| /* Complex object implementation */ |
| |
| /* Borrows heavily from floatobject.c */ |
| |
| #ifndef WITHOUT_COMPLEX |
| |
| #include "allobjects.h" |
| #include "modsupport.h" |
| |
| #include <errno.h> |
| #include "mymath.h" |
| |
| #ifdef i860 |
| /* Cray APP has bogus definition of HUGE_VAL in <math.h> */ |
| #undef HUGE_VAL |
| #endif |
| |
| #ifdef HUGE_VAL |
| #define CHECK(x) if (errno != 0) ; \ |
| else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \ |
| else errno = ERANGE |
| #else |
| #define CHECK(x) /* Don't know how to check */ |
| #endif |
| |
| #ifdef HAVE_LIMITS_H |
| #include <limits.h> |
| #endif |
| |
| #ifndef LONG_MAX |
| #define LONG_MAX 0X7FFFFFFFL |
| #endif |
| |
| #ifndef LONG_MIN |
| #define LONG_MIN (-LONG_MAX-1) |
| #endif |
| |
| #ifdef __NeXT__ |
| #ifdef __sparc__ |
| /* |
| * This works around a bug in the NS/Sparc 3.3 pre-release |
| * limits.h header file. |
| * 10-Feb-1995 bwarsaw@cnri.reston.va.us |
| */ |
| #undef LONG_MIN |
| #define LONG_MIN (-LONG_MAX-1) |
| #endif |
| #endif |
| |
| #if !defined(__STDC__) && !defined(macintosh) |
| extern double fmod PROTO((double, double)); |
| extern double pow PROTO((double, double)); |
| #endif |
| |
| |
| /* elementary operations on complex numbers */ |
| |
| static int c_error; |
| static Py_complex c_1 = {1., 0.}; |
| |
| Py_complex c_sum(a,b) |
| Py_complex a,b; |
| { |
| Py_complex r; |
| r.real = a.real + b.real; |
| r.imag = a.imag + b.imag; |
| return r; |
| } |
| |
| Py_complex c_diff(a,b) |
| Py_complex a,b; |
| { |
| Py_complex r; |
| r.real = a.real - b.real; |
| r.imag = a.imag - b.imag; |
| return r; |
| } |
| |
| Py_complex c_neg(a) |
| Py_complex a; |
| { |
| Py_complex r; |
| r.real = -a.real; |
| r.imag = -a.imag; |
| return r; |
| } |
| |
| Py_complex c_prod(a,b) |
| Py_complex a,b; |
| { |
| Py_complex r; |
| r.real = a.real*b.real - a.imag*b.imag; |
| r.imag = a.real*b.imag + a.imag*b.real; |
| return r; |
| } |
| |
| Py_complex c_quot(a,b) |
| Py_complex a,b; |
| { |
| Py_complex r; |
| double d = b.real*b.real + b.imag*b.imag; |
| if (d == 0.) |
| c_error = 1; |
| r.real = (a.real*b.real + a.imag*b.imag)/d; |
| r.imag = (a.imag*b.real - a.real*b.imag)/d; |
| return r; |
| } |
| |
| Py_complex c_pow(a,b) |
| Py_complex a,b; |
| { |
| Py_complex r; |
| double vabs,len,at,phase; |
| if (b.real == 0. && b.imag == 0.) { |
| r.real = 1.; |
| r.imag = 0.; |
| } |
| else if (a.real == 0. && a.imag == 0.) { |
| if (b.imag != 0. || b.real < 0.) |
| c_error = 2; |
| r.real = 0.; |
| r.imag = 0.; |
| } |
| else { |
| vabs = hypot(a.real,a.imag); |
| len = pow(vabs,b.real); |
| at = atan2(a.imag, a.real); |
| phase = at*b.real; |
| if (b.imag != 0.0) { |
| len /= exp(at*b.imag); |
| phase += b.imag*log(vabs); |
| } |
| r.real = len*cos(phase); |
| r.imag = len*sin(phase); |
| } |
| return r; |
| } |
| |
| static Py_complex c_powu(x, n) |
| Py_complex x; |
| long n; |
| { |
| Py_complex r, p; |
| long mask = 1; |
| r = c_1; |
| p = x; |
| while (mask > 0 && n >= mask) { |
| if (n & mask) |
| r = c_prod(r,p); |
| mask <<= 1; |
| p = c_prod(p,p); |
| } |
| return r; |
| } |
| |
| static Py_complex c_powi(x, n) |
| Py_complex x; |
| long n; |
| { |
| Py_complex cn; |
| |
| if (n > 100 || n < -100) { |
| cn.real = (double) n; |
| cn.imag = 0.; |
| return c_pow(x,cn); |
| } |
