blob: a0362e74e404579a9250f4a6c5b31253a17822cd [file] [log] [blame]
/* Abstract Object Interface (many thanks to Jim Fulton) */
#include "Python.h"
#include <ctype.h>
#include "structmember.h" /* we need the offsetof() macro from there */
#include "longintrepr.h"
/* Shorthands to return certain errors */
static PyObject *
type_error(const char *msg, PyObject *obj)
{
PyErr_Format(PyExc_TypeError, msg, obj->ob_type->tp_name);
return NULL;
}
static PyObject *
null_error(void)
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_SystemError,
"null argument to internal routine");
return NULL;
}
/* Operations on any object */
PyObject *
PyObject_Type(PyObject *o)
{
PyObject *v;
if (o == NULL)
return null_error();
v = (PyObject *)o->ob_type;
Py_INCREF(v);
return v;
}
Py_ssize_t
PyObject_Size(PyObject *o)
{
PySequenceMethods *m;
if (o == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_sequence;
if (m && m->sq_length)
return m->sq_length(o);
return PyMapping_Size(o);
}
#undef PyObject_Length
Py_ssize_t
PyObject_Length(PyObject *o)
{
return PyObject_Size(o);
}
#define PyObject_Length PyObject_Size
int
_PyObject_HasLen(PyObject *o) {
return (Py_TYPE(o)->tp_as_sequence && Py_TYPE(o)->tp_as_sequence->sq_length) ||
(Py_TYPE(o)->tp_as_mapping && Py_TYPE(o)->tp_as_mapping->mp_length);
}
/* The length hint function returns a non-negative value from o.__len__()
or o.__length_hint__(). If those methods aren't found the defaultvalue is
returned. If one of the calls fails with an exception other than TypeError
this function returns -1.
*/
Py_ssize_t
PyObject_LengthHint(PyObject *o, Py_ssize_t defaultvalue)
{
PyObject *hint, *result;
Py_ssize_t res;
_Py_IDENTIFIER(__length_hint__);
if (_PyObject_HasLen(o)) {
res = PyObject_Length(o);
if (res < 0 && PyErr_Occurred()) {
if (!PyErr_ExceptionMatches(PyExc_TypeError)) {
return -1;
}
PyErr_Clear();
}
else {
return res;
}
}
hint = _PyObject_LookupSpecial(o, &PyId___length_hint__);
if (hint == NULL) {
if (PyErr_Occurred()) {
return -1;
}
return defaultvalue;
}
result = PyObject_CallFunctionObjArgs(hint, NULL);
Py_DECREF(hint);
if (result == NULL) {
if (PyErr_ExceptionMatches(PyExc_TypeError)) {
PyErr_Clear();
return defaultvalue;
}
return -1;
}
else if (result == Py_NotImplemented) {
Py_DECREF(result);
return defaultvalue;
}
if (!PyLong_Check(result)) {
PyErr_Format(PyExc_TypeError, "__length_hint__ must be an integer, not %.100s",
Py_TYPE(result)->tp_name);
Py_DECREF(result);
return -1;
}
res = PyLong_AsSsize_t(result);
Py_DECREF(result);
if (res < 0 && PyErr_Occurred()) {
return -1;
}
if (res < 0) {
PyErr_Format(PyExc_ValueError, "__length_hint__() should return >= 0");
return -1;
}
return res;
}
PyObject *
PyObject_GetItem(PyObject *o, PyObject *key)
{
PyMappingMethods *m;
if (o == NULL || key == NULL)
return null_error();
m = o->ob_type->tp_as_mapping;
if (m && m->mp_subscript)
return m->mp_subscript(o, key);
if (o->ob_type->tp_as_sequence) {
if (PyIndex_Check(key)) {
Py_ssize_t key_value;
key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (key_value == -1 && PyErr_Occurred())
return NULL;
return PySequence_GetItem(o, key_value);
}
else if (o->ob_type->tp_as_sequence->sq_item)
return type_error("sequence index must "
"be integer, not '%.200s'", key);
}
return type_error("'%.200s' object is not subscriptable", o);
}
int
PyObject_SetItem(PyObject *o, PyObject *key, PyObject *value)
{
PyMappingMethods *m;
if (o == NULL || key == NULL || value == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_mapping;
if (m && m->mp_ass_subscript)
return m->mp_ass_subscript(o, key, value);
if (o->ob_type->tp_as_sequence) {
if (PyIndex_Check(key)) {
Py_ssize_t key_value;
key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (key_value == -1 && PyErr_Occurred())
return -1;
return PySequence_SetItem(o, key_value, value);
}
else if (o->ob_type->tp_as_sequence->sq_ass_item) {
type_error("sequence index must be "
"integer, not '%.200s'", key);
return -1;
}
}
type_error("'%.200s' object does not support item assignment", o);
return -1;
}
int
PyObject_DelItem(PyObject *o, PyObject *key)
{
PyMappingMethods *m;
if (o == NULL || key == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_mapping;
if (m && m->mp_ass_subscript)
return m->mp_ass_subscript(o, key, (PyObject*)NULL);
if (o->ob_type->tp_as_sequence) {
if (PyIndex_Check(key)) {
Py_ssize_t key_value;
key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (key_value == -1 && PyErr_Occurred())
return -1;
return PySequence_DelItem(o, key_value);
}
else if (o->ob_type->tp_as_sequence->sq_ass_item) {
type_error("sequence index must be "
"integer, not '%.200s'", key);
return -1;
}
}
type_error("'%.200s' object does not support item deletion", o);
return -1;
}
int
PyObject_DelItemString(PyObject *o, const char *key)
{
PyObject *okey;
int ret;
if (o == NULL || key == NULL) {
null_error();
return -1;
}
okey = PyUnicode_FromString(key);
if (okey == NULL)
return -1;
ret = PyObject_DelItem(o, okey);
Py_DECREF(okey);
return ret;
}
/* We release the buffer right after use of this function which could
cause issues later on. Don't use these functions in new code.
*/
int
PyObject_AsCharBuffer(PyObject *obj,
const char **buffer,
Py_ssize_t *buffer_len)
{
return PyObject_AsReadBuffer(obj, (const void **)buffer, buffer_len);
}
int
PyObject_CheckReadBuffer(PyObject *obj)
{
PyBufferProcs *pb = obj->ob_type->tp_as_buffer;
Py_buffer view;
if (pb == NULL ||
pb->bf_getbuffer == NULL)
return 0;
if ((*pb->bf_getbuffer)(obj, &view, PyBUF_SIMPLE) == -1) {
PyErr_Clear();
return 0;
}
PyBuffer_Release(&view);
return 1;
}
int PyObject_AsReadBuffer(PyObject *obj,
const void **buffer,
Py_ssize_t *buffer_len)
{
Py_buffer view;
if (obj == NULL || buffer == NULL || buffer_len == NULL) {
null_error();
return -1;
}
if (PyObject_GetBuffer(obj, &view, PyBUF_SIMPLE) != 0)
return -1;
*buffer = view.buf;
*buffer_len = view.len;
PyBuffer_Release(&view);
return 0;
}
int PyObject_AsWriteBuffer(PyObject *obj,
void **buffer,
Py_ssize_t *buffer_len)
{
PyBufferProcs *pb;
Py_buffer view;
if (obj == NULL || buffer == NULL || buffer_len == NULL) {
null_error();
return -1;
}
pb = obj->ob_type->tp_as_buffer;
if (pb == NULL ||
pb->bf_getbuffer == NULL ||
((*pb->bf_getbuffer)(obj, &view, PyBUF_WRITABLE) != 0)) {
PyErr_SetString(PyExc_TypeError,
"expected a writable bytes-like object");
return -1;
}
*buffer = view.buf;
*buffer_len = view.len;
PyBuffer_Release(&view);
return 0;
}
/* Buffer C-API for Python 3.0 */
int
PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags)
{
PyBufferProcs *pb = obj->ob_type->tp_as_buffer;
if (pb == NULL || pb->bf_getbuffer == NULL) {
PyErr_Format(PyExc_TypeError,
"a bytes-like object is required, not '%.100s'",
Py_TYPE(obj)->tp_name);
return -1;
}
return (*pb->bf_getbuffer)(obj, view, flags);
}
static int
_IsFortranContiguous(const Py_buffer *view)
