimal('-1') if the first operand is lower in the total order than the second,\n\ |
| and Decimal('1') if the first operand is higher in the total order than the\n\ |
| second operand. See the specification for details of the total order.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_compare_total_mag,"\n\ |
| compare_total_mag(other) - Compare two operands using their abstract\n\ |
| representation rather than their value as in compare_total(), but\n\ |
| ignoring the sign of each operand. x.compare_total_mag(y) is\n\ |
| equivalent to x.copy_abs().compare_total(y.copy_abs()).\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_conjugate,"\n\ |
| conjugate() - Return self.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_copy_abs,"\n\ |
| copy_abs() - Return the absolute value of the argument. This operation\n\ |
| is unaffected by the context and is quiet: no flags are changed and no\n\ |
| rounding is performed.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_copy_negate,"\n\ |
| copy_negate() - Return the negation of the argument. This operation is\n\ |
| unaffected by the context and is quiet: no flags are changed and no\n\ |
| rounding is performed.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_copy_sign,"\n\ |
| copy_sign(other) - Return a copy of the first operand with the sign set\n\ |
| to be the same as the sign of the second operand. For example:\n\ |
| \n\ |
| >>> Decimal('2.3').copy_sign(Decimal('-1.5'))\n\ |
| Decimal('-2.3')\n\ |
| \n\ |
| This operation is unaffected by the context and is quiet: no flags are\n\ |
| changed and no rounding is performed.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_exp,"\n\ |
| exp([context]) - Return the value of the (natural) exponential function e**x\n\ |
| at the given number. The function always uses the ROUND_HALF_EVEN mode and\n\ |
| the result is correctly rounded.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_from_float,"\n\ |
| from_float(f) - Class method that converts a float to a decimal number, exactly.\n\ |
| Since 0.1 is not exactly representable in binary floating point,\n\ |
| Decimal.from_float(0.1) is not the same as Decimal('0.1').\n\ |
| \n\ |
| >>> Decimal.from_float(0.1)\n\ |
| Decimal('0.1000000000000000055511151231257827021181583404541015625')\n\ |
| >>> Decimal.from_float(float('nan'))\n\ |
| Decimal('NaN')\n\ |
| >>> Decimal.from_float(float('inf'))\n\ |
| Decimal('Infinity')\n\ |
| >>> Decimal.from_float(float('-inf'))\n\ |
| Decimal('-Infinity')\n\ |
| \n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_fma,"\n\ |
| fma(other, third[, context]) - Fused multiply-add. Return self*other+third\n\ |
| with no rounding of the intermediate product self*other.\n\ |
| \n\ |
| >>> Decimal(2).fma(3, 5)\n\ |
| Decimal('11')\n\ |
| \n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_canonical,"\n\ |
| is_canonical() - Return True if the argument is canonical and False otherwise.\n\ |
| Currently, a Decimal instance is always canonical, so this operation always\n\ |
| returns True.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_finite,"\n\ |
| is_finite() - Return True if the argument is a finite number, and False if the\n\ |
| argument is infinite or a NaN.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_infinite,"\n\ |
| is_infinite() - Return True if the argument is either positive or negative\n\ |
| infinity and False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_nan,"\n\ |
| is_nan() - Return True if the argument is a (quiet or signaling) NaN and\n\ |
| False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_normal,"\n\ |
| is_normal([context]) - Return True if the argument is a normal finite non-zero\n\ |
| number with an adjusted exponent greater than or equal to Emin. Return False\n\ |
| if the argument is zero, subnormal, infinite or a NaN.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_qnan,"\n\ |
| is_qnan() - Return True if the argument is a quiet NaN, and False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_signed,"\n\ |
| is_signed() - Return True if the argument has a negative sign and\n\ |
| False otherwise. Note that both zeros and NaNs can carry signs.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_snan,"\n\ |
| is_snan() - Return True if the argument is a signaling NaN and False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_subnormal,"\n\ |
| is_subnormal([context]) - Return True if the argument is subnormal, and False\n\ |
| otherwise. A number is subnormal if it is non-zero, finite, and has an\n\ |
| adjusted exponent less than Emin.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_is_zero,"\n\ |
| is_zero() - Return True if the argument is a (positive or negative) zero and\n\ |
| False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ln,"\n\ |
| ln([context]) - Return the natural (base e) logarithm of the operand.\n\ |
| The function always uses the ROUND_HALF_EVEN mode and the result is\n\ |
| correctly rounded.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_log10,"\n\ |
| log10([context]) - Return the base ten logarithm of the operand.\n\ |