| else if (n > 0) |
| return c_powu(x,n); |
| else |
| return c_quot(c_1,c_powu(x,-n)); |
| |
| } |
| |
| PyObject * |
| PyComplex_FromCComplex(cval) |
| Py_complex cval; |
| { |
| register complexobject *op = |
| (complexobject *) malloc(sizeof(complexobject)); |
| if (op == NULL) |
| return err_nomem(); |
| op->ob_type = &Complextype; |
| op->cval = cval; |
| NEWREF(op); |
| return (object *) op; |
| } |
| |
| PyObject * |
| PyComplex_FromDoubles(real, imag) |
| double real, imag; |
| { |
| Py_complex c; |
| c.real = real; |
| c.imag = imag; |
| return PyComplex_FromCComplex(c); |
| } |
| |
| double |
| PyComplex_RealAsDouble(op) |
| PyObject *op; |
| { |
| if (PyComplex_Check(op)) { |
| return ((PyComplexObject *)op)->cval.real; |
| } else { |
| return PyFloat_AsDouble(op); |
| } |
| } |
| |
| double |
| PyComplex_ImagAsDouble(op) |
| PyObject *op; |
| { |
| if (PyComplex_Check(op)) { |
| return ((PyComplexObject *)op)->cval.imag; |
| } else { |
| return 0.0; |
| } |
| } |
| |
| Py_complex |
| PyComplex_AsCComplex(op) |
| PyObject *op; |
| { |
| Py_complex cv; |
| if (PyComplex_Check(op)) { |
| return ((PyComplexObject *)op)->cval; |
| } else { |
| cv.real = PyFloat_AsDouble(op); |
| cv.imag = 0.; |
| return cv; |
| } |
| } |
| |
| static void |
| complex_dealloc(op) |
| object *op; |
| { |
| DEL(op); |
| } |
| |
| |
| static void |
| complex_buf_repr(buf, v) |
| char *buf; |
| complexobject *v; |
| { |
| if (v->cval.real == 0.) |
| sprintf(buf, "%.12gj", v->cval.imag); |
| else |
| sprintf(buf, "(%.12g%+.12gj)", v->cval.real, v->cval.imag); |
| } |
| |
| static int |
| complex_print(v, fp, flags) |
| complexobject *v; |
| FILE *fp; |
| int flags; /* Not used but required by interface */ |
| { |
| char buf[100]; |
| complex_buf_repr(buf, v); |
| fputs(buf, fp); |
| return 0; |
| } |
| |
| static object * |
| complex_repr(v) |
| complexobject *v; |
| { |
| char buf[100]; |
| complex_buf_repr(buf, v); |
| return newstringobject(buf); |
| } |
| |
| static int |
| complex_compare(v, w) |
| complexobject *v, *w; |
| { |
| /* Note: "greater" and "smaller" have no meaning for complex numbers, |
| but Python requires that they be defined nevertheless. */ |
| Py_complex i, j; |
| i = v->cval; |
| j = w->cval; |
| if (i.real == j.real && i.imag == j.imag) |
| return 0; |
| else if (i.real != j.real) |
| return (i.real < j.real) ? -1 : 1; |
| else |
| return (i.imag < j.imag) ? -1 : 1; |
| } |
| |
| static long |
| complex_hash(v) |
| complexobject *v; |
| { |
| double intpart, fractpart; |
| int expo; |
| long x; |
| /* This is designed so that Python numbers with the same |
| value hash to the same value, otherwise comparisons |
| of mapping keys will turn out weird */ |
| |
| #ifdef MPW /* MPW C modf expects pointer to extended as second argument */ |
| { |
| extended e; |
| fractpart = modf(v->cval.real, &e); |
| intpart = e; |
| } |
| #else |
| fractpart = modf(v->cval.real, &intpart); |
| #endif |
| |
| if (fractpart == 0.0) { |
| if (intpart > 0x7fffffffL || -intpart > 0x7fffffffL) { |
| /* Convert to long int and use its hash... */ |
| object *w = dnewlongobject(v->cval.real); |
| if (w == NULL) |
| return -1; |
| x = hashobject(w); |
| DECREF(w); |
| return x; |
| } |
| x = (long)intpart; |
| } |
| else { |
| fractpart = frexp(fractpart, &expo); |
| fractpart = fractpart*2147483648.0; /* 2**31 */ |