{
Py_ssize_t sd, dim;
int i;
/* 1) len = product(shape) * itemsize
2) itemsize > 0
3) len = 0 <==> exists i: shape[i] = 0 */
if (view->len == 0) return 1;
if (view->strides == NULL) { /* C-contiguous by definition */
/* Trivially F-contiguous */
if (view->ndim <= 1) return 1;
/* ndim > 1 implies shape != NULL */
assert(view->shape != NULL);
/* Effectively 1-d */
sd = 0;
for (i=0; i<view->ndim; i++) {
if (view->shape[i] > 1) sd += 1;
}
return sd <= 1;
}
/* strides != NULL implies both of these */
assert(view->ndim > 0);
assert(view->shape != NULL);
sd = view->itemsize;
for (i=0; i<view->ndim; i++) {
dim = view->shape[i];
if (dim > 1 && view->strides[i] != sd) {
return 0;
}
sd *= dim;
}
return 1;
}
static int
_IsCContiguous(const Py_buffer *view)
{
Py_ssize_t sd, dim;
int i;
/* 1) len = product(shape) * itemsize
2) itemsize > 0
3) len = 0 <==> exists i: shape[i] = 0 */
if (view->len == 0) return 1;
if (view->strides == NULL) return 1; /* C-contiguous by definition */
/* strides != NULL implies both of these */
assert(view->ndim > 0);
assert(view->shape != NULL);
sd = view->itemsize;
for (i=view->ndim-1; i>=0; i--) {
dim = view->shape[i];
if (dim > 1 && view->strides[i] != sd) {
return 0;
}
sd *= dim;
}
return 1;
}
int
PyBuffer_IsContiguous(const Py_buffer *view, char order)
{
if (view->suboffsets != NULL) return 0;
if (order == 'C')
return _IsCContiguous(view);
else if (order == 'F')
return _IsFortranContiguous(view);
else if (order == 'A')
return (_IsCContiguous(view) || _IsFortranContiguous(view));
return 0;
}
void*
PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices)
{
char* pointer;
int i;
pointer = (char *)view->buf;
for (i = 0; i < view->ndim; i++) {
pointer += view->strides[i]*indices[i];
if ((view->suboffsets != NULL) && (view->suboffsets[i] >= 0)) {
pointer = *((char**)pointer) + view->suboffsets[i];
}
}
return (void*)pointer;
}
void
_Py_add_one_to_index_F(int nd, Py_ssize_t *index, const Py_ssize_t *shape)
{
int k;
for (k=0; k<nd; k++) {
if (index[k] < shape[k]-1) {
index[k]++;
break;
}
else {
index[k] = 0;
}
}
}
void
_Py_add_one_to_index_C(int nd, Py_ssize_t *index, const Py_ssize_t *shape)
{
int k;
for (k=nd-1; k>=0; k--) {
if (index[k] < shape[k]-1) {
index[k]++;
break;
}
else {
index[k] = 0;
}
}
}
int
PyBuffer_FromContiguous(Py_buffer *view, void *buf, Py_ssize_t len, char fort)
{
int k;
void (*addone)(int, Py_ssize_t *, const Py_ssize_t *);
Py_ssize_t *indices, elements;
char *src, *ptr;
if (len > view->len) {
len = view->len;
}
if (PyBuffer_IsContiguous(view, fort)) {
/* simplest copy is all that is needed */
memcpy(view->buf, buf, len);
return 0;
}
/* Otherwise a more elaborate scheme is needed */
/* view->ndim <= 64 */
indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*(view->ndim));
if (indices == NULL) {
PyErr_NoMemory();
return -1;
}
for (k=0; k<view->ndim;k++) {
indices[k] = 0;
}
if (fort == 'F') {
addone = _Py_add_one_to_index_F;
}
else {
addone = _Py_add_one_to_index_C;
}
src = buf;
/* XXX : This is not going to be the fastest code in the world
several optimizations are possible.
*/
elements = len / view->itemsize;
while (elements--) {
ptr = PyBuffer_GetPointer(view, indices);
memcpy(ptr, src, view->itemsize);
src += view->itemsize;
addone(view->ndim, indices, view->shape);
}
PyMem_Free(indices);
return 0;
}
int PyObject_CopyData(PyObject *dest, PyObject *src)
{
Py_buffer view_dest, view_src;
int k;
Py_ssize_t *indices, elements;
char *dptr, *sptr;
if (!PyObject_CheckBuffer(dest) ||
!PyObject_CheckBuffer(src)) {
PyErr_SetString(PyExc_TypeError,
"both destination and source must be "\
"bytes-like objects");
return -1;
}
if (PyObject_GetBuffer(dest, &view_dest, PyBUF_FULL) != 0) return -1;
if (PyObject_GetBuffer(src, &view_src, PyBUF_FULL_RO) != 0) {
PyBuffer_Release(&view_dest);
return -1;
}
if (view_dest.len < view_src.len) {
PyErr_SetString(PyExc_BufferError,
"destination is too small to receive data from source");
PyBuffer_Release(&view_dest);
PyBuffer_Release(&view_src);
return -1;
}
if ((PyBuffer_IsContiguous(&view_dest, 'C') &&
PyBuffer_IsContiguous(&view_src, 'C')) ||
(PyBuffer_IsContiguous(&view_dest, 'F') &&
PyBuffer_IsContiguous(&view_src, 'F'))) {
/* simplest copy is all that is needed */
memcpy(view_dest.buf, view_src.buf, view_src.len);
PyBuffer_Release(&view_dest);
PyBuffer_Release(&view_src);
return 0;
}
/* Otherwise a more elaborate copy scheme is needed */
/* XXX(nnorwitz): need to check for overflow! */
indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*view_src.ndim);
if (indices == NULL) {
PyErr_NoMemory();
PyBuffer_Release(&view_dest);
PyBuffer_Release(&view_src);
return -1;
}
for (k=0; k<view_src.ndim;k++) {
indices[k] = 0;
}
elements = 1;
for (k=0; k<view_src.ndim; k++) {
/* XXX(nnorwitz): can this overflow? */
elements *= view_src.shape[k];
}
while (elements--) {
_Py_add_one_to_index_C(view_src.ndim, indices, view_src.shape);
dptr = PyBuffer_GetPointer(&view_dest, indices);
sptr = PyBuffer_GetPointer(&view_src, indices);
memcpy(dptr, sptr, view_src.itemsize);
}
PyMem_Free(indices);
PyBuffer_Release(&view_dest);
PyBuffer_Release(&view_src);
return 0;
}
void
PyBuffer_FillContiguousStrides(int nd, Py_ssize_t *shape,
Py_ssize_t *strides, int itemsize,
char fort)
{
int k;
Py_ssize_t sd;
sd = itemsize;
if (fort == 'F') {
for (k=0; k<nd; k++) {
strides[k] = sd;
sd *= shape[k];
}
}
else {
for (k=nd-1; k>=0; k--) {
strides[k] = sd;
sd *= shape[k];
}
}
return;
}
int
PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len,
int readonly, int flags)
{
if (view == NULL) {
PyErr_SetString(PyExc_BufferError,
"PyBuffer_FillInfo: view==NULL argument is obsolete");
return -1;
}
if (((flags & PyBUF_WRITABLE) == PyBUF_WRITABLE) &&
(readonly == 1)) {
PyErr_SetString(PyExc_BufferError,
"Object is not writable.");
return -1;
}
view->obj = obj;
if (obj)
Py_INCREF(obj);
view->buf = buf;
view->len = len;
view->readonly = readonly;
view->itemsize = 1;
view->format = NULL;
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT)
view->format = "B";
view->ndim = 1;
view->shape = NULL;
if ((flags & PyBUF_ND) == PyBUF_ND)
view->shape = &(view->len);
view->strides = NULL;
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES)
view->strides = &(view->itemsize);
view->suboffsets = NULL;
view->internal = NULL;
return 0;
}
void
PyBuffer_Release(Py_buffer *view)
{
PyObject *obj = view->obj;
PyBufferProcs *pb;
if (obj == NULL)
return;
pb = Py_TYPE(obj)->tp_as_buffer;
if (pb && pb->bf_releasebuffer)
pb->bf_releasebuffer(obj, view);
view->obj = NULL;
Py_DECREF(obj);
}
PyObject *
PyObject_Format(PyObject *obj, PyObject *format_spec)
{
PyObject *meth;
PyObject *empty = NULL;
PyObject *result = NULL;
_Py_IDENTIFIER(__format__);
/* If no format_spec is provided, use an empty string */
if (format_spec == NULL) {
empty = PyUnicode_New(0, 0);
