| /* C implementation for the date/time type documented at |
| * http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage |
| */ |
| |
| #include "Python.h" |
| #include "modsupport.h" |
| #include "structmember.h" |
| |
| #include <time.h> |
| |
| #include "timefuncs.h" |
| |
| /* Differentiate between building the core module and building extension |
| * modules. |
| */ |
| #ifndef Py_BUILD_CORE |
| #define Py_BUILD_CORE |
| #endif |
| #include "datetime.h" |
| #undef Py_BUILD_CORE |
| |
| /* We require that C int be at least 32 bits, and use int virtually |
| * everywhere. In just a few cases we use a temp long, where a Python |
| * API returns a C long. In such cases, we have to ensure that the |
| * final result fits in a C int (this can be an issue on 64-bit boxes). |
| */ |
| #if SIZEOF_INT < 4 |
| # error "datetime.c requires that C int have at least 32 bits" |
| #endif |
| |
| #define MINYEAR 1 |
| #define MAXYEAR 9999 |
| #define MAXORDINAL 3652059 /* date(9999,12,31).toordinal() */ |
| |
| /* Nine decimal digits is easy to communicate, and leaves enough room |
| * so that two delta days can be added w/o fear of overflowing a signed |
| * 32-bit int, and with plenty of room left over to absorb any possible |
| * carries from adding seconds. |
| */ |
| #define MAX_DELTA_DAYS 999999999 |
| |
| /* Rename the long macros in datetime.h to more reasonable short names. */ |
| #define GET_YEAR PyDateTime_GET_YEAR |
| #define GET_MONTH PyDateTime_GET_MONTH |
| #define GET_DAY PyDateTime_GET_DAY |
| #define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR |
| #define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE |
| #define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND |
| #define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND |
| |
| /* Date accessors for date and datetime. */ |
| #define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \ |
| ((o)->data[1] = ((v) & 0x00ff))) |
| #define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v)) |
| #define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v)) |
| |
| /* Date/Time accessors for datetime. */ |
| #define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v)) |
| #define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v)) |
| #define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v)) |
| #define DATE_SET_MICROSECOND(o, v) \ |
| (((o)->data[7] = ((v) & 0xff0000) >> 16), \ |
| ((o)->data[8] = ((v) & 0x00ff00) >> 8), \ |
| ((o)->data[9] = ((v) & 0x0000ff))) |
| |
| /* Time accessors for time. */ |
| #define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR |
| #define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE |
| #define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND |
| #define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND |
| #define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v)) |
| #define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v)) |
| #define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v)) |
| #define TIME_SET_MICROSECOND(o, v) \ |
| (((o)->data[3] = ((v) & 0xff0000) >> 16), \ |
| ((o)->data[4] = ((v) & 0x00ff00) >> 8), \ |
| ((o)->data[5] = ((v) & 0x0000ff))) |
| |
| /* Delta accessors for timedelta. */ |
| #define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days) |
| #define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds) |
| #define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds) |
| |
| #define SET_TD_DAYS(o, v) ((o)->days = (v)) |
| #define SET_TD_SECONDS(o, v) ((o)->seconds = (v)) |
| #define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v)) |
| |
| /* p is a pointer to a time or a datetime object; HASTZINFO(p) returns |
| * p->hastzinfo. |
| */ |
| #define HASTZINFO(p) (((_PyDateTime_BaseTZInfo *)(p))->hastzinfo) |
| |
| /* M is a char or int claiming to be a valid month. The macro is equivalent |
| * to the two-sided Python test |
| * 1 <= M <= 12 |
| */ |
| #define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12) |
| |
| /* Forward declarations. */ |
| static PyTypeObject PyDateTime_DateType; |
| static PyTypeObject PyDateTime_DateTimeType; |
| static PyTypeObject PyDateTime_DeltaType; |
| static PyTypeObject PyDateTime_TimeType; |
| static PyTypeObject PyDateTime_TZInfoType; |
| static PyTypeObject PyDateTime_TimeZoneType; |
| |
| /* --------------------------------------------------------------------------- |
| * Math utilities. |
| */ |
| |
| /* k = i+j overflows iff k differs in sign from both inputs, |
| * iff k^i has sign bit set and k^j has sign bit set, |
| * iff (k^i)&(k^j) has sign bit set. |
| */ |
| #define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \ |
| ((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0) |
| |
| /* Compute Python divmod(x, y), returning the quotient and storing the |
| * remainder into *r. The quotient is the floor of x/y, and that's |
| * the real point of this. C will probably truncate instead (C99 |
| * requires truncation; C89 left it implementation-defined). |
| * Simplification: we *require* that y > 0 here. That's appropriate |
| * for all the uses made of it. This simplifies the code and makes |
| * the overflow case impossible (divmod(LONG_MIN, -1) is the only |
| * overflow case). |
| */ |
| static int |
| divmod(int x, int y, int *r) |
| { |
| int quo; |
| |
| assert(y > 0); |
| quo = x / y; |
| *r = x - quo * y; |
| if (*r < 0) { |
| --quo; |
| *r += y; |
| } |
| assert(0 <= *r && *r < y); |
| return quo; |
| } |
| |
| /* Round a double to the nearest long. |x| must be small enough to fit |
| * in a C long; this is not checked. |
| */ |
| static long |
| round_to_long(double x) |
| { |
| if (x >= 0.0) |
| x = floor(x + 0.5); |
| else |
| x = ceil(x - 0.5); |
| return (long)x; |
| } |
| |
| /* Nearest integer to m / n for integers m and n. Half-integer results |
| * are rounded to even. |
| */ |
| static PyObject * |
| divide_nearest(PyObject *m, PyObject *n) |
| { |
| PyObject *result; |
| PyObject *temp; |
| |
| temp = _PyLong_DivmodNear(m, n); |
| if (temp == NULL) |
| return NULL; |
| result = PyTuple_GET_ITEM(temp, 0); |
| Py_INCREF(result); |
| Py_DECREF(temp); |
| |
| return result; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * General calendrical helper functions |
| */ |
| |
| /* For each month ordinal in 1..12, the number of days in that month, |
| * and the number of days before that month in the same year. These |
| * are correct for non-leap years only. |
| */ |
| static int _days_in_month[] = { |
| 0, /* unused; this vector uses 1-based indexing */ |
| 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 |
| }; |
| |
| static int _days_before_month[] = { |
| 0, /* unused; this vector uses 1-based indexing */ |
| 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 |
| }; |
| |
| /* year -> 1 if leap year, else 0. */ |
| static int |
| is_leap(int year) |
| { |
| /* Cast year to unsigned. The result is the same either way, but |
| * C can generate faster code for unsigned mod than for signed |
| * mod (especially for % 4 -- a good compiler should just grab |
| * the last 2 bits when the LHS is unsigned). |
| */ |
| const unsigned int ayear = (unsigned int)year; |
| return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0); |
| } |
| |
| /* year, month -> number of days in that month in that year */ |
| static int |
| days_in_month(int year, int month) |
| { |
| assert(month >= 1); |
| assert(month <= 12); |
| if (month == 2 && is_leap(year)) |
| return 29; |
| else |
| return _days_in_month[month]; |
| } |
| |
| /* year, month -> number of days in year preceeding first day of month */ |
| static int |
| days_before_month(int year, int month) |
| { |
| int days; |
| |
| assert(month >= 1); |
| assert(month <= 12); |
| days = _days_before_month[month]; |
| if (month > 2 && is_leap(year)) |
| ++days; |
| return days; |
| } |
| |
| /* year -> number of days before January 1st of year. Remember that we |
| * start with year 1, so days_before_year(1) == 0. |
| */ |
| static int |
| days_before_year(int year) |
| { |
| int y = year - 1; |
| /* This is incorrect if year <= 0; we really want the floor |
| * here. But so long as MINYEAR is 1, the smallest year this |
| * can see is 0 (this can happen in some normalization endcases), |
| * so we'll just special-case that. |
| */ |
| assert (year >= 0); |
| if (y >= 0) |
| return y*365 + y/4 - y/100 + y/400; |
| else { |
| assert(y == -1); |
| return -366; |
| } |
| } |
| |
| /* Number of days in 4, 100, and 400 year cycles. That these have |
| * the correct values is asserted in the module init function. |
| */ |
| #define DI4Y 1461 /* days_before_year(5); days in 4 years */ |
| #define DI100Y 36524 /* days_before_year(101); days in 100 years */ |
| #define DI400Y 146097 /* days_before_year(401); days in 400 years */ |
| |
| /* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */ |
| static void |
| ord_to_ymd(int ordinal, int *year, int *month, int *day) |
| { |
| int n, n1, n4, n100, n400, leapyear, preceding; |
| |
| /* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of |
| * leap years repeats exactly every 400 years. The basic strategy is |
| * to find the closest 400-year boundary at or before ordinal, then |
| * work with the offset from that boundary to ordinal. Life is much |
| * clearer if we subtract 1 from ordinal first -- then the values |
| * of ordinal at 400-year boundaries are exactly those divisible |
| * by DI400Y: |
| * |
| * D M Y n n-1 |
| * -- --- ---- ---------- ---------------- |
| * 31 Dec -400 -DI400Y -DI400Y -1 |
| * 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary |
| * ... |
| * 30 Dec 000 -1 -2 |
| * 31 Dec 000 0 -1 |
| * 1 Jan 001 1 0 400-year boundary |
| * 2 Jan 001 2 1 |
| * 3 Jan 001 3 2 |
| * ... |
| * 31 Dec 400 DI400Y DI400Y -1 |
| * 1 Jan 401 DI400Y +1 DI400Y 400-year boundary |
| */ |
| assert(ordinal >= 1); |
| --ordinal; |
| n400 = ordinal / DI400Y; |
| n = ordinal % DI400Y; |
| *year = n400 * 400 + 1; |
| |
| /* Now n is the (non-negative) offset, in days, from January 1 of |
| * year, to the desired date. Now compute how many 100-year cycles |
| * precede n. |
| * Note that it's possible for n100 to equal 4! In that case 4 full |
| * 100-year cycles precede the desired day, which implies the |
| * desired day is December 31 at the end of a 400-year cycle. |
| */ |
| n100 = n / DI100Y; |
| n = n % DI100Y; |
| |
| /* Now compute how many 4-year cycles precede it. */ |
| n4 = n / DI4Y; |
| n = n % DI4Y; |
| |
| /* And now how many single years. Again n1 can be 4, and again |