| The function always uses the ROUND_HALF_EVEN mode and the result is\n\ |
| correctly rounded.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_logb,"\n\ |
| logb([context]) - For a non-zero number, return the adjusted exponent\n\ |
| of the operand as a Decimal instance. If the operand is a zero, then\n\ |
| Decimal('-Infinity') is returned and the DivisionByZero condition is\n\ |
| raised. If the operand is an infinity then Decimal('Infinity') is returned.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_logical_and,"\n\ |
| logical_and(other[, context]) - Return the digit-wise and of the two\n\ |
| (logical) operands.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_logical_invert,"\n\ |
| logical_invert([context]) - Return the digit-wise inversion of the\n\ |
| (logical) operand.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_logical_or,"\n\ |
| logical_or(other[, context]) - Return the digit-wise or of the two\n\ |
| (logical) operands.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_logical_xor,"\n\ |
| logical_xor(other[, context]) - Return the digit-wise exclusive or of the\n\ |
| two (logical) operands.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_max,"\n\ |
| max(other[, context]) - Maximum of self and other. If one operand is a quiet\n\ |
| NaN and the other is numeric, the numeric operand is returned.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_max_mag,"\n\ |
| max_mag(other[, context]) - Similar to the max() method, but the comparison is\n\ |
| done using the absolute values of the operands.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_min,"\n\ |
| min(other[, context]) - Minimum of self and other. If one operand is a quiet\n\ |
| NaN and the other is numeric, the numeric operand is returned.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_min_mag,"\n\ |
| min_mag(other[, context]) - Similar to the min() method, but the comparison is\n\ |
| done using the absolute values of the operands.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_next_minus,"\n\ |
| next_minus([context]) - Return the largest number representable in the given\n\ |
| context (or in the current default context if no context is given) that is\n\ |
| smaller than the given operand.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_next_plus,"\n\ |
| next_plus([context]) - Return the smallest number representable in the given\n\ |
| context (or in the current default context if no context is given) that is\n\ |
| larger than the given operand.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_next_toward,"\n\ |
| next_toward(other[, context]) - If the two operands are unequal, return the\n\ |
| number closest to the first operand in the direction of the second operand.\n\ |
| If both operands are numerically equal, return a copy of the first operand\n\ |
| with the sign set to be the same as the sign of the second operand.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_normalize,"\n\ |
| normalize([context]) - Normalize the number by stripping the rightmost trailing\n\ |
| zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used\n\ |
| for producing canonical values for members of an equivalence class. For example,\n\ |
| Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent\n\ |
| value Decimal('32.1').\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_number_class,"\n\ |
| number_class([context]) - Return a string describing the class of the operand.\n\ |
| The returned value is one of the following ten strings:\n\ |
| \n\ |
| * '-Infinity', indicating that the operand is negative infinity.\n\ |
| * '-Normal', indicating that the operand is a negative normal number.\n\ |
| * '-Subnormal', indicating that the operand is negative and subnormal.\n\ |
| * '-Zero', indicating that the operand is a negative zero.\n\ |
| * '+Zero', indicating that the operand is a positive zero.\n\ |
| * '+Subnormal', indicating that the operand is positive and subnormal.\n\ |
| * '+Normal', indicating that the operand is a positive normal number.\n\ |
| * '+Infinity', indicating that the operand is positive infinity.\n\ |
| * 'NaN', indicating that the operand is a quiet NaN (Not a Number).\n\ |
| * 'sNaN', indicating that the operand is a signaling NaN.\n\ |
| \n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_quantize,"\n\ |
| quantize(exp[, rounding[, context]]) - Return a value equal to the first\n\ |
| operand after rounding and having the exponent of the second operand.\n\ |
| \n\ |
| >>> Decimal('1.41421356').quantize(Decimal('1.000'))\n\ |
| Decimal('1.414')\n\ |
| \n\ |
| Unlike other operations, if the length of the coefficient after the quantize\n\ |
| operation would be greater than precision, then an InvalidOperation is signaled.\n\ |
| This guarantees that, unless there is an error condition, the quantized exponent\n\ |
| is always equal to that of the right-hand operand.\n\ |
| \n\ |
| Also unlike other operations, quantize never signals Underflow, even if the\n\ |
| result is subnormal and inexact.\n\ |
| \n\ |