format_spec = empty;
}
/* Find the (unbound!) __format__ method (a borrowed reference) */
meth = _PyObject_LookupSpecial(obj, &PyId___format__);
if (meth == NULL) {
if (!PyErr_Occurred())
PyErr_Format(PyExc_TypeError,
"Type %.100s doesn't define __format__",
Py_TYPE(obj)->tp_name);
goto done;
}
/* And call it. */
result = PyObject_CallFunctionObjArgs(meth, format_spec, NULL);
Py_DECREF(meth);
if (result && !PyUnicode_Check(result)) {
PyErr_Format(PyExc_TypeError,
"__format__ must return a str, not %.200s",
Py_TYPE(result)->tp_name);
Py_DECREF(result);
result = NULL;
goto done;
}
done:
Py_XDECREF(empty);
return result;
}
/* Operations on numbers */
int
PyNumber_Check(PyObject *o)
{
return o && o->ob_type->tp_as_number &&
(o->ob_type->tp_as_number->nb_int ||
o->ob_type->tp_as_number->nb_float);
}
/* Binary operators */
#define NB_SLOT(x) offsetof(PyNumberMethods, x)
#define NB_BINOP(nb_methods, slot) \
(*(binaryfunc*)(& ((char*)nb_methods)[slot]))
#define NB_TERNOP(nb_methods, slot) \
(*(ternaryfunc*)(& ((char*)nb_methods)[slot]))
/*
Calling scheme used for binary operations:
Order operations are tried until either a valid result or error:
w.op(v,w)[*], v.op(v,w), w.op(v,w)
[*] only when v->ob_type != w->ob_type && w->ob_type is a subclass of
v->ob_type
*/
static PyObject *
binary_op1(PyObject *v, PyObject *w, const int op_slot)
{
PyObject *x;
binaryfunc slotv = NULL;
binaryfunc slotw = NULL;
if (v->ob_type->tp_as_number != NULL)
slotv = NB_BINOP(v->ob_type->tp_as_number, op_slot);
if (w->ob_type != v->ob_type &&
w->ob_type->tp_as_number != NULL) {
slotw = NB_BINOP(w->ob_type->tp_as_number, op_slot);
if (slotw == slotv)
slotw = NULL;
}
if (slotv) {
if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) {
x = slotw(v, w);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
slotw = NULL;
}
x = slotv(v, w);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
if (slotw) {
x = slotw(v, w);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
Py_RETURN_NOTIMPLEMENTED;
}
static PyObject *
binop_type_error(PyObject *v, PyObject *w, const char *op_name)
{
PyErr_Format(PyExc_TypeError,
"unsupported operand type(s) for %.100s: "
"'%.100s' and '%.100s'",
op_name,
v->ob_type->tp_name,
w->ob_type->tp_name);
return NULL;
}
static PyObject *
binary_op(PyObject *v, PyObject *w, const int op_slot, const char *op_name)
{
PyObject *result = binary_op1(v, w, op_slot);
if (result == Py_NotImplemented) {
Py_DECREF(result);
return binop_type_error(v, w, op_name);
}
return result;
}
/*
Calling scheme used for ternary operations:
Order operations are tried until either a valid result or error:
v.op(v,w,z), w.op(v,w,z), z.op(v,w,z)
*/
static PyObject *
ternary_op(PyObject *v,
PyObject *w,
PyObject *z,
const int op_slot,
const char *op_name)
{
PyNumberMethods *mv, *mw, *mz;
PyObject *x = NULL;
ternaryfunc slotv = NULL;
ternaryfunc slotw = NULL;
ternaryfunc slotz = NULL;
mv = v->ob_type->tp_as_number;
mw = w->ob_type->tp_as_number;
if (mv != NULL)
slotv = NB_TERNOP(mv, op_slot);
if (w->ob_type != v->ob_type &&
mw != NULL) {
slotw = NB_TERNOP(mw, op_slot);
if (slotw == slotv)
slotw = NULL;
}
if (slotv) {
if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) {
x = slotw(v, w, z);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
slotw = NULL;
}
x = slotv(v, w, z);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
if (slotw) {
x = slotw(v, w, z);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
mz = z->ob_type->tp_as_number;
if (mz != NULL) {
slotz = NB_TERNOP(mz, op_slot);
if (slotz == slotv || slotz == slotw)
slotz = NULL;
if (slotz) {
x = slotz(v, w, z);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
}
if (z == Py_None)
PyErr_Format(
PyExc_TypeError,
"unsupported operand type(s) for ** or pow(): "
"'%.100s' and '%.100s'",
v->ob_type->tp_name,
w->ob_type->tp_name);
else
PyErr_Format(
PyExc_TypeError,
"unsupported operand type(s) for pow(): "
"'%.100s', '%.100s', '%.100s'",
v->ob_type->tp_name,
w->ob_type->tp_name,
z->ob_type->tp_name);
return NULL;
}
#define BINARY_FUNC(func, op, op_name) \
PyObject * \
func(PyObject *v, PyObject *w) { \
return binary_op(v, w, NB_SLOT(op), op_name); \
}
BINARY_FUNC(PyNumber_Or, nb_or, "|")
BINARY_FUNC(PyNumber_Xor, nb_xor, "^")
BINARY_FUNC(PyNumber_And, nb_and, "&")
BINARY_FUNC(PyNumber_Lshift, nb_lshift, "<<")
BINARY_FUNC(PyNumber_Rshift, nb_rshift, ">>")
BINARY_FUNC(PyNumber_Subtract, nb_subtract, "-")
BINARY_FUNC(PyNumber_Divmod, nb_divmod, "divmod()")
PyObject *
PyNumber_Add(PyObject *v, PyObject *w)
{
PyObject *result = binary_op1(v, w, NB_SLOT(nb_add));
if (result == Py_NotImplemented) {
PySequenceMethods *m = v->ob_type->tp_as_sequence;
Py_DECREF(result);
if (m && m->sq_concat) {
return (*m->sq_concat)(v, w);
}
result = binop_type_error(v, w, "+");
}
return result;
}
static PyObject *
sequence_repeat(ssizeargfunc repeatfunc, PyObject *seq, PyObject *n)
{
Py_ssize_t count;
if (PyIndex_Check(n)) {
count = PyNumber_AsSsize_t(n, PyExc_OverflowError);
if (count == -1 && PyErr_Occurred())
return NULL;
}
else {
return type_error("can't multiply sequence by "
"non-int of type '%.200s'", n);
}
return (*repeatfunc)(seq, count);
}
PyObject *
PyNumber_Multiply(PyObject *v, PyObject *w)
{
PyObject *result = binary_op1(v, w, NB_SLOT(nb_multiply));
if (result == Py_NotImplemented) {
PySequenceMethods *mv = v->ob_type->tp_as_sequence;
PySequenceMethods *mw = w->ob_type->tp_as_sequence;
Py_DECREF(result);
if (mv && mv->sq_repeat) {
return sequence_repeat(mv->sq_repeat, v, w);
}
else if (mw && mw->sq_repeat) {
return sequence_repeat(mw->sq_repeat, w, v);
}
result = binop_type_error(v, w, "*");
}
return result;
}
PyObject *
PyNumber_MatrixMultiply(PyObject *v, PyObject *w)
{
return binary_op(v, w, NB_SLOT(nb_matrix_multiply), "@");
}
PyObject *
PyNumber_FloorDivide(PyObject *v, PyObject *w)
{
return binary_op(v, w, NB_SLOT(nb_floor_divide), "//");
}
PyObject *
PyNumber_TrueDivide(PyObject *v, PyObject *w)
{
return binary_op(v, w, NB_SLOT(nb_true_divide), "/");
}
PyObject *
PyNumber_Remainder(PyObject *v, PyObject *w)
{
return binary_op(v, w, NB_SLOT(nb_remainder), "%");
}
PyObject *
PyNumber_Power(PyObject *v, PyObject *w, PyObject *z)
{
return ternary_op(v, w, z, NB_SLOT(nb_power), "** or pow()");
}
/* Binary in-place operators */
/* The in-place operators are defined to fall back to the 'normal',
non in-place operations, if the in-place methods are not in place.
- If the left hand object has the appropriate struct members, and
they are filled, call the appropriate function and return the
result. No coercion is done on the arguments; the left-hand object
is the one the operation is performed on, and it's up to the
function to deal with the right-hand object.
- Otherwise, in-place modification is not supported. Handle it exactly as
a non in-place operation of the same kind.