| * meaning that the desired day is December 31 at the end of the |
| * 4-year cycle. |
| */ |
| n1 = n / 365; |
| n = n % 365; |
| |
| *year += n100 * 100 + n4 * 4 + n1; |
| if (n1 == 4 || n100 == 4) { |
| assert(n == 0); |
| *year -= 1; |
| *month = 12; |
| *day = 31; |
| return; |
| } |
| |
| /* Now the year is correct, and n is the offset from January 1. We |
| * find the month via an estimate that's either exact or one too |
| * large. |
| */ |
| leapyear = n1 == 3 && (n4 != 24 || n100 == 3); |
| assert(leapyear == is_leap(*year)); |
| *month = (n + 50) >> 5; |
| preceding = (_days_before_month[*month] + (*month > 2 && leapyear)); |
| if (preceding > n) { |
| /* estimate is too large */ |
| *month -= 1; |
| preceding -= days_in_month(*year, *month); |
| } |
| n -= preceding; |
| assert(0 <= n); |
| assert(n < days_in_month(*year, *month)); |
| |
| *day = n + 1; |
| } |
| |
| /* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */ |
| static int |
| ymd_to_ord(int year, int month, int day) |
| { |
| return days_before_year(year) + days_before_month(year, month) + day; |
| } |
| |
| /* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */ |
| static int |
| weekday(int year, int month, int day) |
| { |
| return (ymd_to_ord(year, month, day) + 6) % 7; |
| } |
| |
| /* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the |
| * first calendar week containing a Thursday. |
| */ |
| static int |
| iso_week1_monday(int year) |
| { |
| int first_day = ymd_to_ord(year, 1, 1); /* ord of 1/1 */ |
| /* 0 if 1/1 is a Monday, 1 if a Tue, etc. */ |
| int first_weekday = (first_day + 6) % 7; |
| /* ordinal of closest Monday at or before 1/1 */ |
| int week1_monday = first_day - first_weekday; |
| |
| if (first_weekday > 3) /* if 1/1 was Fri, Sat, Sun */ |
| week1_monday += 7; |
| return week1_monday; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * Range checkers. |
| */ |
| |
| /* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0. |
| * If not, raise OverflowError and return -1. |
| */ |
| static int |
| check_delta_day_range(int days) |
| { |
| if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS) |
| return 0; |
| PyErr_Format(PyExc_OverflowError, |
| "days=%d; must have magnitude <= %d", |
| days, MAX_DELTA_DAYS); |
| return -1; |
| } |
| |
| /* Check that date arguments are in range. Return 0 if they are. If they |
| * aren't, raise ValueError and return -1. |
| */ |
| static int |
| check_date_args(int year, int month, int day) |
| { |
| |
| if (year < MINYEAR || year > MAXYEAR) { |
| PyErr_SetString(PyExc_ValueError, |
| "year is out of range"); |
| return -1; |
| } |
| if (month < 1 || month > 12) { |
| PyErr_SetString(PyExc_ValueError, |
| "month must be in 1..12"); |
| return -1; |
| } |
| if (day < 1 || day > days_in_month(year, month)) { |
| PyErr_SetString(PyExc_ValueError, |
| "day is out of range for month"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Check that time arguments are in range. Return 0 if they are. If they |
| * aren't, raise ValueError and return -1. |
| */ |
| static int |
| check_time_args(int h, int m, int s, int us) |
| { |
| if (h < 0 || h > 23) { |
| PyErr_SetString(PyExc_ValueError, |
| "hour must be in 0..23"); |
| return -1; |
| } |
| if (m < 0 || m > 59) { |
| PyErr_SetString(PyExc_ValueError, |
| "minute must be in 0..59"); |
| return -1; |
| } |
| if (s < 0 || s > 59) { |
| PyErr_SetString(PyExc_ValueError, |
| "second must be in 0..59"); |
| return -1; |
| } |
| if (us < 0 || us > 999999) { |
| PyErr_SetString(PyExc_ValueError, |
| "microsecond must be in 0..999999"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * Normalization utilities. |
| */ |
| |
| /* One step of a mixed-radix conversion. A "hi" unit is equivalent to |
| * factor "lo" units. factor must be > 0. If *lo is less than 0, or |
| * at least factor, enough of *lo is converted into "hi" units so that |
| * 0 <= *lo < factor. The input values must be such that int overflow |
| * is impossible. |
| */ |
| static void |
| normalize_pair(int *hi, int *lo, int factor) |
| { |
| assert(factor > 0); |
| assert(lo != hi); |
| if (*lo < 0 || *lo >= factor) { |
| const int num_hi = divmod(*lo, factor, lo); |
| const int new_hi = *hi + num_hi; |
| assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi)); |
| *hi = new_hi; |
| } |
| assert(0 <= *lo && *lo < factor); |
| } |
| |
| /* Fiddle days (d), seconds (s), and microseconds (us) so that |
| * 0 <= *s < 24*3600 |
| * 0 <= *us < 1000000 |
| * The input values must be such that the internals don't overflow. |
| * The way this routine is used, we don't get close. |
| */ |
| static void |
| normalize_d_s_us(int *d, int *s, int *us) |
| { |
| if (*us < 0 || *us >= 1000000) { |
| normalize_pair(s, us, 1000000); |
| /* |s| can't be bigger than about |
| * |original s| + |original us|/1000000 now. |
| */ |
| |
| } |
| if (*s < 0 || *s >= 24*3600) { |
| normalize_pair(d, s, 24*3600); |
| /* |d| can't be bigger than about |
| * |original d| + |
| * (|original s| + |original us|/1000000) / (24*3600) now. |
| */ |
| } |
| assert(0 <= *s && *s < 24*3600); |
| assert(0 <= *us && *us < 1000000); |
| } |
| |
| /* Fiddle years (y), months (m), and days (d) so that |
| * 1 <= *m <= 12 |
| * 1 <= *d <= days_in_month(*y, *m) |
| * The input values must be such that the internals don't overflow. |
| * The way this routine is used, we don't get close. |
| */ |
| static int |
| normalize_y_m_d(int *y, int *m, int *d) |
| { |
| int dim; /* # of days in month */ |
| |
| /* This gets muddy: the proper range for day can't be determined |
| * without knowing the correct month and year, but if day is, e.g., |
| * plus or minus a million, the current month and year values make |
| * no sense (and may also be out of bounds themselves). |
| * Saying 12 months == 1 year should be non-controversial. |
| */ |
| if (*m < 1 || *m > 12) { |
| --*m; |
| normalize_pair(y, m, 12); |
| ++*m; |
| /* |y| can't be bigger than about |
| * |original y| + |original m|/12 now. |
| */ |
| } |
| assert(1 <= *m && *m <= 12); |
| |
| /* Now only day can be out of bounds (year may also be out of bounds |
| * for a datetime object, but we don't care about that here). |
| * If day is out of bounds, what to do is arguable, but at least the |
| * method here is principled and explainable. |
| */ |
| dim = days_in_month(*y, *m); |
| if (*d < 1 || *d > dim) { |
| /* Move day-1 days from the first of the month. First try to |
| * get off cheap if we're only one day out of range |
| * (adjustments for timezone alone can't be worse than that). |
| */ |
| if (*d == 0) { |
| --*m; |
| if (*m > 0) |
| *d = days_in_month(*y, *m); |
| else { |
| --*y; |
| *m = 12; |
| *d = 31; |
| } |
| } |
| else if (*d == dim + 1) { |
| /* move forward a day */ |
| ++*m; |
| *d = 1; |
| if (*m > 12) { |
| *m = 1; |
| ++*y; |
| } |
| } |
| else { |
| int ordinal = ymd_to_ord(*y, *m, 1) + |
| *d - 1; |
| if (ordinal < 1 || ordinal > MAXORDINAL) { |
| goto error; |
| } else { |
| ord_to_ymd(ordinal, y, m, d); |
| return 0; |
| } |
| } |
| } |
| assert(*m > 0); |
| assert(*d > 0); |
| if (MINYEAR <= *y && *y <= MAXYEAR) |
| return 0; |
| error: |
| PyErr_SetString(PyExc_OverflowError, |
| "date value out of range"); |
| return -1; |
| |
| } |
| |
| /* Fiddle out-of-bounds months and days so that the result makes some kind |
| * of sense. The parameters are both inputs and outputs. Returns < 0 on |
| * failure, where failure means the adjusted year is out of bounds. |
| */ |
| static int |
| normalize_date(int *year, int *month, int *day) |
| { |
| return normalize_y_m_d(year, month, day); |
| } |
| |
| /* Force all the datetime fields into range. The parameters are both |
| * inputs and outputs. Returns < 0 on error. |
| */ |
| static int |
| normalize_datetime(int *year, int *month, int *day, |
| int *hour, int *minute, int *second, |
| int *microsecond) |
| { |
| normalize_pair(second, microsecond, 1000000); |
| normalize_pair(minute, second, 60); |
| normalize_pair(hour, minute, 60); |
| normalize_pair(day, hour, 24); |
| return normalize_date(year, month, day); |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * Basic object allocation: tp_alloc implementations. These allocate |
| * Python objects of the right size and type, and do the Python object- |
| * initialization bit. If there's not enough memory, they return NULL after |
| * setting MemoryError. All data members remain uninitialized trash. |
| * |
| * We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo |
| * member is needed. This is ugly, imprecise, and possibly insecure. |
| * tp_basicsize for the time and datetime types is set to the size of the |
| * struct that has room for the tzinfo member, so subclasses in Python will |
| * allocate enough space for a tzinfo member whether or not one is actually |
| * needed. That's the "ugly and imprecise" parts. The "possibly insecure" |
| * part is that PyType_GenericAlloc() (which subclasses in Python end up |
| * using) just happens today to effectively ignore the nitems argument |
| * when tp_itemsize is 0, which it is for these type objects. If that |
| * changes, perhaps the callers of tp_alloc slots in this file should |
| * be changed to force a 0 nitems argument unless the type being allocated |
| * is a base type implemented in this file (so that tp_alloc is time_alloc |
| * or datetime_alloc below, which know about the nitems abuse). |
| */ |
| |
| static PyObject * |
| time_alloc(PyTypeObject *type, Py_ssize_t aware) |
| { |
| PyObject *self; |
| |
| self = (PyObject *) |
| PyObject_MALLOC(aware ? |
| sizeof(PyDateTime_Time) : |
| sizeof(_PyDateTime_BaseTime)); |
| if (self == NULL) |
| return (PyObject *)PyErr_NoMemory(); |
| PyObject_INIT(self, type); |
| return self; |
| } |
| |
| static PyObject * |
| datetime_alloc(PyTypeObject *type, Py_ssize_t aware) |
| { |
| PyObject *self; |
| |
| self = (PyObject *) |
| PyObject_MALLOC(aware ? |
| sizeof(PyDateTime_DateTime) : |
| sizeof(_PyDateTime_BaseDateTime)); |
| if (self == NULL) |
| return (PyObject *)PyErr_NoMemory(); |
| PyObject_INIT(self, type); |
| return self; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * Helpers for setting object fields. These work on pointers to the |
| * appropriate base class. |
| */ |
| |
| /* For date and datetime. */ |
| static void |
| set_date_fields(PyDateTime_Date *self, int y, int m, int d) |
| { |
| self->hashcode = -1; |
| SET_YEAR(self, y); |
| SET_MONTH(self, m); |
| SET_DAY(self, d); |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * Create various objects, mostly without range checking. |