| If the exponent of the second operand is larger than that of the first, then\n\ |
| rounding may be necessary. In this case, the rounding mode is determined by the\n\ |
| rounding argument if given, else by the given context argument; if neither\n\ |
| argument is given, the rounding mode of the current thread's context is used.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_radix,"\n\ |
| radix() - Return Decimal(10), the radix (base) in which the Decimal class does\n\ |
| all its arithmetic. Included for compatibility with the specification.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_remainder_near,"\n\ |
| remainder_near(other[, context]) - Compute the modulo as either a positive\n\ |
| or negative value depending on which is closest to zero. For instance,\n\ |
| Decimal(10).remainder_near(6) returns Decimal('-2'), which is closer to zero\n\ |
| than Decimal('4').\n\ |
| \n\ |
| If both are equally close, the one chosen will have the same sign as self.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_rotate,"\n\ |
| rotate(other[, context]) - Return the result of rotating the digits of the\n\ |
| first operand by an amount specified by the second operand. The second operand\n\ |
| must be an integer in the range -precision through precision. The absolute\n\ |
| value of the second operand gives the number of places to rotate. If the second\n\ |
| operand is positive then rotation is to the left; otherwise rotation is to the\n\ |
| right. The coefficient of the first operand is padded on the left with zeros to\n\ |
| length precision if necessary. The sign and exponent of the first operand are\n\ |
| unchanged.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_same_quantum,"\n\ |
| same_quantum(other[, context]) - Test whether self and other have the\n\ |
| same exponent or whether both are NaN.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_scaleb,"\n\ |
| scaleb(other[, context]) - Return the first operand with the exponent adjusted\n\ |
| the second. Equivalently, return the first operand multiplied by 10**other.\n\ |
| The second operand must be an integer.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_shift,"\n\ |
| shift(other[, context]) - Return the result of shifting the digits of\n\ |
| the first operand by an amount specified by the second operand. The second\n\ |
| operand must be an integer in the range -precision through precision. The\n\ |
| absolute value of the second operand gives the number of places to shift.\n\ |
| If the second operand is positive, then the shift is to the left; otherwise\n\ |
| the shift is to the right. Digits shifted into the coefficient are zeros.\n\ |
| The sign and exponent of the first operand are unchanged.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_sqrt,"\n\ |
| sqrt([context]) - Return the square root of the argument to full precision.\n\ |
| The result is correctly rounded using the ROUND_HALF_EVEN rounding mode.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_to_eng_string,"\n\ |
| to_eng_string([context]) - Convert to an engineering-type string.\n\ |
| Engineering notation has an exponent which is a multiple of 3, so\n\ |
| there are up to 3 digits left of the decimal place. For example,\n\ |
| Decimal('123E+1') is converted to Decimal('1.23E+3')\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_to_integral,"\n\ |
| to_integral([rounding[, context]]) - Identical to the to_integral_value()\n\ |
| method. The to_integral name has been kept for compatibility with older\n\ |
| versions.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_to_integral_exact,"\n\ |
| to_integral_exact([rounding[, context]]) - Round to the nearest integer,\n\ |
| signaling Inexact or Rounded as appropriate if rounding occurs. The rounding\n\ |
| mode is determined by the rounding parameter if given, else by the given\n\ |
| context. If neither parameter is given, then the rounding mode of the current\n\ |
| default context is used.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_to_integral_value,"\n\ |
| to_integral_value([rounding[, context]]) - Round to the nearest integer without\n\ |
| signaling Inexact or Rounded. The rounding mode is determined by the rounding\n\ |
| parameter if given, else by the given context. If neither parameter is given,\n\ |
| then the rounding mode of the current default context is used.\n\ |
| \n"); |
| |
| |
| /******************************************************************************/ |
| /* Context Object and Methods */ |
| /******************************************************************************/ |
| |
| PyDoc_STRVAR(doc_context,"\n\ |
| The context affects almost all operations and controls rounding,\n\ |
| Over/Underflow, raising of exceptions and much more. A new context\n\ |
| can be constructed as follows:\n\ |
| \n\ |
| >>> c = Context(prec=28, Emin=-425000000, Emax=425000000,\n\ |
| ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1,\n\ |
| ... traps=[InvalidOperation, DivisionByZero, Overflow],\n\ |
| ... flags=[])\n\ |
| >>>\n\ |
| \n\ |
| \n"); |
| |
| #ifdef EXTRA_FUNCTIONALITY |