*/
static PyObject *
binary_iop1(PyObject *v, PyObject *w, const int iop_slot, const int op_slot)
{
PyNumberMethods *mv = v->ob_type->tp_as_number;
if (mv != NULL) {
binaryfunc slot = NB_BINOP(mv, iop_slot);
if (slot) {
PyObject *x = (slot)(v, w);
if (x != Py_NotImplemented) {
return x;
}
Py_DECREF(x);
}
}
return binary_op1(v, w, op_slot);
}
static PyObject *
binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot,
const char *op_name)
{
PyObject *result = binary_iop1(v, w, iop_slot, op_slot);
if (result == Py_NotImplemented) {
Py_DECREF(result);
return binop_type_error(v, w, op_name);
}
return result;
}
#define INPLACE_BINOP(func, iop, op, op_name) \
PyObject * \
func(PyObject *v, PyObject *w) { \
return binary_iop(v, w, NB_SLOT(iop), NB_SLOT(op), op_name); \
}
INPLACE_BINOP(PyNumber_InPlaceOr, nb_inplace_or, nb_or, "|=")
INPLACE_BINOP(PyNumber_InPlaceXor, nb_inplace_xor, nb_xor, "^=")
INPLACE_BINOP(PyNumber_InPlaceAnd, nb_inplace_and, nb_and, "&=")
INPLACE_BINOP(PyNumber_InPlaceLshift, nb_inplace_lshift, nb_lshift, "<<=")
INPLACE_BINOP(PyNumber_InPlaceRshift, nb_inplace_rshift, nb_rshift, ">>=")
INPLACE_BINOP(PyNumber_InPlaceSubtract, nb_inplace_subtract, nb_subtract, "-=")
INPLACE_BINOP(PyNumber_InMatrixMultiply, nb_inplace_matrix_multiply, nb_matrix_multiply, "@=")
PyObject *
PyNumber_InPlaceFloorDivide(PyObject *v, PyObject *w)
{
return binary_iop(v, w, NB_SLOT(nb_inplace_floor_divide),
NB_SLOT(nb_floor_divide), "//=");
}
PyObject *
PyNumber_InPlaceTrueDivide(PyObject *v, PyObject *w)
{
return binary_iop(v, w, NB_SLOT(nb_inplace_true_divide),
NB_SLOT(nb_true_divide), "/=");
}
PyObject *
PyNumber_InPlaceAdd(PyObject *v, PyObject *w)
{
PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_add),
NB_SLOT(nb_add));
if (result == Py_NotImplemented) {
PySequenceMethods *m = v->ob_type->tp_as_sequence;
Py_DECREF(result);
if (m != NULL) {
binaryfunc f = NULL;
f = m->sq_inplace_concat;
if (f == NULL)
f = m->sq_concat;
if (f != NULL)
return (*f)(v, w);
}
result = binop_type_error(v, w, "+=");
}
return result;
}
PyObject *
PyNumber_InPlaceMultiply(PyObject *v, PyObject *w)
{
PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_multiply),
NB_SLOT(nb_multiply));
if (result == Py_NotImplemented) {
ssizeargfunc f = NULL;
PySequenceMethods *mv = v->ob_type->tp_as_sequence;
PySequenceMethods *mw = w->ob_type->tp_as_sequence;
Py_DECREF(result);
if (mv != NULL) {
f = mv->sq_inplace_repeat;
if (f == NULL)
f = mv->sq_repeat;
if (f != NULL)
return sequence_repeat(f, v, w);
}
else if (mw != NULL) {
/* Note that the right hand operand should not be
* mutated in this case so sq_inplace_repeat is not
* used. */
if (mw->sq_repeat)
return sequence_repeat(mw->sq_repeat, w, v);
}
result = binop_type_error(v, w, "*=");
}
return result;
}
PyObject *
PyNumber_InPlaceMatrixMultiply(PyObject *v, PyObject *w)
{
return binary_iop(v, w, NB_SLOT(nb_inplace_matrix_multiply),
NB_SLOT(nb_matrix_multiply), "@=");
}
PyObject *
PyNumber_InPlaceRemainder(PyObject *v, PyObject *w)
{
return binary_iop(v, w, NB_SLOT(nb_inplace_remainder),
NB_SLOT(nb_remainder), "%=");
}
PyObject *
PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z)
{
if (v->ob_type->tp_as_number &&
v->ob_type->tp_as_number->nb_inplace_power != NULL) {
return ternary_op(v, w, z, NB_SLOT(nb_inplace_power), "**=");
}
else {
return ternary_op(v, w, z, NB_SLOT(nb_power), "**=");
}
}
/* Unary operators and functions */
PyObject *
PyNumber_Negative(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_number;
if (m && m->nb_negative)
return (*m->nb_negative)(o);
return type_error("bad operand type for unary -: '%.200s'", o);
}
PyObject *
PyNumber_Positive(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_number;
if (m && m->nb_positive)
return (*m->nb_positive)(o);
return type_error("bad operand type for unary +: '%.200s'", o);
}
PyObject *
PyNumber_Invert(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_number;
if (m && m->nb_invert)
return (*m->nb_invert)(o);
return type_error("bad operand type for unary ~: '%.200s'", o);
}
PyObject *
PyNumber_Absolute(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_number;
if (m && m->nb_absolute)
return m->nb_absolute(o);
return type_error("bad operand type for abs(): '%.200s'", o);
}
/* Return a Python int from the object item.
Raise TypeError if the result is not an int
or if the object cannot be interpreted as an index.
*/
PyObject *
PyNumber_Index(PyObject *item)
{
PyObject *result = NULL;
if (item == NULL)
return null_error();
if (PyLong_Check(item)) {
Py_INCREF(item);
return item;
}
if (!PyIndex_Check(item)) {
PyErr_Format(PyExc_TypeError,
"'%.200s' object cannot be interpreted "
"as an integer", item->ob_type->tp_name);
return NULL;
}
result = item->ob_type->tp_as_number->nb_index(item);
if (!result || PyLong_CheckExact(result))
return result;
if (!PyLong_Check(result)) {
PyErr_Format(PyExc_TypeError,
"__index__ returned non-int (type %.200s)",
result->ob_type->tp_name);
Py_DECREF(result);
return NULL;
}
/* Issue #17576: warn if 'result' not of exact type int. */
if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"__index__ returned non-int (type %.200s). "
"The ability to return an instance of a strict subclass of int "
"is deprecated, and may be removed in a future version of Python.",
result->ob_type->tp_name)) {
Py_DECREF(result);
return NULL;
}
return result;
}
/* Return an error on Overflow only if err is not NULL*/
Py_ssize_t
PyNumber_AsSsize_t(PyObject *item, PyObject *err)
{
Py_ssize_t result;
PyObject *runerr;
PyObject *value = PyNumber_Index(item);
if (value == NULL)
return -1;
/* We're done if PyLong_AsSsize_t() returns without error. */
result = PyLong_AsSsize_t(value);
if (result != -1 || !(runerr = PyErr_Occurred()))
goto finish;
/* Error handling code -- only manage OverflowError differently */
if (!PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError))
goto finish;
PyErr_Clear();
/* If no error-handling desired then the default clipping
is sufficient.
*/
if (!err) {
assert(PyLong_Check(value));
/* Whether or not it is less than or equal to
zero is determined by the sign of ob_size
*/
if (_PyLong_Sign(value) < 0)
result = PY_SSIZE_T_MIN;
else
result = PY_SSIZE_T_MAX;
}
else {
/* Otherwise replace the error with caller's error object. */
PyErr_Format(err,
"cannot fit '%.200s' into an index-sized integer",
item->ob_type->tp_name);
}
finish:
Py_DECREF(value);
return result;
}
PyObject *
PyNumber_Long(PyObject *o)
{
PyNumberMethods *m;
PyObject *trunc_func;
Py_buffer view;
_Py_IDENTIFIER(__trunc__);
if (o == NULL)
return null_error();
if (PyLong_CheckExact(o)) {
Py_INCREF(o);
return o;
}
m = o->ob_type->tp_as_number;
if (m && m->nb_int) { /* This should include subclasses of int */
return (PyObject *)_PyLong_FromNbInt(o);
}
trunc_func = _PyObject_LookupSpecial(o, &PyId___trunc__);
if (trunc_func) {
PyObject *truncated = PyEval_CallObject(trunc_func, NULL);
PyObject *int_instance;
Py_DECREF(trunc_func);
if (truncated == NULL || PyLong_Check(truncated))
return truncated;
/* __trunc__ is specified to return an Integral type,
but int() needs to return an int. */
m = truncated->ob_type->tp_as_number;
if (m == NULL || m->nb_int == NULL) {
PyErr_Format(
PyExc_TypeError,
"__trunc__ returned non-Integral (type %.200s)",
truncated->ob_type->tp_name);
Py_DECREF(truncated);
return NULL;
}
int_instance = (PyObject *)_PyLong_FromNbInt(truncated);
Py_DECREF(truncated);
return int_instance;
}
if (PyErr_Occurred())
return NULL;
if (PyUnicode_Check(o))
/* The below check is done in PyLong_FromUnicode(). */
return PyLong_FromUnicodeObject(o, 10);
if (PyBytes_Check(o))
/* need to do extra error checking that PyLong_FromString()
* doesn't do. In particular int('9\x005') must raise an
* exception, not truncate at the null.