| */ |
| |
| /* Create a date instance with no range checking. */ |
| static PyObject * |
| new_date_ex(int year, int month, int day, PyTypeObject *type) |
| { |
| PyDateTime_Date *self; |
| |
| self = (PyDateTime_Date *) (type->tp_alloc(type, 0)); |
| if (self != NULL) |
| set_date_fields(self, year, month, day); |
| return (PyObject *) self; |
| } |
| |
| #define new_date(year, month, day) \ |
| new_date_ex(year, month, day, &PyDateTime_DateType) |
| |
| /* Create a datetime instance with no range checking. */ |
| static PyObject * |
| new_datetime_ex(int year, int month, int day, int hour, int minute, |
| int second, int usecond, PyObject *tzinfo, PyTypeObject *type) |
| { |
| PyDateTime_DateTime *self; |
| char aware = tzinfo != Py_None; |
| |
| self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware)); |
| if (self != NULL) { |
| self->hastzinfo = aware; |
| set_date_fields((PyDateTime_Date *)self, year, month, day); |
| DATE_SET_HOUR(self, hour); |
| DATE_SET_MINUTE(self, minute); |
| DATE_SET_SECOND(self, second); |
| DATE_SET_MICROSECOND(self, usecond); |
| if (aware) { |
| Py_INCREF(tzinfo); |
| self->tzinfo = tzinfo; |
| } |
| } |
| return (PyObject *)self; |
| } |
| |
| #define new_datetime(y, m, d, hh, mm, ss, us, tzinfo) \ |
| new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo, \ |
| &PyDateTime_DateTimeType) |
| |
| /* Create a time instance with no range checking. */ |
| static PyObject * |
| new_time_ex(int hour, int minute, int second, int usecond, |
| PyObject *tzinfo, PyTypeObject *type) |
| { |
| PyDateTime_Time *self; |
| char aware = tzinfo != Py_None; |
| |
| self = (PyDateTime_Time *) (type->tp_alloc(type, aware)); |
| if (self != NULL) { |
| self->hastzinfo = aware; |
| self->hashcode = -1; |
| TIME_SET_HOUR(self, hour); |
| TIME_SET_MINUTE(self, minute); |
| TIME_SET_SECOND(self, second); |
| TIME_SET_MICROSECOND(self, usecond); |
| if (aware) { |
| Py_INCREF(tzinfo); |
| self->tzinfo = tzinfo; |
| } |
| } |
| return (PyObject *)self; |
| } |
| |
| #define new_time(hh, mm, ss, us, tzinfo) \ |
| new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType) |
| |
| /* Create a timedelta instance. Normalize the members iff normalize is |
| * true. Passing false is a speed optimization, if you know for sure |
| * that seconds and microseconds are already in their proper ranges. In any |
| * case, raises OverflowError and returns NULL if the normalized days is out |
| * of range). |
| */ |
| static PyObject * |
| new_delta_ex(int days, int seconds, int microseconds, int normalize, |
| PyTypeObject *type) |
| { |
| PyDateTime_Delta *self; |
| |
| if (normalize) |
| normalize_d_s_us(&days, &seconds, µseconds); |
| assert(0 <= seconds && seconds < 24*3600); |
| assert(0 <= microseconds && microseconds < 1000000); |
| |
| if (check_delta_day_range(days) < 0) |
| return NULL; |
| |
| self = (PyDateTime_Delta *) (type->tp_alloc(type, 0)); |
| if (self != NULL) { |
| self->hashcode = -1; |
| SET_TD_DAYS(self, days); |
| SET_TD_SECONDS(self, seconds); |
| SET_TD_MICROSECONDS(self, microseconds); |
| } |
| return (PyObject *) self; |
| } |
| |
| #define new_delta(d, s, us, normalize) \ |
| new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType) |
| |
| |
| typedef struct |
| { |
| PyObject_HEAD |
| PyObject *offset; |
| PyObject *name; |
| } PyDateTime_TimeZone; |
| |
| /* Create new timezone instance checking offset range. This |
| function does not check the name argument. Caller must assure |
| that offset is a timedelta instance and name is either NULL |
| or a unicode object. */ |
| static PyObject * |
| new_timezone(PyObject *offset, PyObject *name) |
| { |
| PyDateTime_TimeZone *self; |
| PyTypeObject *type = &PyDateTime_TimeZoneType; |
| |
| assert(offset != NULL); |
| assert(PyDelta_Check(offset)); |
| assert(name == NULL || PyUnicode_Check(name)); |
| |
| if (GET_TD_MICROSECONDS(offset) != 0 || GET_TD_SECONDS(offset) % 60 != 0) { |
| PyErr_Format(PyExc_ValueError, "offset must be a timedelta" |
| " representing a whole number of minutes"); |
| return NULL; |
| } |
| if ((GET_TD_DAYS(offset) == -1 && GET_TD_SECONDS(offset) == 0) || |
| GET_TD_DAYS(offset) < -1 || GET_TD_DAYS(offset) >= 1) { |
| PyErr_Format(PyExc_ValueError, "offset must be a timedelta" |
| " strictly between -timedelta(hours=24) and" |
| " timedelta(hours=24)."); |
| return NULL; |
| } |
| |
| self = (PyDateTime_TimeZone *)(type->tp_alloc(type, 0)); |
| if (self == NULL) { |
| return NULL; |
| } |
| Py_INCREF(offset); |
| self->offset = offset; |
| Py_XINCREF(name); |
| self->name = name; |
| return (PyObject *)self; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * tzinfo helpers. |
| */ |
| |
| /* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not |
| * raise TypeError and return -1. |
| */ |
| static int |
| check_tzinfo_subclass(PyObject *p) |
| { |
| if (p == Py_None || PyTZInfo_Check(p)) |
| return 0; |
| PyErr_Format(PyExc_TypeError, |
| "tzinfo argument must be None or of a tzinfo subclass, " |
| "not type '%s'", |
| Py_TYPE(p)->tp_name); |
| return -1; |
| } |
| |
| /* Return tzinfo.methname(tzinfoarg), without any checking of results. |
| * If tzinfo is None, returns None. |
| */ |
| static PyObject * |
| call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg) |
| { |
| PyObject *result; |
| |
| assert(tzinfo && methname && tzinfoarg); |
| assert(check_tzinfo_subclass(tzinfo) >= 0); |
| if (tzinfo == Py_None) { |
| result = Py_None; |
| Py_INCREF(result); |
| } |
| else |
| result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg); |
| return result; |
| } |
| |
| /* If self has a tzinfo member, return a BORROWED reference to it. Else |
| * return NULL, which is NOT AN ERROR. There are no error returns here, |
| * and the caller must not decref the result. |
| */ |
| static PyObject * |
| get_tzinfo_member(PyObject *self) |
| { |
| PyObject *tzinfo = NULL; |
| |
| if (PyDateTime_Check(self) && HASTZINFO(self)) |
| tzinfo = ((PyDateTime_DateTime *)self)->tzinfo; |
| else if (PyTime_Check(self) && HASTZINFO(self)) |
| tzinfo = ((PyDateTime_Time *)self)->tzinfo; |
| |
| return tzinfo; |
| } |
| |
| /* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the |
| * result. tzinfo must be an instance of the tzinfo class. If the method |
| * returns None, this returns 0 and sets *none to 1. If the method doesn't |
| * return None or timedelta, TypeError is raised and this returns -1. If it |
| * returnsa timedelta and the value is out of range or isn't a whole number |
| * of minutes, ValueError is raised and this returns -1. |
| * Else *none is set to 0 and the integer method result is returned. |
| */ |
| static int |
| call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg, |
| int *none) |
| { |
| PyObject *u; |
| int result = -1; |
| |
| assert(tzinfo != NULL); |
| assert(PyTZInfo_Check(tzinfo)); |
| assert(tzinfoarg != NULL); |
| |
| *none = 0; |
| u = call_tzinfo_method(tzinfo, name, tzinfoarg); |
| if (u == NULL) |
| return -1; |
| |
| else if (u == Py_None) { |
| result = 0; |
| *none = 1; |
| } |
| else if (PyDelta_Check(u)) { |
| const int days = GET_TD_DAYS(u); |
| if (days < -1 || days > 0) |
| result = 24*60; /* trigger ValueError below */ |
| else { |
| /* next line can't overflow because we know days |
| * is -1 or 0 now |
| */ |
| int ss = days * 24 * 3600 + GET_TD_SECONDS(u); |
| result = divmod(ss, 60, &ss); |
| if (ss || GET_TD_MICROSECONDS(u)) { |
| PyErr_Format(PyExc_ValueError, |
| "tzinfo.%s() must return a " |
| "whole number of minutes", |
| name); |
| result = -1; |
| } |
| } |
| } |
| else { |
| PyErr_Format(PyExc_TypeError, |
| "tzinfo.%s() must return None or " |
| "timedelta, not '%s'", |
| name, Py_TYPE(u)->tp_name); |
| } |
| |
| Py_DECREF(u); |
| if (result < -1439 || result > 1439) { |
| PyErr_Format(PyExc_ValueError, |
| "tzinfo.%s() returned %d; must be in " |
| "-1439 .. 1439", |
| name, result); |
| result = -1; |
| } |
| return result; |
| } |
| |
| /* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the |
| * result. tzinfo must be an instance of the tzinfo class. If utcoffset() |
| * returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset() |
| * doesn't return None or timedelta, TypeError is raised and this returns -1. |
| * If utcoffset() returns an invalid timedelta (out of range, or not a whole |
| * # of minutes), ValueError is raised and this returns -1. Else *none is |
| * set to 0 and the offset is returned (as int # of minutes east of UTC). |
| */ |
| static int |
| call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none) |
| { |
| return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none); |
| } |
| |
| /* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None. |
| */ |
| static PyObject * |
| offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) { |
| PyObject *result; |
| |
| assert(tzinfo && name && tzinfoarg); |
| if (tzinfo == Py_None) { |
| result = Py_None; |
| Py_INCREF(result); |
| } |
| else { |
| int none; |
| int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg, |
| &none); |
| if (offset < 0 && PyErr_Occurred()) |
| return NULL; |
| if (none) { |
| result = Py_None; |
| Py_INCREF(result); |
| } |
| else |
| result = new_delta(0, offset * 60, 0, 1); |
| } |
| return result; |
| } |
| |
| /* Call tzinfo.dst(tzinfoarg), and extract an integer from the |
| * result. tzinfo must be an instance of the tzinfo class. If dst() |
| * returns None, call_dst returns 0 and sets *none to 1. If dst() |
| & doesn't return None or timedelta, TypeError is raised and this |
| * returns -1. If dst() returns an invalid timedelta for a UTC offset, |
| * ValueError is raised and this returns -1. Else *none is set to 0 and |
| * the offset is returned (as an int # of minutes east of UTC). |
| */ |
| static int |
| call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none) |
| { |
| return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none); |
| } |
| |
| /* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be |
| * an instance of the tzinfo class or None. If tzinfo isn't None, and |
| * tzname() doesn't return None or a string, TypeError is raised and this |
| * returns NULL. If the result is a string, we ensure it is a Unicode |
| * string. |
| */ |
| static PyObject * |
| call_tzname(PyObject *tzinfo, PyObject *tzinfoarg) |
| { |
| PyObject *result; |
| |
| assert(tzinfo != NULL); |
| assert(check_tzinfo_subclass(tzinfo) >= 0); |
| assert(tzinfoarg != NULL); |
| |
| if (tzinfo == Py_None) { |