| x = (long) (intpart + fractpart) ^ expo; /* Rather arbitrary */ |
| } |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| |
| static object * |
| complex_add(v, w) |
| complexobject *v; |
| complexobject *w; |
| { |
| return newcomplexobject(c_sum(v->cval,w->cval)); |
| } |
| |
| static object * |
| complex_sub(v, w) |
| complexobject *v; |
| complexobject *w; |
| { |
| return newcomplexobject(c_diff(v->cval,w->cval)); |
| } |
| |
| static object * |
| complex_mul(v, w) |
| complexobject *v; |
| complexobject *w; |
| { |
| return newcomplexobject(c_prod(v->cval,w->cval)); |
| } |
| |
| static object * |
| complex_div(v, w) |
| complexobject *v; |
| complexobject *w; |
| { |
| Py_complex quot; |
| c_error = 0; |
| quot = c_quot(v->cval,w->cval); |
| if (c_error == 1) { |
| err_setstr(ZeroDivisionError, "complex division"); |
| return NULL; |
| } |
| return newcomplexobject(quot); |
| } |
| |
| static object * |
| complex_remainder(v, w) |
| complexobject *v; |
| complexobject *w; |
| { |
| Py_complex div, mod; |
| c_error = 0; |
| div = c_quot(v->cval,w->cval); /* The raw divisor value. */ |
| if (c_error == 1) { |
| err_setstr(ZeroDivisionError, "complex remainder"); |
| return NULL; |
| } |
| div.real = floor(div.real); /* Use the floor of the real part. */ |
| div.imag = 0.0; |
| mod = c_diff(v->cval, c_prod(w->cval, div)); |
| |
| return newcomplexobject(mod); |
| } |
| |
| |
| static object * |
| complex_divmod(v, w) |
| complexobject *v; |
| complexobject *w; |
| { |
| Py_complex div, mod; |
| PyObject *d, *m, *z; |
| c_error = 0; |
| div = c_quot(v->cval,w->cval); /* The raw divisor value. */ |
| if (c_error == 1) { |
| err_setstr(ZeroDivisionError, "complex divmod()"); |
| return NULL; |
| } |
| div.real = floor(div.real); /* Use the floor of the real part. */ |
| div.imag = 0.0; |
| mod = c_diff(v->cval, c_prod(w->cval, div)); |
| d = newcomplexobject(div); |
| m = newcomplexobject(mod); |
| z = mkvalue("(OO)", d, m); |
| Py_XDECREF(d); |
| Py_XDECREF(m); |
| return z; |
| } |
| |
| static object * |
| complex_pow(v, w, z) |
| complexobject *v; |
| object *w; |
| complexobject *z; |
| { |
| Py_complex p; |
| Py_complex exponent; |
| long int_exponent; |
| |
| if ((object *)z!=None) { |
| err_setstr(ValueError, "complex modulo"); |
| return NULL; |
| } |
| |
| c_error = 0; |
| exponent = ((complexobject*)w)->cval; |
| int_exponent = (long)exponent.real; |
| if (exponent.imag == 0. && exponent.real == int_exponent) |
| p = c_powi(v->cval,int_exponent); |
| else |
| p = c_pow(v->cval,exponent); |
| |
| if (c_error == 2) { |
| err_setstr(ValueError, "0.0 to a negative or complex power"); |
| return NULL; |
| } |
| |
| return newcomplexobject(p); |
| } |
| |
| static object * |
| complex_neg(v) |
| complexobject *v; |
| { |
| Py_complex neg; |
| neg.real = -v->cval.real; |
| neg.imag = -v->cval.imag; |
| return newcomplexobject(neg); |
| } |
| |
| static object * |
| complex_pos(v) |
| complexobject *v; |
| { |
| INCREF(v); |
| return (object *)v; |
| } |
| |
| static object * |
| complex_abs(v) |
| complexobject *v; |
| { |
| return newfloatobject(hypot(v->cval.real,v->cval.imag)); |
| } |
| |
| static int |
| complex_nonzero(v) |
| complexobject *v; |
| { |
| return v->cval.real != 0.0 && v->cval.imag != 0.0; |
| } |
| |
| static int |
| complex_coerce(pv, pw) |