*/
return _PyLong_FromBytes(PyBytes_AS_STRING(o),
PyBytes_GET_SIZE(o), 10);
if (PyByteArray_Check(o))
return _PyLong_FromBytes(PyByteArray_AS_STRING(o),
PyByteArray_GET_SIZE(o), 10);
if (PyObject_GetBuffer(o, &view, PyBUF_SIMPLE) == 0) {
PyObject *result, *bytes;
/* Copy to NUL-terminated buffer. */
bytes = PyBytes_FromStringAndSize((const char *)view.buf, view.len);
if (bytes == NULL) {
PyBuffer_Release(&view);
return NULL;
}
result = _PyLong_FromBytes(PyBytes_AS_STRING(bytes),
PyBytes_GET_SIZE(bytes), 10);
Py_DECREF(bytes);
PyBuffer_Release(&view);
return result;
}
return type_error("int() argument must be a string, a bytes-like object "
"or a number, not '%.200s'", o);
}
PyObject *
PyNumber_Float(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_number;
if (m && m->nb_float) { /* This should include subclasses of float */
PyObject *res = m->nb_float(o);
if (res && !PyFloat_Check(res)) {
PyErr_Format(PyExc_TypeError,
"__float__ returned non-float (type %.200s)",
res->ob_type->tp_name);
Py_DECREF(res);
return NULL;
}
return res;
}
if (PyFloat_Check(o)) { /* A float subclass with nb_float == NULL */
PyFloatObject *po = (PyFloatObject *)o;
return PyFloat_FromDouble(po->ob_fval);
}
return PyFloat_FromString(o);
}
PyObject *
PyNumber_ToBase(PyObject *n, int base)
{
PyObject *res = NULL;
PyObject *index = PyNumber_Index(n);
if (!index)
return NULL;
if (PyLong_Check(index))
res = _PyLong_Format(index, base);
else
/* It should not be possible to get here, as
PyNumber_Index already has a check for the same
condition */
PyErr_SetString(PyExc_ValueError, "PyNumber_ToBase: index not int");
Py_DECREF(index);
return res;
}
/* Operations on sequences */
int
PySequence_Check(PyObject *s)
{
if (PyDict_Check(s))
return 0;
return s != NULL && s->ob_type->tp_as_sequence &&
s->ob_type->tp_as_sequence->sq_item != NULL;
}
Py_ssize_t
PySequence_Size(PyObject *s)
{
PySequenceMethods *m;
if (s == NULL) {
null_error();
return -1;
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_length)
return m->sq_length(s);
type_error("object of type '%.200s' has no len()", s);
return -1;
}
#undef PySequence_Length
Py_ssize_t
PySequence_Length(PyObject *s)
{
return PySequence_Size(s);
}
#define PySequence_Length PySequence_Size
PyObject *
PySequence_Concat(PyObject *s, PyObject *o)
{
PySequenceMethods *m;
if (s == NULL || o == NULL)
return null_error();
m = s->ob_type->tp_as_sequence;
if (m && m->sq_concat)
return m->sq_concat(s, o);
/* Instances of user classes defining an __add__() method only
have an nb_add slot, not an sq_concat slot. So we fall back
to nb_add if both arguments appear to be sequences. */
if (PySequence_Check(s) && PySequence_Check(o)) {
PyObject *result = binary_op1(s, o, NB_SLOT(nb_add));
if (result != Py_NotImplemented)
return result;
Py_DECREF(result);
}
return type_error("'%.200s' object can't be concatenated", s);
}
PyObject *
PySequence_Repeat(PyObject *o, Py_ssize_t count)
{
PySequenceMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_sequence;
if (m && m->sq_repeat)
return m->sq_repeat(o, count);
/* Instances of user classes defining a __mul__() method only
have an nb_multiply slot, not an sq_repeat slot. so we fall back
to nb_multiply if o appears to be a sequence. */
if (PySequence_Check(o)) {
PyObject *n, *result;
n = PyLong_FromSsize_t(count);
if (n == NULL)
return NULL;
result = binary_op1(o, n, NB_SLOT(nb_multiply));
Py_DECREF(n);
if (result != Py_NotImplemented)
return result;
Py_DECREF(result);
}
return type_error("'%.200s' object can't be repeated", o);
}
PyObject *
PySequence_InPlaceConcat(PyObject *s, PyObject *o)
{
PySequenceMethods *m;
if (s == NULL || o == NULL)
return null_error();
m = s->ob_type->tp_as_sequence;
if (m && m->sq_inplace_concat)
return m->sq_inplace_concat(s, o);
if (m && m->sq_concat)
return m->sq_concat(s, o);
if (PySequence_Check(s) && PySequence_Check(o)) {
PyObject *result = binary_iop1(s, o, NB_SLOT(nb_inplace_add),
NB_SLOT(nb_add));
if (result != Py_NotImplemented)
return result;
Py_DECREF(result);
}
return type_error("'%.200s' object can't be concatenated", s);
}
PyObject *
PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
{
PySequenceMethods *m;
if (o == NULL)
return null_error();
m = o->ob_type->tp_as_sequence;
if (m && m->sq_inplace_repeat)
return m->sq_inplace_repeat(o, count);
if (m && m->sq_repeat)
return m->sq_repeat(o, count);
if (PySequence_Check(o)) {
PyObject *n, *result;
n = PyLong_FromSsize_t(count);
if (n == NULL)
return NULL;
result = binary_iop1(o, n, NB_SLOT(nb_inplace_multiply),
NB_SLOT(nb_multiply));
Py_DECREF(n);
if (result != Py_NotImplemented)
return result;
Py_DECREF(result);
}
return type_error("'%.200s' object can't be repeated", o);
}
PyObject *
PySequence_GetItem(PyObject *s, Py_ssize_t i)
{
PySequenceMethods *m;
if (s == NULL)
return null_error();
m = s->ob_type->tp_as_sequence;
if (m && m->sq_item) {
if (i < 0) {
if (m->sq_length) {
Py_ssize_t l = (*m->sq_length)(s);
if (l < 0)
return NULL;
i += l;
}
}
return m->sq_item(s, i);
}
return type_error("'%.200s' object does not support indexing", s);
}
PyObject *
PySequence_GetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2)
{
PyMappingMethods *mp;
if (!s) return null_error();
mp = s->ob_type->tp_as_mapping;
if (mp && mp->mp_subscript) {
PyObject *res;
PyObject *slice = _PySlice_FromIndices(i1, i2);
if (!slice)
return NULL;
res = mp->mp_subscript(s, slice);
Py_DECREF(slice);
return res;
}
return type_error("'%.200s' object is unsliceable", s);
}
int
PySequence_SetItem(PyObject *s, Py_ssize_t i, PyObject *o)
{
PySequenceMethods *m;
if (s == NULL) {
null_error();
return -1;
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_ass_item) {
if (i < 0) {
if (m->sq_length) {
Py_ssize_t l = (*m->sq_length)(s);
if (l < 0)
return -1;
i += l;
}
}
return m->sq_ass_item(s, i, o);
}
type_error("'%.200s' object does not support item assignment", s);
return -1;
}
int
PySequence_DelItem(PyObject *s, Py_ssize_t i)
{
PySequenceMethods *m;
if (s == NULL) {
null_error();
return -1;
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_ass_item) {
if (i < 0) {
if (m->sq_length) {
Py_ssize_t l = (*m->sq_length)(s);
if (l < 0)
return -1;
i += l;
}
}
return m->sq_ass_item(s, i, (PyObject *)NULL);
}
type_error("'%.200s' object doesn't support item deletion", s);
return -1;
}
int
PySequence_SetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2, PyObject *o)
{
PyMappingMethods *mp;
if (s == NULL) {
null_error();
return -1;
}
mp = s->ob_type->tp_as_mapping;
if (mp && mp->mp_ass_subscript) {
int res;
PyObject *slice = _PySlice_FromIndices(i1, i2);
if (!slice)
return -1;
res = mp->mp_ass_subscript(s, slice, o);
Py_DECREF(slice);
return res;
}
type_error("'%.200s' object doesn't support slice assignment", s);
return -1;
}
int
PySequence_DelSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2)
{
PyMappingMethods *mp;
if (s == NULL) {
null_error();
return -1;
}
mp = s->ob_type->tp_as_mapping;
if (mp && mp->mp_ass_subscript) {
int res;
PyObject *slice = _PySlice_FromIndices(i1, i2);
if (!slice)
return -1;
res = mp->mp_ass_subscript(s, slice, NULL);
Py_DECREF(slice);
return res;
}
type_error("'%.200s' object doesn't support slice deletion", s);
return -1;
}
PyObject *
PySequence_Tuple(PyObject *v)
{
PyObject *it; /* iter(v) */
Py_ssize_t n; /* guess for result tuple size */
PyObject *result = NULL;
Py_ssize_t j;
if (v == NULL)
return null_error();
/* Special-case the common tuple and list cases, for efficiency. */
if (PyTuple_CheckExact(v)) {
/* Note that we can't know whether it's safe to return
a tuple *subclass* instance as-is, hence the restriction
to exact tuples here. In contrast, lists always make
a copy, so there's no need for exactness below. */
Py_INCREF(v);
return v;
}
if (PyList_CheckExact(v))
return PyList_AsTuple(v);
/* Get iterator. */
it = PyObject_GetIter(v);
if (it == NULL)
return NULL;
/* Guess result size and allocate space. */
n = PyObject_LengthHint(v, 10);
if (n == -1)
goto Fail;
result = PyTuple_New(n);
if (result == NULL)
goto Fail;
/* Fill the tuple. */
for (j = 0; ; ++j) {
PyObject *item = PyIter_Next(it);
if (item == NULL) {
if (PyErr_Occurred())
goto Fail;
break;
}
if (j >= n) {
Py_ssize_t oldn = n;
/* The over-allocation strategy can grow a bit faster
than for lists because unlike lists the
over-allocation isn't permanent -- we reclaim
the excess before the end of this routine.