| result = Py_None; |
| Py_INCREF(result); |
| } |
| else |
| result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg); |
| |
| if (result != NULL && result != Py_None) { |
| if (!PyUnicode_Check(result)) { |
| PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must " |
| "return None or a string, not '%s'", |
| Py_TYPE(result)->tp_name); |
| Py_DECREF(result); |
| result = NULL; |
| } |
| else if (!PyUnicode_Check(result)) { |
| PyObject *temp = PyUnicode_FromObject(result); |
| Py_DECREF(result); |
| result = temp; |
| } |
| } |
| return result; |
| } |
| |
| typedef enum { |
| /* an exception has been set; the caller should pass it on */ |
| OFFSET_ERROR, |
| |
| /* type isn't date, datetime, or time subclass */ |
| OFFSET_UNKNOWN, |
| |
| /* date, |
| * datetime with !hastzinfo |
| * datetime with None tzinfo, |
| * datetime where utcoffset() returns None |
| * time with !hastzinfo |
| * time with None tzinfo, |
| * time where utcoffset() returns None |
| */ |
| OFFSET_NAIVE, |
| |
| /* time or datetime where utcoffset() doesn't return None */ |
| OFFSET_AWARE |
| } naivety; |
| |
| /* Classify an object as to whether it's naive or offset-aware. See |
| * the "naivety" typedef for details. If the type is aware, *offset is set |
| * to minutes east of UTC (as returned by the tzinfo.utcoffset() method). |
| * If the type is offset-naive (or unknown, or error), *offset is set to 0. |
| * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method. |
| */ |
| static naivety |
| classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset) |
| { |
| int none; |
| PyObject *tzinfo; |
| |
| assert(tzinfoarg != NULL); |
| *offset = 0; |
| tzinfo = get_tzinfo_member(op); /* NULL means no tzinfo, not error */ |
| if (tzinfo == Py_None) |
| return OFFSET_NAIVE; |
| if (tzinfo == NULL) { |
| /* note that a datetime passes the PyDate_Check test */ |
| return (PyTime_Check(op) || PyDate_Check(op)) ? |
| OFFSET_NAIVE : OFFSET_UNKNOWN; |
| } |
| *offset = call_utcoffset(tzinfo, tzinfoarg, &none); |
| if (*offset == -1 && PyErr_Occurred()) |
| return OFFSET_ERROR; |
| return none ? OFFSET_NAIVE : OFFSET_AWARE; |
| } |
| |
| /* Classify two objects as to whether they're naive or offset-aware. |
| * This isn't quite the same as calling classify_utcoffset() twice: for |
| * binary operations (comparison and subtraction), we generally want to |
| * ignore the tzinfo members if they're identical. This is by design, |
| * so that results match "naive" expectations when mixing objects from a |
| * single timezone. So in that case, this sets both offsets to 0 and |
| * both naiveties to OFFSET_NAIVE. |
| * The function returns 0 if everything's OK, and -1 on error. |
| */ |
| static int |
| classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1, |
| PyObject *tzinfoarg1, |
| PyObject *o2, int *offset2, naivety *n2, |
| PyObject *tzinfoarg2) |
| { |
| if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) { |
| *offset1 = *offset2 = 0; |
| *n1 = *n2 = OFFSET_NAIVE; |
| } |
| else { |
| *n1 = classify_utcoffset(o1, tzinfoarg1, offset1); |
| if (*n1 == OFFSET_ERROR) |
| return -1; |
| *n2 = classify_utcoffset(o2, tzinfoarg2, offset2); |
| if (*n2 == OFFSET_ERROR) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* repr is like "someclass(arg1, arg2)". If tzinfo isn't None, |
| * stuff |
| * ", tzinfo=" + repr(tzinfo) |
| * before the closing ")". |
| */ |
| static PyObject * |
| append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo) |
| { |
| PyObject *temp; |
| |
| assert(PyUnicode_Check(repr)); |
| assert(tzinfo); |
| if (tzinfo == Py_None) |
| return repr; |
| /* Get rid of the trailing ')'. */ |
| assert(PyUnicode_AS_UNICODE(repr)[PyUnicode_GET_SIZE(repr)-1] == ')'); |
| temp = PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(repr), |
| PyUnicode_GET_SIZE(repr) - 1); |
| Py_DECREF(repr); |
| if (temp == NULL) |
| return NULL; |
| repr = PyUnicode_FromFormat("%U, tzinfo=%R)", temp, tzinfo); |
| Py_DECREF(temp); |
| return repr; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * String format helpers. |
| */ |
| |
| static PyObject * |
| format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds) |
| { |
| static const char *DayNames[] = { |
| "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" |
| }; |
| static const char *MonthNames[] = { |
| "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
| "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
| }; |
| |
| int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date)); |
| |
| return PyUnicode_FromFormat("%s %s %2d %02d:%02d:%02d %04d", |
| DayNames[wday], MonthNames[GET_MONTH(date)-1], |
| GET_DAY(date), hours, minutes, seconds, |
| GET_YEAR(date)); |
| } |
| |
| /* Add an hours & minutes UTC offset string to buf. buf has no more than |
| * buflen bytes remaining. The UTC offset is gotten by calling |
| * tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into |
| * *buf, and that's all. Else the returned value is checked for sanity (an |
| * integer in range), and if that's OK it's converted to an hours & minutes |
| * string of the form |
| * sign HH sep MM |
| * Returns 0 if everything is OK. If the return value from utcoffset() is |
| * bogus, an appropriate exception is set and -1 is returned. |
| */ |
| static int |
| format_utcoffset(char *buf, size_t buflen, const char *sep, |
| PyObject *tzinfo, PyObject *tzinfoarg) |
| { |
| int offset; |
| int hours; |
| int minutes; |
| char sign; |
| int none; |
| |
| assert(buflen >= 1); |
| |
| offset = call_utcoffset(tzinfo, tzinfoarg, &none); |
| if (offset == -1 && PyErr_Occurred()) |
| return -1; |
| if (none) { |
| *buf = '\0'; |
| return 0; |
| } |
| sign = '+'; |
| if (offset < 0) { |
| sign = '-'; |
| offset = - offset; |
| } |
| hours = divmod(offset, 60, &minutes); |
| PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes); |
| return 0; |
| } |
| |
| static PyObject * |
| make_Zreplacement(PyObject *object, PyObject *tzinfoarg) |
| { |
| PyObject *temp; |
| PyObject *tzinfo = get_tzinfo_member(object); |
| PyObject *Zreplacement = PyUnicode_FromStringAndSize(NULL, 0); |
| if (Zreplacement == NULL) |
| return NULL; |
| if (tzinfo == Py_None || tzinfo == NULL) |
| return Zreplacement; |
| |
| assert(tzinfoarg != NULL); |
| temp = call_tzname(tzinfo, tzinfoarg); |
| if (temp == NULL) |
| goto Error; |
| if (temp == Py_None) { |
| Py_DECREF(temp); |
| return Zreplacement; |
| } |
| |
| assert(PyUnicode_Check(temp)); |
| /* Since the tzname is getting stuffed into the |
| * format, we have to double any % signs so that |
| * strftime doesn't treat them as format codes. |
| */ |
| Py_DECREF(Zreplacement); |
| Zreplacement = PyObject_CallMethod(temp, "replace", "ss", "%", "%%"); |
| Py_DECREF(temp); |
| if (Zreplacement == NULL) |
| return NULL; |
| if (!PyUnicode_Check(Zreplacement)) { |
| PyErr_SetString(PyExc_TypeError, |
| "tzname.replace() did not return a string"); |
| goto Error; |
| } |
| return Zreplacement; |
| |
| Error: |
| Py_DECREF(Zreplacement); |
| return NULL; |
| } |
| |
| static PyObject * |
| make_freplacement(PyObject *object) |
| { |
| char freplacement[64]; |
| if (PyTime_Check(object)) |
| sprintf(freplacement, "%06d", TIME_GET_MICROSECOND(object)); |
| else if (PyDateTime_Check(object)) |
| sprintf(freplacement, "%06d", DATE_GET_MICROSECOND(object)); |
| else |
| sprintf(freplacement, "%06d", 0); |
| |
| return PyBytes_FromStringAndSize(freplacement, strlen(freplacement)); |
| } |
| |
| /* I sure don't want to reproduce the strftime code from the time module, |
| * so this imports the module and calls it. All the hair is due to |
| * giving special meanings to the %z, %Z and %f format codes via a |
| * preprocessing step on the format string. |
| * tzinfoarg is the argument to pass to the object's tzinfo method, if |
| * needed. |
| */ |
| static PyObject * |
| wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple, |
| PyObject *tzinfoarg) |
| { |
| PyObject *result = NULL; /* guilty until proved innocent */ |
| |
| PyObject *zreplacement = NULL; /* py string, replacement for %z */ |
| PyObject *Zreplacement = NULL; /* py string, replacement for %Z */ |
| PyObject *freplacement = NULL; /* py string, replacement for %f */ |
| |
| const char *pin; /* pointer to next char in input format */ |
| Py_ssize_t flen; /* length of input format */ |
| char ch; /* next char in input format */ |
| |
| PyObject *newfmt = NULL; /* py string, the output format */ |
| char *pnew; /* pointer to available byte in output format */ |
| size_t totalnew; /* number bytes total in output format buffer, |
| exclusive of trailing \0 */ |
| size_t usednew; /* number bytes used so far in output format buffer */ |
| |
| const char *ptoappend; /* ptr to string to append to output buffer */ |
| Py_ssize_t ntoappend; /* # of bytes to append to output buffer */ |
| |
| assert(object && format && timetuple); |
| assert(PyUnicode_Check(format)); |
| /* Convert the input format to a C string and size */ |
| pin = _PyUnicode_AsStringAndSize(format, &flen); |
| if (!pin) |
| return NULL; |
| |
| /* Give up if the year is before 1900. |
| * Python strftime() plays games with the year, and different |
| * games depending on whether envar PYTHON2K is set. This makes |
| * years before 1900 a nightmare, even if the platform strftime |
| * supports them (and not all do). |
| * We could get a lot farther here by avoiding Python's strftime |
| * wrapper and calling the C strftime() directly, but that isn't |
| * an option in the Python implementation of this module. |
| */ |
| { |
| long year; |
| PyObject *pyyear = PySequence_GetItem(timetuple, 0); |
| if (pyyear == NULL) return NULL; |
| assert(PyLong_Check(pyyear)); |
| year = PyLong_AsLong(pyyear); |
| Py_DECREF(pyyear); |
| if (year < 1900) { |
| PyErr_Format(PyExc_ValueError, "year=%ld is before " |
| "1900; the datetime strftime() " |
| "methods require year >= 1900", |
| year); |
| return NULL; |
| } |
| } |
| |
| /* Scan the input format, looking for %z/%Z/%f escapes, building |
| * a new format. Since computing the replacements for those codes |
| * is expensive, don't unless they're actually used. |
| */ |
| if (flen > INT_MAX - 1) { |
| PyErr_NoMemory(); |
| goto Done; |
| } |
| |
| totalnew = flen + 1; /* realistic if no %z/%Z */ |
| newfmt = PyBytes_FromStringAndSize(NULL, totalnew); |
| if (newfmt == NULL) goto Done; |
| pnew = PyBytes_AsString(newfmt); |
| usednew = 0; |
| |
| while ((ch = *pin++) != '\0') { |
| if (ch != '%') { |
| ptoappend = pin - 1; |
| ntoappend = 1; |