| object **pv; |
| object **pw; |
| { |
| Py_complex cval; |
| cval.imag = 0.; |
| if (is_intobject(*pw)) { |
| cval.real = (double)getintvalue(*pw); |
| *pw = newcomplexobject(cval); |
| INCREF(*pv); |
| return 0; |
| } |
| else if (is_longobject(*pw)) { |
| cval.real = dgetlongvalue(*pw); |
| *pw = newcomplexobject(cval); |
| INCREF(*pv); |
| return 0; |
| } |
| else if (is_floatobject(*pw)) { |
| cval.real = getfloatvalue(*pw); |
| *pw = newcomplexobject(cval); |
| INCREF(*pv); |
| return 0; |
| } |
| return 1; /* Can't do it */ |
| } |
| |
| static object * |
| complex_int(v) |
| object *v; |
| { |
| err_setstr(TypeError, |
| "can't convert complex to int; use e.g. int(abs(z))"); |
| return NULL; |
| } |
| |
| static object * |
| complex_long(v) |
| object *v; |
| { |
| err_setstr(TypeError, |
| "can't convert complex to long; use e.g. long(abs(z))"); |
| return NULL; |
| } |
| |
| static object * |
| complex_float(v) |
| object *v; |
| { |
| err_setstr(TypeError, |
| "can't convert complex to float; use e.g. abs(z)"); |
| return NULL; |
| } |
| |
| static object * |
| complex_conjugate(self) |
| object *self; |
| { |
| Py_complex c; |
| c = ((complexobject *)self)->cval; |
| c.imag = -c.imag; |
| return newcomplexobject(c); |
| } |
| |
| static PyMethodDef complex_methods[] = { |
| {"conjugate", (PyCFunction)complex_conjugate, 1}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| |
| static object * |
| complex_getattr(self, name) |
| complexobject *self; |
| char *name; |
| { |
| Py_complex cval; |
| if (strcmp(name, "real") == 0) |
| return (object *)newfloatobject(self->cval.real); |
| else if (strcmp(name, "imag") == 0) |
| return (object *)newfloatobject(self->cval.imag); |
| else if (strcmp(name, "conj") == 0) { |
| cval.real = self->cval.real; |
| cval.imag = -self->cval.imag; |
| return (object *)newcomplexobject(cval); |
| } |
| return findmethod(complex_methods, (object *)self, name); |
| } |
| |
| static number_methods complex_as_number = { |
| (binaryfunc)complex_add, /*nb_add*/ |
| (binaryfunc)complex_sub, /*nb_subtract*/ |
| (binaryfunc)complex_mul, /*nb_multiply*/ |
| (binaryfunc)complex_div, /*nb_divide*/ |
| (binaryfunc)complex_remainder, /*nb_remainder*/ |
| (binaryfunc)complex_divmod, /*nb_divmod*/ |
| (ternaryfunc)complex_pow, /*nb_power*/ |
| (unaryfunc)complex_neg, /*nb_negative*/ |
| (unaryfunc)complex_pos, /*nb_positive*/ |
| (unaryfunc)complex_abs, /*nb_absolute*/ |
| (inquiry)complex_nonzero, /*nb_nonzero*/ |
| 0, /*nb_invert*/ |
| 0, /*nb_lshift*/ |
| 0, /*nb_rshift*/ |
| 0, /*nb_and*/ |
| 0, /*nb_xor*/ |
| 0, /*nb_or*/ |
| (coercion)complex_coerce, /*nb_coerce*/ |
| (unaryfunc)complex_int, /*nb_int*/ |
| (unaryfunc)complex_long, /*nb_long*/ |
| (unaryfunc)complex_float, /*nb_float*/ |
| 0, /*nb_oct*/ |
| 0, /*nb_hex*/ |
| }; |
| |
| typeobject Complextype = { |
| OB_HEAD_INIT(&Typetype) |
| 0, |
| "complex", |
| sizeof(complexobject), |
| 0, |
| (destructor)complex_dealloc, /*tp_dealloc*/ |
| (printfunc)complex_print, /*tp_print*/ |
| (getattrfunc)complex_getattr, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| (cmpfunc)complex_compare, /*tp_compare*/ |
| (reprfunc)complex_repr, /*tp_repr*/ |
| &complex_as_number, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| (hashfunc)complex_hash, /*tp_hash*/ |
| }; |
| |
| #endif |