So, grow by ten and then add 25%.
*/
n += 10;
n += n >> 2;
if (n < oldn) {
/* Check for overflow */
PyErr_NoMemory();
Py_DECREF(item);
goto Fail;
}
if (_PyTuple_Resize(&result, n) != 0) {
Py_DECREF(item);
goto Fail;
}
}
PyTuple_SET_ITEM(result, j, item);
}
/* Cut tuple back if guess was too large. */
if (j < n &&
_PyTuple_Resize(&result, j) != 0)
goto Fail;
Py_DECREF(it);
return result;
Fail:
Py_XDECREF(result);
Py_DECREF(it);
return NULL;
}
PyObject *
PySequence_List(PyObject *v)
{
PyObject *result; /* result list */
PyObject *rv; /* return value from PyList_Extend */
if (v == NULL)
return null_error();
result = PyList_New(0);
if (result == NULL)
return NULL;
rv = _PyList_Extend((PyListObject *)result, v);
if (rv == NULL) {
Py_DECREF(result);
return NULL;
}
Py_DECREF(rv);
return result;
}
PyObject *
PySequence_Fast(PyObject *v, const char *m)
{
PyObject *it;
if (v == NULL)
return null_error();
if (PyList_CheckExact(v) || PyTuple_CheckExact(v)) {
Py_INCREF(v);
return v;
}
it = PyObject_GetIter(v);
if (it == NULL) {
if (PyErr_ExceptionMatches(PyExc_TypeError))
PyErr_SetString(PyExc_TypeError, m);
return NULL;
}
v = PySequence_List(it);
Py_DECREF(it);
return v;
}
/* Iterate over seq. Result depends on the operation:
PY_ITERSEARCH_COUNT: -1 if error, else # of times obj appears in seq.
PY_ITERSEARCH_INDEX: 0-based index of first occurrence of obj in seq;
set ValueError and return -1 if none found; also return -1 on error.
Py_ITERSEARCH_CONTAINS: return 1 if obj in seq, else 0; -1 on error.
*/
Py_ssize_t
_PySequence_IterSearch(PyObject *seq, PyObject *obj, int operation)
{
Py_ssize_t n;
int wrapped; /* for PY_ITERSEARCH_INDEX, true iff n wrapped around */
PyObject *it; /* iter(seq) */
if (seq == NULL || obj == NULL) {
null_error();
return -1;
}
it = PyObject_GetIter(seq);
if (it == NULL) {
type_error("argument of type '%.200s' is not iterable", seq);
return -1;
}
n = wrapped = 0;
for (;;) {
int cmp;
PyObject *item = PyIter_Next(it);
if (item == NULL) {
if (PyErr_Occurred())
goto Fail;
break;
}
cmp = PyObject_RichCompareBool(obj, item, Py_EQ);
Py_DECREF(item);
if (cmp < 0)
goto Fail;
if (cmp > 0) {
switch (operation) {
case PY_ITERSEARCH_COUNT:
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"count exceeds C integer size");
goto Fail;
}
++n;
break;
case PY_ITERSEARCH_INDEX:
if (wrapped) {
PyErr_SetString(PyExc_OverflowError,
"index exceeds C integer size");
goto Fail;
}
goto Done;
case PY_ITERSEARCH_CONTAINS:
n = 1;
goto Done;
default:
assert(!"unknown operation");
}
}
if (operation == PY_ITERSEARCH_INDEX) {
if (n == PY_SSIZE_T_MAX)
wrapped = 1;
++n;
}
}
if (operation != PY_ITERSEARCH_INDEX)
goto Done;
PyErr_SetString(PyExc_ValueError,
"sequence.index(x): x not in sequence");
/* fall into failure code */
Fail:
n = -1;
/* fall through */
Done:
Py_DECREF(it);
return n;
}
/* Return # of times o appears in s. */
Py_ssize_t
PySequence_Count(PyObject *s, PyObject *o)
{
return _PySequence_IterSearch(s, o, PY_ITERSEARCH_COUNT);
}
/* Return -1 if error; 1 if ob in seq; 0 if ob not in seq.
* Use sq_contains if possible, else defer to _PySequence_IterSearch().
*/
int
PySequence_Contains(PyObject *seq, PyObject *ob)
{
Py_ssize_t result;
PySequenceMethods *sqm = seq->ob_type->tp_as_sequence;
if (sqm != NULL && sqm->sq_contains != NULL)
return (*sqm->sq_contains)(seq, ob);
result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS);
return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
}
/* Backwards compatibility */
#undef PySequence_In
int
PySequence_In(PyObject *w, PyObject *v)
{
return PySequence_Contains(w, v);
}
Py_ssize_t
PySequence_Index(PyObject *s, PyObject *o)
{
return _PySequence_IterSearch(s, o, PY_ITERSEARCH_INDEX);
}
/* Operations on mappings */
int
PyMapping_Check(PyObject *o)
{
return o && o->ob_type->tp_as_mapping &&
o->ob_type->tp_as_mapping->mp_subscript;
}
Py_ssize_t
PyMapping_Size(PyObject *o)
{
PyMappingMethods *m;
if (o == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_mapping;
if (m && m->mp_length)
return m->mp_length(o);
type_error("object of type '%.200s' has no len()", o);
return -1;
}
#undef PyMapping_Length
Py_ssize_t
PyMapping_Length(PyObject *o)
{
return PyMapping_Size(o);
}
#define PyMapping_Length PyMapping_Size
PyObject *
PyMapping_GetItemString(PyObject *o, const char *key)
{
PyObject *okey, *r;
if (key == NULL)
return null_error();
okey = PyUnicode_FromString(key);
if (okey == NULL)
return NULL;
r = PyObject_GetItem(o, okey);
Py_DECREF(okey);
return r;
}
int
PyMapping_SetItemString(PyObject *o, const char *key, PyObject *value)
{
PyObject *okey;
int r;
if (key == NULL) {
null_error();
return -1;
}
okey = PyUnicode_FromString(key);
if (okey == NULL)
return -1;
r = PyObject_SetItem(o, okey, value);
Py_DECREF(okey);
return r;
}
int
PyMapping_HasKeyString(PyObject *o, const char *key)
{
PyObject *v;
v = PyMapping_GetItemString(o, key);
if (v) {
Py_DECREF(v);
return 1;
}
PyErr_Clear();
return 0;
}
int
PyMapping_HasKey(PyObject *o, PyObject *key)
{
PyObject *v;
v = PyObject_GetItem(o, key);
if (v) {
Py_DECREF(v);
return 1;
}
PyErr_Clear();
return 0;
}
PyObject *
PyMapping_Keys(PyObject *o)
{
PyObject *keys;
PyObject *fast;
_Py_IDENTIFIER(keys);
if (PyDict_CheckExact(o))
return PyDict_Keys(o);
keys = _PyObject_CallMethodId(o, &PyId_keys, NULL);
if (keys == NULL)
return NULL;
fast = PySequence_Fast(keys, "o.keys() are not iterable");
Py_DECREF(keys);
return fast;
}
PyObject *
PyMapping_Items(PyObject *o)
{
PyObject *items;
PyObject *fast;
_Py_IDENTIFIER(items);
if (PyDict_CheckExact(o))
return PyDict_Items(o);
items = _PyObject_CallMethodId(o, &PyId_items, NULL);
if (items == NULL)
return NULL;
fast = PySequence_Fast(items, "o.items() are not iterable");
Py_DECREF(items);
return fast;
}
PyObject *
PyMapping_Values(PyObject *o)
{
PyObject *values;
PyObject *fast;
_Py_IDENTIFIER(values);
if (PyDict_CheckExact(o))
return PyDict_Values(o);
values = _PyObject_CallMethodId(o, &PyId_values, NULL);
if (values == NULL)
return NULL;
fast = PySequence_Fast(values, "o.values() are not iterable");
Py_DECREF(values);
return fast;
}
/* Operations on callable objects */
/* XXX PyCallable_Check() is in object.c */
PyObject *
PyObject_CallObject(PyObject *o, PyObject *a)
{
return PyEval_CallObjectWithKeywords(o, a, NULL);
}
PyObject*
_Py_CheckFunctionResult(PyObject *func, PyObject *result, const char *where)
{
int err_occurred = (PyErr_Occurred() != NULL);
assert((func != NULL) ^ (where != NULL));
if (result == NULL) {
if (!err_occurred) {
if (func)
PyErr_Format(PyExc_SystemError,
"%R returned NULL without setting an error",
func);
else
PyErr_Format(PyExc_SystemError,
"%s returned NULL without setting an error",
where);
#ifdef Py_DEBUG
/* Ensure that the bug is catched in debug mode */
Py_FatalError("a function returned NULL without setting an error");
#endif
return NULL;
}
}
else {
if (err_occurred) {
PyObject *exc, *val, *tb;
PyErr_Fetch(&exc, &val, &tb);
Py_DECREF(result);
if (func)
PyErr_Format(PyExc_SystemError,
"%R returned a result with an error set",
func);
else
PyErr_Format(PyExc_SystemError,
"%s returned a result with an error set",
where);
_PyErr_ChainExceptions(exc, val, tb);
#ifdef Py_DEBUG
/* Ensure that the bug is catched in debug mode */
Py_FatalError("a function returned a result with an error set");
#endif
return NULL;
}
}
return result;
}
PyObject *
PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw)
{
ternaryfunc call;
PyObject *result;
/* PyObject_Call() must not be called with an exception set,
because it may clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
call = func->ob_type->tp_call;
if (call == NULL) {
PyErr_Format(PyExc_TypeError, "'%.200s' object is not callable",
func->ob_type->tp_name);
return NULL;
}
if (Py_EnterRecursiveCall(" while calling a Python object"))
return NULL;
result = (*call)(func, arg, kw);
Py_LeaveRecursiveCall();
return _Py_CheckFunctionResult(func, result, NULL);
}
static PyObject*
call_function_tail(PyObject *callable, PyObject *args)
{
PyObject *retval;
if (args == NULL)
return NULL;
if (!PyTuple_Check(args)) {
PyObject *a;
a = PyTuple_New(1);
if (a == NULL) {
Py_DECREF(args);
return NULL;
}
PyTuple_SET_ITEM(a, 0, args);
args = a;
}
retval = PyObject_Call(callable, args, NULL);
Py_DECREF(args);
return retval;
}
PyObject *
PyObject_CallFunction(PyObject *callable, const char *format, ...)