| } |
| else if ((ch = *pin++) == '\0') { |
| /* There's a lone trailing %; doesn't make sense. */ |
| PyErr_SetString(PyExc_ValueError, "strftime format " |
| "ends with raw %"); |
| goto Done; |
| } |
| /* A % has been seen and ch is the character after it. */ |
| else if (ch == 'z') { |
| if (zreplacement == NULL) { |
| /* format utcoffset */ |
| char buf[100]; |
| PyObject *tzinfo = get_tzinfo_member(object); |
| zreplacement = PyBytes_FromStringAndSize("", 0); |
| if (zreplacement == NULL) goto Done; |
| if (tzinfo != Py_None && tzinfo != NULL) { |
| assert(tzinfoarg != NULL); |
| if (format_utcoffset(buf, |
| sizeof(buf), |
| "", |
| tzinfo, |
| tzinfoarg) < 0) |
| goto Done; |
| Py_DECREF(zreplacement); |
| zreplacement = |
| PyBytes_FromStringAndSize(buf, |
| strlen(buf)); |
| if (zreplacement == NULL) |
| goto Done; |
| } |
| } |
| assert(zreplacement != NULL); |
| ptoappend = PyBytes_AS_STRING(zreplacement); |
| ntoappend = PyBytes_GET_SIZE(zreplacement); |
| } |
| else if (ch == 'Z') { |
| /* format tzname */ |
| if (Zreplacement == NULL) { |
| Zreplacement = make_Zreplacement(object, |
| tzinfoarg); |
| if (Zreplacement == NULL) |
| goto Done; |
| } |
| assert(Zreplacement != NULL); |
| assert(PyUnicode_Check(Zreplacement)); |
| ptoappend = _PyUnicode_AsStringAndSize(Zreplacement, |
| &ntoappend); |
| ntoappend = Py_SIZE(Zreplacement); |
| } |
| else if (ch == 'f') { |
| /* format microseconds */ |
| if (freplacement == NULL) { |
| freplacement = make_freplacement(object); |
| if (freplacement == NULL) |
| goto Done; |
| } |
| assert(freplacement != NULL); |
| assert(PyBytes_Check(freplacement)); |
| ptoappend = PyBytes_AS_STRING(freplacement); |
| ntoappend = PyBytes_GET_SIZE(freplacement); |
| } |
| else { |
| /* percent followed by neither z nor Z */ |
| ptoappend = pin - 2; |
| ntoappend = 2; |
| } |
| |
| /* Append the ntoappend chars starting at ptoappend to |
| * the new format. |
| */ |
| if (ntoappend == 0) |
| continue; |
| assert(ptoappend != NULL); |
| assert(ntoappend > 0); |
| while (usednew + ntoappend > totalnew) { |
| size_t bigger = totalnew << 1; |
| if ((bigger >> 1) != totalnew) { /* overflow */ |
| PyErr_NoMemory(); |
| goto Done; |
| } |
| if (_PyBytes_Resize(&newfmt, bigger) < 0) |
| goto Done; |
| totalnew = bigger; |
| pnew = PyBytes_AsString(newfmt) + usednew; |
| } |
| memcpy(pnew, ptoappend, ntoappend); |
| pnew += ntoappend; |
| usednew += ntoappend; |
| assert(usednew <= totalnew); |
| } /* end while() */ |
| |
| if (_PyBytes_Resize(&newfmt, usednew) < 0) |
| goto Done; |
| { |
| PyObject *format; |
| PyObject *time = PyImport_ImportModuleNoBlock("time"); |
| if (time == NULL) |
| goto Done; |
| format = PyUnicode_FromString(PyBytes_AS_STRING(newfmt)); |
| if (format != NULL) { |
| result = PyObject_CallMethod(time, "strftime", "OO", |
| format, timetuple); |
| Py_DECREF(format); |
| } |
| Py_DECREF(time); |
| } |
| Done: |
| Py_XDECREF(freplacement); |
| Py_XDECREF(zreplacement); |
| Py_XDECREF(Zreplacement); |
| Py_XDECREF(newfmt); |
| return result; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * Wrap functions from the time module. These aren't directly available |
| * from C. Perhaps they should be. |
| */ |
| |
| /* Call time.time() and return its result (a Python float). */ |
| static PyObject * |
| time_time(void) |
| { |
| PyObject *result = NULL; |
| PyObject *time = PyImport_ImportModuleNoBlock("time"); |
| |
| if (time != NULL) { |
| result = PyObject_CallMethod(time, "time", "()"); |
| Py_DECREF(time); |
| } |
| return result; |
| } |
| |
| /* Build a time.struct_time. The weekday and day number are automatically |
| * computed from the y,m,d args. |
| */ |
| static PyObject * |
| build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag) |
| { |
| PyObject *time; |
| PyObject *result = NULL; |
| |
| time = PyImport_ImportModuleNoBlock("time"); |
| if (time != NULL) { |
| result = PyObject_CallMethod(time, "struct_time", |
| "((iiiiiiiii))", |
| y, m, d, |
| hh, mm, ss, |
| weekday(y, m, d), |
| days_before_month(y, m) + d, |
| dstflag); |
| Py_DECREF(time); |
| } |
| return result; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * Miscellaneous helpers. |
| */ |
| |
| /* For various reasons, we need to use tp_richcompare instead of tp_reserved. |
| * The comparisons here all most naturally compute a cmp()-like result. |
| * This little helper turns that into a bool result for rich comparisons. |
| */ |
| static PyObject * |
| diff_to_bool(int diff, int op) |
| { |
| PyObject *result; |
| int istrue; |
| |
| switch (op) { |
| case Py_EQ: istrue = diff == 0; break; |
| case Py_NE: istrue = diff != 0; break; |
| case Py_LE: istrue = diff <= 0; break; |
| case Py_GE: istrue = diff >= 0; break; |
| case Py_LT: istrue = diff < 0; break; |
| case Py_GT: istrue = diff > 0; break; |
| default: |
| assert(! "op unknown"); |
| istrue = 0; /* To shut up compiler */ |
| } |
| result = istrue ? Py_True : Py_False; |
| Py_INCREF(result); |
| return result; |
| } |
| |
| /* Raises a "can't compare" TypeError and returns NULL. */ |
| static PyObject * |
| cmperror(PyObject *a, PyObject *b) |
| { |
| PyErr_Format(PyExc_TypeError, |
| "can't compare %s to %s", |
| Py_TYPE(a)->tp_name, Py_TYPE(b)->tp_name); |
| return NULL; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| * Cached Python objects; these are set by the module init function. |
| */ |
| |
| /* Conversion factors. */ |
| static PyObject *us_per_us = NULL; /* 1 */ |
| static PyObject *us_per_ms = NULL; /* 1000 */ |
| static PyObject *us_per_second = NULL; /* 1000000 */ |
| static PyObject *us_per_minute = NULL; /* 1e6 * 60 as Python int */ |
| static PyObject *us_per_hour = NULL; /* 1e6 * 3600 as Python long */ |
| static PyObject *us_per_day = NULL; /* 1e6 * 3600 * 24 as Python long */ |
| static PyObject *us_per_week = NULL; /* 1e6*3600*24*7 as Python long */ |
| static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */ |
| |
| /* --------------------------------------------------------------------------- |
| * Class implementations. |
| */ |
| |
| /* |
| * PyDateTime_Delta implementation. |
| */ |
| |
| /* Convert a timedelta to a number of us, |
| * (24*3600*self.days + self.seconds)*1000000 + self.microseconds |
| * as a Python int or long. |
| * Doing mixed-radix arithmetic by hand instead is excruciating in C, |
| * due to ubiquitous overflow possibilities. |
| */ |
| static PyObject * |
| delta_to_microseconds(PyDateTime_Delta *self) |
| { |
| PyObject *x1 = NULL; |
| PyObject *x2 = NULL; |
| PyObject *x3 = NULL; |
| PyObject *result = NULL; |
| |
| x1 = PyLong_FromLong(GET_TD_DAYS(self)); |
| if (x1 == NULL) |
| goto Done; |
| x2 = PyNumber_Multiply(x1, seconds_per_day); /* days in seconds */ |
| if (x2 == NULL) |
| goto Done; |
| Py_DECREF(x1); |
| x1 = NULL; |
| |
| /* x2 has days in seconds */ |
| x1 = PyLong_FromLong(GET_TD_SECONDS(self)); /* seconds */ |
| if (x1 == NULL) |
| goto Done; |
| x3 = PyNumber_Add(x1, x2); /* days and seconds in seconds */ |
| if (x3 == NULL) |
| goto Done; |
| Py_DECREF(x1); |
| Py_DECREF(x2); |
| x1 = x2 = NULL; |
| |
| /* x3 has days+seconds in seconds */ |
| x1 = PyNumber_Multiply(x3, us_per_second); /* us */ |
| if (x1 == NULL) |
| goto Done; |
| Py_DECREF(x3); |
| x3 = NULL; |
| |
| /* x1 has days+seconds in us */ |
| x2 = PyLong_FromLong(GET_TD_MICROSECONDS(self)); |
| if (x2 == NULL) |
| goto Done; |
| result = PyNumber_Add(x1, x2); |
| |
| Done: |
| Py_XDECREF(x1); |
| Py_XDECREF(x2); |
| Py_XDECREF(x3); |
| return result; |
| } |
| |
| /* Convert a number of us (as a Python int or long) to a timedelta. |
| */ |
| static PyObject * |
| microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type) |
| { |
| int us; |
| int s; |
| int d; |
| long temp; |
| |
| PyObject *tuple = NULL; |
| PyObject *num = NULL; |
| PyObject *result = NULL; |
| |
| tuple = PyNumber_Divmod(pyus, us_per_second); |
| if (tuple == NULL) |
| goto Done; |
| |
| num = PyTuple_GetItem(tuple, 1); /* us */ |
| if (num == NULL) |
| goto Done; |
| temp = PyLong_AsLong(num); |
| num = NULL; |
| if (temp == -1 && PyErr_Occurred()) |
| goto Done; |
| assert(0 <= temp && temp < 1000000); |
| us = (int)temp; |
| if (us < 0) { |
| /* The divisor was positive, so this must be an error. */ |
| assert(PyErr_Occurred()); |
| goto Done; |
| } |
| |
| num = PyTuple_GetItem(tuple, 0); /* leftover seconds */ |
| if (num == NULL) |
| goto Done; |
| Py_INCREF(num); |
| Py_DECREF(tuple); |
| |
| tuple = PyNumber_Divmod(num, seconds_per_day); |
| if (tuple == NULL) |
| goto Done; |
| Py_DECREF(num); |
| |
| num = PyTuple_GetItem(tuple, 1); /* seconds */ |
| if (num == NULL) |
| goto Done; |
| temp = PyLong_AsLong(num); |
| num = NULL; |
| if (temp == -1 && PyErr_Occurred()) |
| goto Done; |
| assert(0 <= temp && temp < 24*3600); |
| s = (int)temp; |
| |
| if (s < 0) { |
| /* The divisor was positive, so this must be an error. */ |
| assert(PyErr_Occurred()); |
| goto Done; |
| } |
| |
| num = PyTuple_GetItem(tuple, 0); /* leftover days */ |
| if (num == NULL) |
| goto Done; |
| Py_INCREF(num); |
| temp = PyLong_AsLong(num); |
| if (temp == -1 && PyErr_Occurred()) |
| goto Done; |
| d = (int)temp; |
| if ((long)d != temp) { |
| PyErr_SetString(PyExc_OverflowError, "normalized days too " |
| "large to fit in a C int"); |
| goto Done; |
| } |
| result = new_delta_ex(d, s, us, 0, type); |
| |
| Done: |
| Py_XDECREF(tuple); |
| Py_XDECREF(num); |
| return result; |
| } |
| |
| #define microseconds_to_delta(pymicros) \ |
| microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType) |
| |
| static PyObject * |
| multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta) |
| { |
| PyObject *pyus_in; |
| PyObject *pyus_out; |
| PyObject *result; |
| |
| pyus_in = delta_to_microseconds(delta); |
| if (pyus_in == NULL) |
| return NULL; |
| |
| pyus_out = PyNumber_Multiply(pyus_in, intobj); |
| Py_DECREF(pyus_in); |
| if (pyus_out == NULL) |
| return NULL; |
| |
| result = microseconds_to_delta(pyus_out); |
| Py_DECREF(pyus_out); |
| return result; |
| } |
| |
| static PyObject * |
| multiply_float_timedelta(PyObject *floatobj, PyDateTime_Delta *delta) |
| { |
| PyObject *result = NULL; |
| PyObject *pyus_in = NULL, *temp, *pyus_out; |
| PyObject *ratio = NULL; |
| |
| pyus_in = delta_to_microseconds(delta); |
| if (pyus_in == NULL) |
| return NULL; |
| ratio = PyObject_CallMethod(floatobj, "as_integer_ratio", NULL); |
| if (ratio == NULL) |
| goto error; |
| temp = PyNumber_Multiply(pyus_in, PyTuple_GET_ITEM(ratio, 0)); |
| Py_DECREF(pyus_in); |