| PyDoc_STRVAR(doc_ctx_apply,"\n\ |
| apply(x) - Apply self to Decimal x.\n\ |
| \n"); |
| #endif |
| |
| PyDoc_STRVAR(doc_ctx_clear_flags,"\n\ |
| clear_flags() - Reset all flags to False.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_clear_traps,"\n\ |
| clear_traps() - Set all traps to False.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_copy,"\n\ |
| copy() - Return a duplicate of the context with all flags cleared.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_copy_decimal,"\n\ |
| copy_decimal(x) - Return a copy of Decimal x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_create_decimal,"\n\ |
| create_decimal(x) - Create a new Decimal instance from x, using self as the\n\ |
| context. Unlike the Decimal constructor, this function observes the context\n\ |
| limits.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_create_decimal_from_float,"\n\ |
| create_decimal_from_float(f) - Create a new Decimal instance from float f.\n\ |
| Unlike the Decimal.from_float() class method, this function observes the\n\ |
| context limits.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_Etiny,"\n\ |
| Etiny() - Return a value equal to Emin - prec + 1, which is the minimum\n\ |
| exponent value for subnormal results. When underflow occurs, the exponent\n\ |
| is set to Etiny.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_Etop,"\n\ |
| Etop() - Return a value equal to Emax - prec + 1. This is the maximum exponent\n\ |
| if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must\n\ |
| not be negative.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_abs,"\n\ |
| abs(x) - Return the absolute value of x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_add,"\n\ |
| add(x, y) - Return the sum of x and y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_canonical,"\n\ |
| canonical(x) - Return a new instance of x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_compare,"\n\ |
| compare(x, y) - Compare x and y numerically.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_compare_signal,"\n\ |
| compare_signal(x, y) - Compare x and y numerically. All NaNs signal.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_compare_total,"\n\ |
| compare_total(x, y) - Compare x and y using their abstract representation.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_compare_total_mag,"\n\ |
| compare_total_mag(x, y) - Compare x and y using their abstract representation,\n\ |
| ignoring sign.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_copy_abs,"\n\ |
| copy_abs(x) - Return a copy of x with the sign set to 0.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_copy_negate,"\n\ |
| copy_negate(x) - Return a copy of x with the sign inverted.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_copy_sign,"\n\ |
| copy_sign(x, y) - Copy the sign from y to x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_divide,"\n\ |
| divide(x, y) - Return x divided by y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_divide_int,"\n\ |
| divide_int(x, y) - Return x divided by y, truncated to an integer.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_divmod,"\n\ |
| divmod(x, y) - Return quotient and remainder of the division x / y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_exp,"\n\ |
| exp(x) - Return e ** x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_fma,"\n\ |
| fma(x, y, z) - Return x multiplied by y, plus z.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_canonical,"\n\ |
| is_canonical(x) - Return True if x is canonical, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_finite,"\n\ |
| is_finite(x) - Return True if x is finite, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_infinite,"\n\ |
| is_infinite(x) - Return True if x is infinite, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_nan,"\n\ |
| is_nan(x) - Return True if x is a qNaN or sNaN, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_normal,"\n\ |
| is_normal(x) - Return True if x is a normal number, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_qnan,"\n\ |
| is_qnan(x) - Return True if x is a quiet NaN, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_signed,"\n\ |
| is_signed(x) - Return True if x is negative, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_snan,"\n\ |
| is_snan() - Return True if x is a signaling NaN, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_subnormal,"\n\ |
| is_subnormal(x) - Return True if x is subnormal, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_is_zero,"\n\ |
| is_zero(x) - Return True if x is a zero, False otherwise.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_ln,"\n\ |
| ln(x) - Return the natural (base e) logarithm of x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_log10,"\n\ |
| log10(x) - Return the base 10 logarithm of x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_logb,"\n\ |
| logb(x) - Return the exponent of the magnitude of the operand's MSD.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_logical_and,"\n\ |
| logical_and(x, y) - Digit-wise and of x and y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_logical_invert,"\n\ |