{
va_list va;
PyObject *args;
if (callable == NULL)
return null_error();
if (format && *format) {
va_start(va, format);
args = Py_VaBuildValue(format, va);
va_end(va);
}
else
args = PyTuple_New(0);
if (args == NULL)
return NULL;
return call_function_tail(callable, args);
}
PyObject *
_PyObject_CallFunction_SizeT(PyObject *callable, const char *format, ...)
{
va_list va;
PyObject *args;
if (callable == NULL)
return null_error();
if (format && *format) {
va_start(va, format);
args = _Py_VaBuildValue_SizeT(format, va);
va_end(va);
}
else
args = PyTuple_New(0);
return call_function_tail(callable, args);
}
static PyObject*
callmethod(PyObject* func, const char *format, va_list va, int is_size_t)
{
PyObject *retval = NULL;
PyObject *args;
if (!PyCallable_Check(func)) {
type_error("attribute of type '%.200s' is not callable", func);
goto exit;
}
if (format && *format) {
if (is_size_t)
args = _Py_VaBuildValue_SizeT(format, va);
else
args = Py_VaBuildValue(format, va);
}
else
args = PyTuple_New(0);
retval = call_function_tail(func, args);
exit:
/* args gets consumed in call_function_tail */
Py_XDECREF(func);
return retval;
}
PyObject *
PyObject_CallMethod(PyObject *o, const char *name, const char *format, ...)
{
va_list va;
PyObject *func = NULL;
PyObject *retval = NULL;
if (o == NULL || name == NULL)
return null_error();
func = PyObject_GetAttrString(o, name);
if (func == NULL)
return NULL;
va_start(va, format);
retval = callmethod(func, format, va, 0);
va_end(va);
return retval;
}
PyObject *
_PyObject_CallMethodId(PyObject *o, _Py_Identifier *name,
const char *format, ...)
{
va_list va;
PyObject *func = NULL;
PyObject *retval = NULL;
if (o == NULL || name == NULL)
return null_error();
func = _PyObject_GetAttrId(o, name);
if (func == NULL)
return NULL;
va_start(va, format);
retval = callmethod(func, format, va, 0);
va_end(va);
return retval;
}
PyObject *
_PyObject_CallMethod_SizeT(PyObject *o, const char *name,
const char *format, ...)
{
va_list va;
PyObject *func = NULL;
PyObject *retval;
if (o == NULL || name == NULL)
return null_error();
func = PyObject_GetAttrString(o, name);
if (func == NULL)
return NULL;
va_start(va, format);
retval = callmethod(func, format, va, 1);
va_end(va);
return retval;
}
PyObject *
_PyObject_CallMethodId_SizeT(PyObject *o, _Py_Identifier *name,
const char *format, ...)
{
va_list va;
PyObject *func = NULL;
PyObject *retval;
if (o == NULL || name == NULL)
return null_error();
func = _PyObject_GetAttrId(o, name);
if (func == NULL) {
return NULL;
}
va_start(va, format);
retval = callmethod(func, format, va, 1);
va_end(va);
return retval;
}
static PyObject *
objargs_mktuple(va_list va)
{
int i, n = 0;
va_list countva;
PyObject *result, *tmp;
Py_VA_COPY(countva, va);
while (((PyObject *)va_arg(countva, PyObject *)) != NULL)
++n;
result = PyTuple_New(n);
if (result != NULL && n > 0) {
for (i = 0; i < n; ++i) {
tmp = (PyObject *)va_arg(va, PyObject *);
PyTuple_SET_ITEM(result, i, tmp);
Py_INCREF(tmp);
}
}
return result;
}
PyObject *
PyObject_CallMethodObjArgs(PyObject *callable, PyObject *name, ...)
{
PyObject *args, *tmp;
va_list vargs;
if (callable == NULL || name == NULL)
return null_error();
callable = PyObject_GetAttr(callable, name);
if (callable == NULL)
return NULL;
/* count the args */
va_start(vargs, name);
args = objargs_mktuple(vargs);
va_end(vargs);
if (args == NULL) {
Py_DECREF(callable);
return NULL;
}
tmp = PyObject_Call(callable, args, NULL);
Py_DECREF(args);
Py_DECREF(callable);
return tmp;
}
PyObject *
_PyObject_CallMethodIdObjArgs(PyObject *callable,
struct _Py_Identifier *name, ...)
{
PyObject *args, *tmp;
va_list vargs;
if (callable == NULL || name == NULL)
return null_error();
callable = _PyObject_GetAttrId(callable, name);
if (callable == NULL)
return NULL;
/* count the args */
va_start(vargs, name);
args = objargs_mktuple(vargs);
va_end(vargs);
if (args == NULL) {
Py_DECREF(callable);
return NULL;
}
tmp = PyObject_Call(callable, args, NULL);
Py_DECREF(args);
Py_DECREF(callable);
return tmp;
}
PyObject *
PyObject_CallFunctionObjArgs(PyObject *callable, ...)
{
PyObject *args, *tmp;
va_list vargs;
if (callable == NULL)
return null_error();
/* count the args */
va_start(vargs, callable);
args = objargs_mktuple(vargs);
va_end(vargs);
if (args == NULL)
return NULL;
tmp = PyObject_Call(callable, args, NULL);
Py_DECREF(args);
return tmp;
}
/* isinstance(), issubclass() */
/* abstract_get_bases() has logically 4 return states:
*
* 1. getattr(cls, '__bases__') could raise an AttributeError
* 2. getattr(cls, '__bases__') could raise some other exception
* 3. getattr(cls, '__bases__') could return a tuple
* 4. getattr(cls, '__bases__') could return something other than a tuple
*
* Only state #3 is a non-error state and only it returns a non-NULL object
* (it returns the retrieved tuple).
*
* Any raised AttributeErrors are masked by clearing the exception and
* returning NULL. If an object other than a tuple comes out of __bases__,
* then again, the return value is NULL. So yes, these two situations
* produce exactly the same results: NULL is returned and no error is set.
*
* If some exception other than AttributeError is raised, then NULL is also
* returned, but the exception is not cleared. That's because we want the
* exception to be propagated along.
*
* Callers are expected to test for PyErr_Occurred() when the return value
* is NULL to decide whether a valid exception should be propagated or not.
* When there's no exception to propagate, it's customary for the caller to
* set a TypeError.