| pyus_in = NULL; |
| if (temp == NULL) |
| goto error; |
| pyus_out = divide_nearest(temp, PyTuple_GET_ITEM(ratio, 1)); |
| Py_DECREF(temp); |
| if (pyus_out == NULL) |
| goto error; |
| result = microseconds_to_delta(pyus_out); |
| Py_DECREF(pyus_out); |
| error: |
| Py_XDECREF(pyus_in); |
| Py_XDECREF(ratio); |
| |
| return result; |
| } |
| |
| static PyObject * |
| divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj) |
| { |
| PyObject *pyus_in; |
| PyObject *pyus_out; |
| PyObject *result; |
| |
| pyus_in = delta_to_microseconds(delta); |
| if (pyus_in == NULL) |
| return NULL; |
| |
| pyus_out = PyNumber_FloorDivide(pyus_in, intobj); |
| Py_DECREF(pyus_in); |
| if (pyus_out == NULL) |
| return NULL; |
| |
| result = microseconds_to_delta(pyus_out); |
| Py_DECREF(pyus_out); |
| return result; |
| } |
| |
| static PyObject * |
| divide_timedelta_timedelta(PyDateTime_Delta *left, PyDateTime_Delta *right) |
| { |
| PyObject *pyus_left; |
| PyObject *pyus_right; |
| PyObject *result; |
| |
| pyus_left = delta_to_microseconds(left); |
| if (pyus_left == NULL) |
| return NULL; |
| |
| pyus_right = delta_to_microseconds(right); |
| if (pyus_right == NULL) { |
| Py_DECREF(pyus_left); |
| return NULL; |
| } |
| |
| result = PyNumber_FloorDivide(pyus_left, pyus_right); |
| Py_DECREF(pyus_left); |
| Py_DECREF(pyus_right); |
| return result; |
| } |
| |
| static PyObject * |
| truedivide_timedelta_timedelta(PyDateTime_Delta *left, PyDateTime_Delta *right) |
| { |
| PyObject *pyus_left; |
| PyObject *pyus_right; |
| PyObject *result; |
| |
| pyus_left = delta_to_microseconds(left); |
| if (pyus_left == NULL) |
| return NULL; |
| |
| pyus_right = delta_to_microseconds(right); |
| if (pyus_right == NULL) { |
| Py_DECREF(pyus_left); |
| return NULL; |
| } |
| |
| result = PyNumber_TrueDivide(pyus_left, pyus_right); |
| Py_DECREF(pyus_left); |
| Py_DECREF(pyus_right); |
| return result; |
| } |
| |
| static PyObject * |
| truedivide_timedelta_float(PyDateTime_Delta *delta, PyObject *f) |
| { |
| PyObject *result = NULL; |
| PyObject *pyus_in = NULL, *temp, *pyus_out; |
| PyObject *ratio = NULL; |
| |
| pyus_in = delta_to_microseconds(delta); |
| if (pyus_in == NULL) |
| return NULL; |
| ratio = PyObject_CallMethod(f, "as_integer_ratio", NULL); |
| if (ratio == NULL) |
| goto error; |
| temp = PyNumber_Multiply(pyus_in, PyTuple_GET_ITEM(ratio, 1)); |
| Py_DECREF(pyus_in); |
| pyus_in = NULL; |
| if (temp == NULL) |
| goto error; |
| pyus_out = divide_nearest(temp, PyTuple_GET_ITEM(ratio, 0)); |
| Py_DECREF(temp); |
| if (pyus_out == NULL) |
| goto error; |
| result = microseconds_to_delta(pyus_out); |
| Py_DECREF(pyus_out); |
| error: |
| Py_XDECREF(pyus_in); |
| Py_XDECREF(ratio); |
| |
| return result; |
| } |
| |
| static PyObject * |
| truedivide_timedelta_int(PyDateTime_Delta *delta, PyObject *i) |
| { |
| PyObject *result; |
| PyObject *pyus_in, *pyus_out; |
| pyus_in = delta_to_microseconds(delta); |
| if (pyus_in == NULL) |
| return NULL; |
| pyus_out = divide_nearest(pyus_in, i); |
| Py_DECREF(pyus_in); |
| if (pyus_out == NULL) |
| return NULL; |
| result = microseconds_to_delta(pyus_out); |
| Py_DECREF(pyus_out); |
| |
| return result; |
| } |
| |
| static PyObject * |
| delta_add(PyObject *left, PyObject *right) |
| { |
| PyObject *result = Py_NotImplemented; |
| |
| if (PyDelta_Check(left) && PyDelta_Check(right)) { |
| /* delta + delta */ |
| /* The C-level additions can't overflow because of the |
| * invariant bounds. |
| */ |
| int days = GET_TD_DAYS(left) + GET_TD_DAYS(right); |
| int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right); |
| int microseconds = GET_TD_MICROSECONDS(left) + |
| GET_TD_MICROSECONDS(right); |
| result = new_delta(days, seconds, microseconds, 1); |
| } |
| |
| if (result == Py_NotImplemented) |
| Py_INCREF(result); |
| return result; |
| } |
| |
| static PyObject * |
| delta_negative(PyDateTime_Delta *self) |
| { |
| return new_delta(-GET_TD_DAYS(self), |
| -GET_TD_SECONDS(self), |
| -GET_TD_MICROSECONDS(self), |
| 1); |
| } |
| |
| static PyObject * |
| delta_positive(PyDateTime_Delta *self) |
| { |
| /* Could optimize this (by returning self) if this isn't a |
| * subclass -- but who uses unary + ? Approximately nobody. |
| */ |
| return new_delta(GET_TD_DAYS(self), |
| GET_TD_SECONDS(self), |
| GET_TD_MICROSECONDS(self), |
| 0); |
| } |
| |
| static PyObject * |
| delta_abs(PyDateTime_Delta *self) |
| { |
| PyObject *result; |
| |
| assert(GET_TD_MICROSECONDS(self) >= 0); |
| assert(GET_TD_SECONDS(self) >= 0); |
| |
| if (GET_TD_DAYS(self) < 0) |
| result = delta_negative(self); |
| else |
| result = delta_positive(self); |
| |
| return result; |
| } |
| |
| static PyObject * |
| delta_subtract(PyObject *left, PyObject *right) |
| { |
| PyObject *result = Py_NotImplemented; |
| |
| if (PyDelta_Check(left) && PyDelta_Check(right)) { |
| /* delta - delta */ |
| PyObject *minus_right = PyNumber_Negative(right); |
| if (minus_right) { |
| result = delta_add(left, minus_right); |
| Py_DECREF(minus_right); |
| } |
| else |
| result = NULL; |
| } |
| |
| if (result == Py_NotImplemented) |
| Py_INCREF(result); |
| return result; |
| } |
| |
| static PyObject * |
| delta_richcompare(PyObject *self, PyObject *other, int op) |
| { |
| if (PyDelta_Check(other)) { |
| int diff = GET_TD_DAYS(self) - GET_TD_DAYS(other); |
| if (diff == 0) { |
| diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other); |
| if (diff == 0) |
| diff = GET_TD_MICROSECONDS(self) - |
| GET_TD_MICROSECONDS(other); |
| } |
| return diff_to_bool(diff, op); |
| } |
| else { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| } |
| |
| static PyObject *delta_getstate(PyDateTime_Delta *self); |
| |
| static long |
| delta_hash(PyDateTime_Delta *self) |
| { |
| if (self->hashcode == -1) { |
| PyObject *temp = delta_getstate(self); |
| if (temp != NULL) { |
| self->hashcode = PyObject_Hash(temp); |
| Py_DECREF(temp); |
| } |
| } |
| return self->hashcode; |
| } |
| |
| static PyObject * |
| delta_multiply(PyObject *left, PyObject *right) |
| { |
| PyObject *result = Py_NotImplemented; |
| |
| if (PyDelta_Check(left)) { |
| /* delta * ??? */ |
| if (PyLong_Check(right)) |
| result = multiply_int_timedelta(right, |
| (PyDateTime_Delta *) left); |
| else if (PyFloat_Check(right)) |
| result = multiply_float_timedelta(right, |
| (PyDateTime_Delta *) left); |
| } |
| else if (PyLong_Check(left)) |
| result = multiply_int_timedelta(left, |
| (PyDateTime_Delta *) right); |
| else if (PyFloat_Check(left)) |
| result = multiply_float_timedelta(left, |
| (PyDateTime_Delta *) right); |
| |
| if (result == Py_NotImplemented) |
| Py_INCREF(result); |
| return result; |
| } |
| |
| static PyObject * |
| delta_divide(PyObject *left, PyObject *right) |
| { |
| PyObject *result = Py_NotImplemented; |
| |
| if (PyDelta_Check(left)) { |
| /* delta * ??? */ |
| if (PyLong_Check(right)) |
| result = divide_timedelta_int( |
| (PyDateTime_Delta *)left, |
| right); |
| else if (PyDelta_Check(right)) |
| result = divide_timedelta_timedelta( |
| (PyDateTime_Delta *)left, |
| (PyDateTime_Delta *)right); |
| } |
| |
| if (result == Py_NotImplemented) |
| Py_INCREF(result); |
| return result; |
| } |
| |
| static PyObject * |
| delta_truedivide(PyObject *left, PyObject *right) |
| { |
| PyObject *result = Py_NotImplemented; |
| |
| if (PyDelta_Check(left)) { |
| if (PyDelta_Check(right)) |
| result = truedivide_timedelta_timedelta( |
| (PyDateTime_Delta *)left, |
| (PyDateTime_Delta *)right); |
| else if (PyFloat_Check(right)) |
| result = truedivide_timedelta_float( |
| (PyDateTime_Delta *)left, right); |
| else if (PyLong_Check(right)) |
| result = truedivide_timedelta_int( |
| (PyDateTime_Delta *)left, right); |
| } |
| |
| if (result == Py_NotImplemented) |
| Py_INCREF(result); |
| return result; |
| } |
| |
| static PyObject * |
| delta_remainder(PyObject *left, PyObject *right) |
| { |
| PyObject *pyus_left; |
| PyObject *pyus_right; |
| PyObject *pyus_remainder; |
| PyObject *remainder; |
| |
| if (!PyDelta_Check(left) || !PyDelta_Check(right)) { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| pyus_left = delta_to_microseconds((PyDateTime_Delta *)left); |
| if (pyus_left == NULL) |
| return NULL; |
| |
| pyus_right = delta_to_microseconds((PyDateTime_Delta *)right); |
| if (pyus_right == NULL) { |
| Py_DECREF(pyus_left); |
| return NULL; |
| } |
| |
| pyus_remainder = PyNumber_Remainder(pyus_left, pyus_right); |
| Py_DECREF(pyus_left); |
| Py_DECREF(pyus_right); |
| if (pyus_remainder == NULL) |
| return NULL; |
| |
| remainder = microseconds_to_delta(pyus_remainder); |
| Py_DECREF(pyus_remainder); |
| if (remainder == NULL) |
| return NULL; |
| |
| return remainder; |
| } |
| |
| static PyObject * |
| delta_divmod(PyObject *left, PyObject *right) |
| { |
| PyObject *pyus_left; |
| PyObject *pyus_right; |
| PyObject *divmod; |
| PyObject *delta; |
| PyObject *result; |
| |
| if (!PyDelta_Check(left) || !PyDelta_Check(right)) { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| pyus_left = delta_to_microseconds((PyDateTime_Delta *)left); |
| if (pyus_left == NULL) |
| return NULL; |
| |
| pyus_right = delta_to_microseconds((PyDateTime_Delta *)right); |
| if (pyus_right == NULL) { |
| Py_DECREF(pyus_left); |
| return NULL; |
| } |
| |
| divmod = PyNumber_Divmod(pyus_left, pyus_right); |
| Py_DECREF(pyus_left); |
| Py_DECREF(pyus_right); |
| if (divmod == NULL) |
| return NULL; |
| |
| assert(PyTuple_Size(divmod) == 2); |
| delta = microseconds_to_delta(PyTuple_GET_ITEM(divmod, 1)); |
| if (delta == NULL) { |
| Py_DECREF(divmod); |
| return NULL; |
| } |
| result = PyTuple_Pack(2, PyTuple_GET_ITEM(divmod, 0), delta); |
| Py_DECREF(delta); |
| Py_DECREF(divmod); |
| return result; |
| } |
| |
| /* Fold in the value of the tag ("seconds", "weeks", etc) component of a |
| * timedelta constructor. sofar is the # of microseconds accounted for |
| * so far, and there are factor microseconds per current unit, the number |
| * of which is given by num. num * factor is added to sofar in a |
| * numerically careful way, and that's the result. Any fractional |
| * microseconds left over (this can happen if num is a float type) are |
| * added into *leftover. |
| * Note that there are many ways this can give an error (NULL) return. |
| */ |
| static PyObject * |
| accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor, |
| double *leftover) |
| { |
| PyObject *prod; |
| PyObject *sum; |
| |
| assert(num != NULL); |
| |
| if (PyLong_Check(num)) { |
| prod = PyNumber_Multiply(num, factor); |