| logical_invert(x) - Invert all digits of x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_logical_or,"\n\ |
| logical_or(x, y) - Digit-wise or of x and y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_logical_xor,"\n\ |
| logical_xor(x, y) - Digit-wise xor of x and y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_max,"\n\ |
| max(x, y) - Compare the values numerically and return the maximum.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_max_mag,"\n\ |
| max_mag(x, y) - Compare the values numerically with their sign ignored.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_min,"\n\ |
| min(x, y) - Compare the values numerically and return the minimum.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_min_mag,"\n\ |
| min_mag(x, y) - Compare the values numerically with their sign ignored.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_minus,"\n\ |
| minus(x) - Minus corresponds to the unary prefix minus operator in Python,\n\ |
| but applies the context to the result.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_multiply,"\n\ |
| multiply(x, y) - Return the product of x and y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_next_minus,"\n\ |
| next_minus(x) - Return the largest representable number smaller than x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_next_plus,"\n\ |
| next_plus(x) - Return the smallest representable number larger than x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_next_toward,"\n\ |
| next_toward(x) - Return the number closest to x, in the direction towards y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_normalize,"\n\ |
| normalize(x) - Reduce x to its simplest form. Alias for reduce(x).\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_number_class,"\n\ |
| number_class(x) - Return an indication of the class of x.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_plus,"\n\ |
| plus(x) - Plus corresponds to the unary prefix plus operator in Python,\n\ |
| but applies the context to the result.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_power,"\n\ |
| power(x, y) - Compute x**y. If x is negative, then y must be integral.\n\ |
| The result will be inexact unless y is integral and the result is finite\n\ |
| and can be expressed exactly in 'precision' digits. In the Python version\n\ |
| the result is always correctly rounded, in the C version the result is\n\ |
| almost always correctly rounded.\n\ |
| \n\ |
| power(x, y, m) - Compute (x**y) % m. The following restrictions hold:\n\ |
| \n\ |
| * all three arguments must be integral\n\ |
| * y must be nonnegative\n\ |
| * at least one of x or y must be nonzero\n\ |
| * m must be nonzero and less than 10**prec in absolute value\n\ |
| \n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_quantize,"\n\ |
| quantize(x, y) - Return a value equal to x (rounded), having the exponent of y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_radix,"\n\ |
| radix() - Return 10.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_remainder,"\n\ |
| remainder(x, y) - Return the remainder from integer division. The sign of\n\ |
| the result, if non-zero, is the same as that of the original dividend.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_remainder_near,"\n\ |
| remainder_near(x, y) - Return x - y * n, where n is the integer nearest the\n\ |
| exact value of x / y (if the result is 0 then its sign will be the sign of x).\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_rotate,"\n\ |
| rotate(x, y) - Return a copy of x, rotated by y places.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_same_quantum,"\n\ |
| same_quantum(x, y) - Return True if the two operands have the same exponent.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_scaleb,"\n\ |
| scaleb(x, y) - Return the first operand after adding the second value\n\ |
| to its exp.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_shift,"\n\ |
| shift(x, y) - Return a copy of x, shifted by y places.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_sqrt,"\n\ |
| sqrt(x) - Square root of a non-negative number to context precision.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_subtract,"\n\ |
| subtract(x, y) - Return the difference between x and y.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_to_eng_string,"\n\ |
| to_eng_string(x) - Convert a number to a string, using engineering notation.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_to_integral,"\n\ |
| to_integral(x) - Identical to to_integral_value(x).\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_to_integral_exact,"\n\ |
| to_integral_exact(x) - Round to an integer. Signal if the result is\n\ |
| rounded or inexact.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_to_integral_value,"\n\ |
| to_integral_value(x) - Round to an integer.\n\ |
| \n"); |
| |
| PyDoc_STRVAR(doc_ctx_to_sci_string,"\n\ |
| to_sci_string(x) - Convert a number to a string using scientific notation.\n\ |
| \n"); |
| |
| |
| #endif /* DOCSTRINGS_H */ |
| |
| |
| |