*/
static PyObject *
abstract_get_bases(PyObject *cls)
{
_Py_IDENTIFIER(__bases__);
PyObject *bases;
Py_ALLOW_RECURSION
bases = _PyObject_GetAttrId(cls, &PyId___bases__);
Py_END_ALLOW_RECURSION
if (bases == NULL) {
if (PyErr_ExceptionMatches(PyExc_AttributeError))
PyErr_Clear();
return NULL;
}
if (!PyTuple_Check(bases)) {
Py_DECREF(bases);
return NULL;
}
return bases;
}
static int
abstract_issubclass(PyObject *derived, PyObject *cls)
{
PyObject *bases = NULL;
Py_ssize_t i, n;
int r = 0;
while (1) {
if (derived == cls)
return 1;
bases = abstract_get_bases(derived);
if (bases == NULL) {
if (PyErr_Occurred())
return -1;
return 0;
}
n = PyTuple_GET_SIZE(bases);
if (n == 0) {
Py_DECREF(bases);
return 0;
}
/* Avoid recursivity in the single inheritance case */
if (n == 1) {
derived = PyTuple_GET_ITEM(bases, 0);
Py_DECREF(bases);
continue;
}
for (i = 0; i < n; i++) {
r = abstract_issubclass(PyTuple_GET_ITEM(bases, i), cls);
if (r != 0)
break;
}
Py_DECREF(bases);
return r;
}
}
static int
check_class(PyObject *cls, const char *error)
{
PyObject *bases = abstract_get_bases(cls);
if (bases == NULL) {
/* Do not mask errors. */
if (!PyErr_Occurred())
PyErr_SetString(PyExc_TypeError, error);
return 0;
}
Py_DECREF(bases);
return -1;
}
static int
recursive_isinstance(PyObject *inst, PyObject *cls)
{
PyObject *icls;
int retval = 0;
_Py_IDENTIFIER(__class__);
if (PyType_Check(cls)) {
retval = PyObject_TypeCheck(inst, (PyTypeObject *)cls);
if (retval == 0) {
PyObject *c = _PyObject_GetAttrId(inst, &PyId___class__);
if (c == NULL) {
if (PyErr_ExceptionMatches(PyExc_AttributeError))
PyErr_Clear();
else
retval = -1;
}
else {
if (c != (PyObject *)(inst->ob_type) &&
PyType_Check(c))
retval = PyType_IsSubtype(
(PyTypeObject *)c,
(PyTypeObject *)cls);
Py_DECREF(c);
}
}
}
else {
if (!check_class(cls,
"isinstance() arg 2 must be a type or tuple of types"))
return -1;
icls = _PyObject_GetAttrId(inst, &PyId___class__);
if (icls == NULL) {
if (PyErr_ExceptionMatches(PyExc_AttributeError))
PyErr_Clear();
else
retval = -1;
}
else {
retval = abstract_issubclass(icls, cls);
Py_DECREF(icls);
}
}
return retval;
}
int
PyObject_IsInstance(PyObject *inst, PyObject *cls)
{
_Py_IDENTIFIER(__instancecheck__);
PyObject *checker;
/* Quick test for an exact match */
if (Py_TYPE(inst) == (PyTypeObject *)cls)
return 1;
/* We know what type's __instancecheck__ does. */
if (PyType_CheckExact(cls)) {
return recursive_isinstance(inst, cls);
}
if (PyTuple_Check(cls)) {
Py_ssize_t i;
Py_ssize_t n;
int r = 0;
if (Py_EnterRecursiveCall(" in __instancecheck__"))
return -1;
n = PyTuple_GET_SIZE(cls);
for (i = 0; i < n; ++i) {
PyObject *item = PyTuple_GET_ITEM(cls, i);
r = PyObject_IsInstance(inst, item);
if (r != 0)
/* either found it, or got an error */
break;
}
Py_LeaveRecursiveCall();
return r;
}
checker = _PyObject_LookupSpecial(cls, &PyId___instancecheck__);
if (checker != NULL) {
PyObject *res;
int ok = -1;
if (Py_EnterRecursiveCall(" in __instancecheck__")) {
Py_DECREF(checker);
return ok;
}
res = PyObject_CallFunctionObjArgs(checker, inst, NULL);
Py_LeaveRecursiveCall();
Py_DECREF(checker);
if (res != NULL) {
ok = PyObject_IsTrue(res);
Py_DECREF(res);
}
return ok;
}
else if (PyErr_Occurred())
return -1;
/* Probably never reached anymore. */
return recursive_isinstance(inst, cls);
}
static int
recursive_issubclass(PyObject *derived, PyObject *cls)
{
if (PyType_Check(cls) && PyType_Check(derived)) {
/* Fast path (non-recursive) */
return PyType_IsSubtype((PyTypeObject *)derived, (PyTypeObject *)cls);
}
if (!check_class(derived,
"issubclass() arg 1 must be a class"))
return -1;
if (!check_class(cls,
"issubclass() arg 2 must be a class"
" or tuple of classes"))
return -1;
return abstract_issubclass(derived, cls);
}
int
PyObject_IsSubclass(PyObject *derived, PyObject *cls)
{
_Py_IDENTIFIER(__subclasscheck__);
PyObject *checker;
/* We know what type's __subclasscheck__ does. */
if (PyType_CheckExact(cls)) {
/* Quick test for an exact match */
if (derived == cls)
return 1;
return recursive_issubclass(derived, cls);
}
if (PyTuple_Check(cls)) {
Py_ssize_t i;
Py_ssize_t n;
int r = 0;
if (Py_EnterRecursiveCall(" in __subclasscheck__"))
return -1;
n = PyTuple_GET_SIZE(cls);
for (i = 0; i < n; ++i) {
PyObject *item = PyTuple_GET_ITEM(cls, i);
r = PyObject_IsSubclass(derived, item);
if (r != 0)
/* either found it, or got an error */
break;
}
Py_LeaveRecursiveCall();
return r;
}
checker = _PyObject_LookupSpecial(cls, &PyId___subclasscheck__);
if (checker != NULL) {
PyObject *res;
int ok = -1;
if (Py_EnterRecursiveCall(" in __subclasscheck__")) {
Py_DECREF(checker);
return ok;
}
res = PyObject_CallFunctionObjArgs(checker, derived, NULL);
Py_LeaveRecursiveCall();
Py_DECREF(checker);
if (res != NULL) {
ok = PyObject_IsTrue(res);
Py_DECREF(res);
}
return ok;
}
else if (PyErr_Occurred())
return -1;
/* Probably never reached anymore. */
return recursive_issubclass(derived, cls);
}
int
_PyObject_RealIsInstance(PyObject *inst, PyObject *cls)
{
return recursive_isinstance(inst, cls);
}
int
_PyObject_RealIsSubclass(PyObject *derived, PyObject *cls)
{
return recursive_issubclass(derived, cls);
}
PyObject *
PyObject_GetIter(PyObject *o)
{
PyTypeObject *t = o->ob_type;
getiterfunc f = NULL;
f = t->tp_iter;
if (f == NULL) {
if (PySequence_Check(o))
return PySeqIter_New(o);
return type_error("'%.200s' object is not iterable", o);
}
else {
PyObject *res = (*f)(o);
if (res != NULL && !PyIter_Check(res)) {
PyErr_Format(PyExc_TypeError,
"iter() returned non-iterator "
"of type '%.100s'",
res->ob_type->tp_name);
Py_DECREF(res);
res = NULL;
}
return res;
}
}
/* Return next item.
* If an error occurs, return NULL. PyErr_Occurred() will be true.
* If the iteration terminates normally, return NULL and clear the
* PyExc_StopIteration exception (if it was set). PyErr_Occurred()
* will be false.
* Else return the next object. PyErr_Occurred() will be false.
*/
PyObject *
PyIter_Next(PyObject *iter)
{
PyObject *result;
result = (*iter->ob_type->tp_iternext)(iter);
if (result == NULL &&
PyErr_Occurred() &&
PyErr_ExceptionMatches(PyExc_StopIteration))
PyErr_Clear();
return result;
}
/*
* Flatten a sequence of bytes() objects into a C array of
* NULL terminated string pointers with a NULL char* terminating the array.
* (ie: an argv or env list)
*
* Memory allocated for the returned list is allocated using PyMem_Malloc()
* and MUST be freed by _Py_FreeCharPArray().
*/
char *const *
_PySequence_BytesToCharpArray(PyObject* self)
{
char **array;
Py_ssize_t i, argc;
PyObject *item = NULL;
Py_ssize_t size;
argc = PySequence_Size(self);
if (argc == -1)
return NULL;
assert(argc >= 0);
if ((size_t)argc > (PY_SSIZE_T_MAX-sizeof(char *)) / sizeof(char *)) {
PyErr_NoMemory();
return NULL;
}
array = PyMem_Malloc((argc + 1) * sizeof(char *));
if (array == NULL) {
PyErr_NoMemory();
return NULL;
}
for (i = 0; i < argc; ++i) {
char *data;
item = PySequence_GetItem(self, i);
if (item == NULL) {
/* NULL terminate before freeing. */
array[i] = NULL;
goto fail;
}
data = PyBytes_AsString(item);
if (data == NULL) {
/* NULL terminate before freeing. */
array[i] = NULL;
goto fail;
}
size = PyBytes_GET_SIZE(item) + 1;
array[i] = PyMem_Malloc(size);
if (!array[i]) {
PyErr_NoMemory();
goto fail;
}
memcpy(array[i], data, size);
Py_DECREF(item);
}
array[argc] = NULL;
return array;
fail:
Py_XDECREF(item);
_Py_FreeCharPArray(array);
return NULL;
}
/* Free's a NULL terminated char** array of C strings. */
void
_Py_FreeCharPArray(char *const array[])
{
Py_ssize_t i;
for (i = 0; array[i] != NULL; ++i) {
PyMem_Free(array[i]);
}
PyMem_Free((void*)array);
}