| if (prod == NULL) |
| return NULL; |
| sum = PyNumber_Add(sofar, prod); |
| Py_DECREF(prod); |
| return sum; |
| } |
| |
| if (PyFloat_Check(num)) { |
| double dnum; |
| double fracpart; |
| double intpart; |
| PyObject *x; |
| PyObject *y; |
| |
| /* The Plan: decompose num into an integer part and a |
| * fractional part, num = intpart + fracpart. |
| * Then num * factor == |
| * intpart * factor + fracpart * factor |
| * and the LHS can be computed exactly in long arithmetic. |
| * The RHS is again broken into an int part and frac part. |
| * and the frac part is added into *leftover. |
| */ |
| dnum = PyFloat_AsDouble(num); |
| if (dnum == -1.0 && PyErr_Occurred()) |
| return NULL; |
| fracpart = modf(dnum, &intpart); |
| x = PyLong_FromDouble(intpart); |
| if (x == NULL) |
| return NULL; |
| |
| prod = PyNumber_Multiply(x, factor); |
| Py_DECREF(x); |
| if (prod == NULL) |
| return NULL; |
| |
| sum = PyNumber_Add(sofar, prod); |
| Py_DECREF(prod); |
| if (sum == NULL) |
| return NULL; |
| |
| if (fracpart == 0.0) |
| return sum; |
| /* So far we've lost no information. Dealing with the |
| * fractional part requires float arithmetic, and may |
| * lose a little info. |
| */ |
| assert(PyLong_Check(factor)); |
| dnum = PyLong_AsDouble(factor); |
| |
| dnum *= fracpart; |
| fracpart = modf(dnum, &intpart); |
| x = PyLong_FromDouble(intpart); |
| if (x == NULL) { |
| Py_DECREF(sum); |
| return NULL; |
| } |
| |
| y = PyNumber_Add(sum, x); |
| Py_DECREF(sum); |
| Py_DECREF(x); |
| *leftover += fracpart; |
| return y; |
| } |
| |
| PyErr_Format(PyExc_TypeError, |
| "unsupported type for timedelta %s component: %s", |
| tag, Py_TYPE(num)->tp_name); |
| return NULL; |
| } |
| |
| static PyObject * |
| delta_new(PyTypeObject *type, PyObject *args, PyObject *kw) |
| { |
| PyObject *self = NULL; |
| |
| /* Argument objects. */ |
| PyObject *day = NULL; |
| PyObject *second = NULL; |
| PyObject *us = NULL; |
| PyObject *ms = NULL; |
| PyObject *minute = NULL; |
| PyObject *hour = NULL; |
| PyObject *week = NULL; |
| |
| PyObject *x = NULL; /* running sum of microseconds */ |
| PyObject *y = NULL; /* temp sum of microseconds */ |
| double leftover_us = 0.0; |
| |
| static char *keywords[] = { |
| "days", "seconds", "microseconds", "milliseconds", |
| "minutes", "hours", "weeks", NULL |
| }; |
| |
| if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__", |
| keywords, |
| &day, &second, &us, |
| &ms, &minute, &hour, &week) == 0) |
| goto Done; |
| |
| x = PyLong_FromLong(0); |
| if (x == NULL) |
| goto Done; |
| |
| #define CLEANUP \ |
| Py_DECREF(x); \ |
| x = y; \ |
| if (x == NULL) \ |
| goto Done |
| |
| if (us) { |
| y = accum("microseconds", x, us, us_per_us, &leftover_us); |
| CLEANUP; |
| } |
| if (ms) { |
| y = accum("milliseconds", x, ms, us_per_ms, &leftover_us); |
| CLEANUP; |
| } |
| if (second) { |
| y = accum("seconds", x, second, us_per_second, &leftover_us); |
| CLEANUP; |
| } |
| if (minute) { |
| y = accum("minutes", x, minute, us_per_minute, &leftover_us); |
| CLEANUP; |
| } |
| if (hour) { |
| y = accum("hours", x, hour, us_per_hour, &leftover_us); |
| CLEANUP; |
| } |
| if (day) { |
| y = accum("days", x, day, us_per_day, &leftover_us); |
| CLEANUP; |
| } |
| if (week) { |
| y = accum("weeks", x, week, us_per_week, &leftover_us); |
| CLEANUP; |
| } |
| if (leftover_us) { |
| /* Round to nearest whole # of us, and add into x. */ |
| PyObject *temp = PyLong_FromLong(round_to_long(leftover_us)); |
| if (temp == NULL) { |
| Py_DECREF(x); |
| goto Done; |
| } |
| y = PyNumber_Add(x, temp); |
| Py_DECREF(temp); |
| CLEANUP; |
| } |
| |
| self = microseconds_to_delta_ex(x, type); |
| Py_DECREF(x); |
| Done: |
| return self; |
| |
| #undef CLEANUP |
| } |
| |
| static int |
| delta_bool(PyDateTime_Delta *self) |
| { |
| return (GET_TD_DAYS(self) != 0 |
| || GET_TD_SECONDS(self) != 0 |
| || GET_TD_MICROSECONDS(self) != 0); |
| } |
| |
| static PyObject * |
| delta_repr(PyDateTime_Delta *self) |
| { |
| if (GET_TD_MICROSECONDS(self) != 0) |
| return PyUnicode_FromFormat("%s(%d, %d, %d)", |
| Py_TYPE(self)->tp_name, |
| GET_TD_DAYS(self), |
| GET_TD_SECONDS(self), |
| GET_TD_MICROSECONDS(self)); |
| if (GET_TD_SECONDS(self) != 0) |
| return PyUnicode_FromFormat("%s(%d, %d)", |
| Py_TYPE(self)->tp_name, |
| GET_TD_DAYS(self), |
| GET_TD_SECONDS(self)); |
| |
| return PyUnicode_FromFormat("%s(%d)", |
| Py_TYPE(self)->tp_name, |
| GET_TD_DAYS(self)); |
| } |
| |
| static PyObject * |
| delta_str(PyDateTime_Delta *self) |
| { |
| int us = GET_TD_MICROSECONDS(self); |
| int seconds = GET_TD_SECONDS(self); |
| int minutes = divmod(seconds, 60, &seconds); |
| int hours = divmod(minutes, 60, &minutes); |
| int days = GET_TD_DAYS(self); |
| |
| if (days) { |
| if (us) |
| return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d.%06d", |
| days, (days == 1 || days == -1) ? "" : "s", |
| hours, minutes, seconds, us); |
| else |
| return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d", |
| days, (days == 1 || days == -1) ? "" : "s", |
| hours, minutes, seconds); |
| } else { |
| if (us) |
| return PyUnicode_FromFormat("%d:%02d:%02d.%06d", |
| hours, minutes, seconds, us); |
| else |
| return PyUnicode_FromFormat("%d:%02d:%02d", |
| hours, minutes, seconds); |
| } |
| |
| } |
| |
| /* Pickle support, a simple use of __reduce__. */ |
| |
| /* __getstate__ isn't exposed */ |
| static PyObject * |
| delta_getstate(PyDateTime_Delta *self) |
| { |
| return Py_BuildValue("iii", GET_TD_DAYS(self), |
| GET_TD_SECONDS(self), |
| GET_TD_MICROSECONDS(self)); |
| } |
| |
| static PyObject * |
| delta_total_seconds(PyObject *self) |
| { |
| PyObject *total_seconds; |
| PyObject *total_microseconds; |
| PyObject *one_million; |
| |
| total_microseconds = delta_to_microseconds((PyDateTime_Delta *)self); |
| if (total_microseconds == NULL) |
| return NULL; |
| |
| one_million = PyLong_FromLong(1000000L); |
| if (one_million == NULL) { |
| Py_DECREF(total_microseconds); |
| return NULL; |
| } |
| |
| total_seconds = PyNumber_TrueDivide(total_microseconds, one_million); |
| |
| Py_DECREF(total_microseconds); |
| Py_DECREF(one_million); |
| return total_seconds; |
| } |
| |
| static PyObject * |
| delta_reduce(PyDateTime_Delta* self) |
| { |
| return Py_BuildValue("ON", Py_TYPE(self), delta_getstate(self)); |
| } |
| |
| #define OFFSET(field) offsetof(PyDateTime_Delta, field) |
| |
| static PyMemberDef delta_members[] = { |
| |
| {"days", T_INT, OFFSET(days), READONLY, |
| PyDoc_STR("Number of days.")}, |
| |
| {"seconds", T_INT, OFFSET(seconds), READONLY, |
| PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")}, |
| |
| {"microseconds", T_INT, OFFSET(microseconds), READONLY, |
| PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")}, |
| {NULL} |
| }; |
| |
| static PyMethodDef delta_methods[] = { |
| {"total_seconds", (PyCFunction)delta_total_seconds, METH_NOARGS, |
| PyDoc_STR("Total seconds in the duration.")}, |
| |
| {"__reduce__", (PyCFunction)delta_reduce, METH_NOARGS, |
| PyDoc_STR("__reduce__() -> (cls, state)")}, |
| |
| {NULL, NULL}, |
| }; |
| |
| static char delta_doc[] = |
| PyDoc_STR("Difference between two datetime values."); |
| |
| static PyNumberMethods delta_as_number = { |
| delta_add, /* nb_add */ |
| delta_subtract, /* nb_subtract */ |
| delta_multiply, /* nb_multiply */ |
| delta_remainder, /* nb_remainder */ |
| delta_divmod, /* nb_divmod */ |
| 0, /* nb_power */ |
| (unaryfunc)delta_negative, /* nb_negative */ |
| (unaryfunc)delta_positive, /* nb_positive */ |
| (unaryfunc)delta_abs, /* nb_absolute */ |
| (inquiry)delta_bool, /* nb_bool */ |
| 0, /*nb_invert*/ |
| 0, /*nb_lshift*/ |
| 0, /*nb_rshift*/ |
| 0, /*nb_and*/ |
| 0, /*nb_xor*/ |
| 0, /*nb_or*/ |
| 0, /*nb_int*/ |
| 0, /*nb_reserved*/ |
| 0, /*nb_float*/ |
| 0, /*nb_inplace_add*/ |
| 0, /*nb_inplace_subtract*/ |
| 0, /*nb_inplace_multiply*/ |
| 0, /*nb_inplace_remainder*/ |
| 0, /*nb_inplace_power*/ |
| 0, /*nb_inplace_lshift*/ |
| 0, /*nb_inplace_rshift*/ |
| 0, /*nb_inplace_and*/ |
| 0, /*nb_inplace_xor*/ |
| 0, /*nb_inplace_or*/ |
| delta_divide, /* nb_floor_divide */ |
| delta_truedivide, /* nb_true_divide */ |
| 0, /* nb_inplace_floor_divide */ |
| 0, /* nb_inplace_true_divide */ |
| }; |
| |
| static PyTypeObject PyDateTime_DeltaType = { |
| PyVarObject_HEAD_INIT(NULL, 0) |
| "datetime.timedelta", /* tp_name */ |
| sizeof(PyDateTime_Delta), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| 0, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)delta_repr, /* tp_repr */ |
| &delta_as_number, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)delta_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| (reprfunc)delta_str, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| delta_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| delta_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| delta_methods, /* tp_methods */ |
| delta_members, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| delta_new, /* tp_new */ |
| 0, /* tp_free */ |
| }; |
| |
| /* |
| * PyDateTime_Date implementation. |
| */ |
| |
| /* Accessor properties. */ |
| |
| static PyObject * |
| date_year(PyDateTime_Date *self, void *unused) |
| { |
| return PyLong_FromLong(GET_YEAR(self)); |
| } |
| |
| static PyObject * |
| date_month(PyDateTime_Date *self, void *unused) |
| { |
| return PyLong_FromLong(GET_MONTH(self)); |
| } |
| |
| static PyObject * |
| date_day(PyDateTime_Date *self, void *unused) |
| { |
| return PyLong_FromLong(GET_DAY(self)); |
| } |
| |
| static PyGetSetDef date_getset[] = { |
| {"year", (getter)date_year}, |
| {"month", (getter)date_month}, |
| {"day", (getter)date_day}, |
| {NULL} |
| }; |
| |
| /* Constructors. */ |
| |
| static char *date_kws[] = {"year", "month", "day", NULL}; |
| |
| static PyObject * |
| date_new(PyTypeObject *type, PyObject *args, PyObject *kw) |
| { |
| PyObject *self = NULL; |
| PyObject *state; |
| int year; |
| int month; |
| int day; |
| |
| /* Check for invocation from pickle with __getstate__ state */ |
| if (PyTuple_GET_SIZE(args) == 1 && |
| PyBytes_Check(state = PyTuple_GET_ITEM(args, 0)) && |
| PyBytes_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE && |
| MONTH_IS_SANE(PyBytes_AS_STRING(state)[2])) |
| { |
| PyDateTime_Date *me; |
| |
| me = (PyDateTime_Date *) (type->tp_alloc(type, 0)); |
| if (me != NULL) { |
| char *pdata = PyBytes_AS_STRING(state); |
| memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE); |
| me->hashcode = -1; |
| } |
| return (PyObject *)me; |
| } |
| |
| if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws, |
| &year, &month, &day)) { |
| if (check_date_args(year, month, day) < 0) |
| return NULL; |
| self = new_date_ex(year, month, day, type); |
| } |
| return self; |
| } |
| |
| /* Return new date from localtime(t). */ |
| static PyObject * |
| date_local_from_time_t(PyObject *cls, double ts) |
| { |
| struct tm *tm; |
| time_t t; |
| PyObject *result = NULL; |
| |
| t = _PyTime_DoubleToTimet(ts); |
| if (t == (time_t)-1 && PyErr_Occurred()) |
| return NULL; |
| tm = localtime(&t); |
| if (tm) |
| result = PyObject_CallFunction(cls, "iii", |
| tm->tm_year + 1900, |
| tm->tm_mon + 1, |
| tm->tm_mday); |
| else |
| PyErr_SetString(PyExc_ValueError, |
| "timestamp out of range for " |
| "platform localtime() function"); |
| return result; |
| } |
| |
| /* Return new date from current time. |
| * We say this is equivalent to fromtimestamp(time.time()), and the |
| * only way to be sure of that is to *call* time.time(). That's not |
| * generally the same as calling C's time. |
| */ |
| static PyObject * |
| date_today(PyObject *cls, PyObject *dummy) |
| { |
| PyObject *time; |
| PyObject *result; |
| |
| time = time_time(); |
| if (time == NULL) |
| return NULL; |
| |
| /* Note well: today() is a class method, so this may not call |
| * date.fromtimestamp. For example, it may call |
| * datetime.fromtimestamp. That's why we need all the accuracy |
| * time.time() delivers; if someone were gonzo about optimization, |
| * date.today() could get away with plain C time(). |
| */ |
| result = PyObject_CallMethod(cls, "fromtimestamp", "O", time); |
| Py_DECREF(time); |
| return result; |
| } |
| |
| /* Return new date from given timestamp (Python timestamp -- a double). */ |
| static PyObject * |
| date_fromtimestamp(PyObject *cls, PyObject *args) |
| { |
| double timestamp; |
| PyObject *result = NULL; |
| |
| if (PyArg_ParseTuple(args, "d:fromtimestamp", ×tamp)) |
| result = date_local_from_time_t(cls, timestamp); |
| return result; |
| } |
| |
| /* Return new date from proleptic Gregorian ordinal. Raises ValueError if |
| * the ordinal is out of range. |
| */ |
| static PyObject * |
| date_fromordinal(PyObject *cls, PyObject *args) |
| { |
| PyObject *result = NULL; |
| int ordinal; |
| |
| if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) { |
| int year; |
| int month; |
| int day; |
| |
| if (ordinal < 1) |
| PyErr_SetString(PyExc_ValueError, "ordinal must be " |
| ">= 1"); |
| else { |
| ord_to_ymd(ordinal, &year, &month, &day); |
| result = PyObject_CallFunction(cls, "iii", |
| year, month, day); |
| } |
| } |
| return result; |
| } |
| |
| /* |
| * Date arithmetic. |
| */ |
| |
| /* date + timedelta -> date. If arg negate is true, subtract the timedelta |
| * instead. |
| */ |
| static PyObject * |
| add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate) |
| { |
| PyObject *result = NULL; |
| int year = GET_YEAR(date); |
| int month = GET_MONTH(date); |
| int deltadays = GET_TD_DAYS(delta); |
| /* C-level overflow is impossible because |deltadays| < 1e9. */ |
| int day = GET_DAY(date) + (negate ? -deltadays : deltadays); |
| |
| if (normalize_date(&year, &month, &day) >= 0) |
| result = new_date(year, month, day); |
| return result; |
| } |
| |
| static PyObject * |
| date_add(PyObject *left, PyObject *right) |
| { |
| if (PyDateTime_Check(left) || PyDateTime_Check(right)) { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| if (PyDate_Check(left)) { |
| /* date + ??? */ |
| if (PyDelta_Check(right)) |
| /* date + delta */ |
| return add_date_timedelta((PyDateTime_Date *) left, |
| (PyDateTime_Delta *) right, |
| 0); |
| } |
| else { |
| /* ??? + date |
| * 'right' must be one of us, or we wouldn't have been called |
| */ |
| if (PyDelta_Check(left)) |
| /* delta + date */ |
| return add_date_timedelta((PyDateTime_Date *) right, |
| (PyDateTime_Delta *) left, |
| 0); |
| } |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| static PyObject * |
| date_subtract(PyObject *left, PyObject *right) |
| { |
| if (PyDateTime_Check(left) || PyDateTime_Check(right)) { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| if (PyDate_Check(left)) { |
| if (PyDate_Check(right)) { |
| /* date - date */ |
| int left_ord = ymd_to_ord(GET_YEAR(left), |
| GET_MONTH(left), |
| GET_DAY(left)); |
| int right_ord = ymd_to_ord(GET_YEAR(right), |
| GET_MONTH(right), |
| GET_DAY(right)); |
| return new_delta(left_ord - right_ord, 0, 0, 0); |
| } |
| if (PyDelta_Check(right)) { |
| /* date - delta */ |
| return add_date_timedelta((PyDateTime_Date *) left, |
| (PyDateTime_Delta *) right, |
| 1); |
| } |
| } |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| |
| /* Various ways to turn a date into a string. */ |
| |
| static PyObject * |
| date_repr(PyDateTime_Date *self) |
| { |
| return PyUnicode_FromFormat("%s(%d, %d, %d)", |
| Py_TYPE(self)->tp_name, |
| GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); |
| } |
| |
| static PyObject * |
| date_isoformat(PyDateTime_Date *self) |
| { |
| return PyUnicode_FromFormat("%04d-%02d-%02d", |
| GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); |
| } |
| |
| /* str() calls the appropriate isoformat() method. */ |
| static PyObject * |
| date_str(PyDateTime_Date *self) |
| { |
| return PyObject_CallMethod((PyObject *)self, "isoformat", "()"); |
| } |
| |
| |
| static PyObject * |
| date_ctime(PyDateTime_Date *self) |
| { |
| return format_ctime(self, 0, 0, 0); |
| } |
| |
| static PyObject * |
| date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw) |
| { |
| /* This method can be inherited, and needs to call the |
| * timetuple() method appropriate to self's class. |
| */ |
| PyObject *result; |
| PyObject *tuple; |
| PyObject *format; |
| static char *keywords[] = {"format", NULL}; |
| |
| if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords, |
| &format)) |
| return NULL; |
| |
| tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()"); |
| if (tuple == NULL) |
| return NULL; |
| result = wrap_strftime((PyObject *)self, format, tuple, |
| (PyObject *)self); |
| Py_DECREF(tuple); |
| return result; |
| } |
| |
| static PyObject * |
| date_format(PyDateTime_Date *self, PyObject *args) |
| { |
| PyObject *format; |
| |
| if (!PyArg_ParseTuple(args, "U:__format__", &format)) |
| return NULL; |
| |
| /* if the format is zero length, return str(self) */ |
| if (PyUnicode_GetSize(format) == 0) |
| return PyObject_Str((PyObject *)self); |
| |
| return PyObject_CallMethod((PyObject *)self, "strftime", "O", format); |
| } |
| |
| /* ISO methods. */ |
| |
| static PyObject * |
| date_isoweekday(PyDateTime_Date *self) |
| { |
| int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); |
| |
| return PyLong_FromLong(dow + 1); |
| } |
| |
| static PyObject * |
| date_isocalendar(PyDateTime_Date *self) |
| { |
| int year = GET_YEAR(self); |
| int week1_monday = iso_week1_monday(year); |
| int today = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self)); |
| int week; |
| int day; |
| |
| week = divmod(today - week1_monday, 7, &day); |
| if (week < 0) { |
| --year; |
| week1_monday = iso_week1_monday(year); |
| week = divmod(today - week1_monday, 7, &day); |
| } |
| else if (week >= 52 && today >= iso_week1_monday(year + 1)) { |
| ++year; |
| week = 0; |
| } |
| return Py_BuildValue("iii", year, week + 1, day + 1); |
| } |
| |
| /* Miscellaneous methods. */ |
| |
| static PyObject * |
| date_richcompare(PyObject *self, PyObject *other, int op) |
| { |
| if (PyDate_Check(other)) { |
| int diff = memcmp(((PyDateTime_Date *)self)->data, |
| ((PyDateTime_Date *)other)->data, |
| _PyDateTime_DATE_DATASIZE); |
| return diff_to_bool(diff, op); |
| } |
| else { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| } |
| |
| static PyObject * |
| date_timetuple(PyDateTime_Date *self) |
| { |
| return build_struct_time(GET_YEAR(self), |
| GET_MONTH(self), |
| GET_DAY(self), |
| 0, 0, 0, -1); |
| } |
| |
| static PyObject * |
| date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw) |
| { |
| PyObject *clone; |
| PyObject *tuple; |
| int year = GET_YEAR(self); |
| int month = GET_MONTH(self); |
| int day = GET_DAY(self); |
| |
| if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws, |
| &year, &month, &day)) |
| return NULL; |
| tuple = Py_BuildValue("iii", year, month, day); |
| if (tuple == NULL) |
| return NULL; |
| clone = date_new(Py_TYPE(self), tuple, NULL); |
| Py_DECREF(tuple); |
| return clone; |
| } |
| |
| /* |
| Borrowed from stringobject.c, originally it was string_hash() |
| */ |
| static long |
| generic_hash(unsigned char *data, int len) |
| { |
| register unsigned char *p; |
| register long x; |
| |
| p = (unsigned char *) data; |
| x = *p << 7; |
| while (--len >= 0) |
| x = (1000003*x) ^ *p++; |
| x ^= len; |
| if (x == -1) |
| x = -2; |
| |
| return x; |
| } |
| |
| |
| static PyObject *date_getstate(PyDateTime_Date *self); |
| |
| static long |
| date_hash(PyDateTime_Date *self) |
| { |
| if (self->hashcode == -1) |
| self->hashcode = generic_hash( |
| (unsigned char *)self->data, _PyDateTime_DATE_DATASIZE); |
| |
| return self->hashcode; |
| } |
| |
| static PyObject * |
| date_toordinal(PyDateTime_Date *self) |
| { |
| return PyLong_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self), |
| GET_DAY(self))); |
| } |
| |
| static PyObject * |
| date_weekday(PyDateTime_Date *self) |
| { |
| int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); |
| |
| return PyLong_FromLong(dow); |
| } |
| |
| /* Pickle support, a simple use of __reduce__. */ |
| |
| /* __getstate__ isn't exposed */ |
| static PyObject * |
| date_getstate(PyDateTime_Date *self) |
| { |
| PyObject* field; |
| field = PyBytes_FromStringAndSize((char*)self->data, |
| _PyDateTime_DATE_DATASIZE); |
| return Py_BuildValue("(N)", field); |
| } |
| |
| static PyObject * |
| date_reduce(PyDateTime_Date *self, PyObject *arg) |
| { |
| return Py_BuildValue("(ON)", Py_TYPE(self), date_getstate(self)); |
| } |
| |
| static PyMethodDef date_methods[] = { |
| |
| /* Class methods: */ |
| |
| {"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS | |
| METH_CLASS, |
| PyDoc_STR("timestamp -> local date from a POSIX timestamp (like " |
| "time.time()).")}, |
| |
| {"fromordinal", (PyCFunction)date_fromordinal, METH_VARARGS | |
| METH_CLASS, |
| PyDoc_STR("int -> date corresponding to a proleptic Gregorian " |
| "ordinal.")}, |
| |
| {"today", (PyCFunction)date_today, METH_NOARGS | METH_CLASS, |
| PyDoc_STR("Current date or datetime: same as " |
| "self.__class__.fromtimestamp(time.time()).")}, |
| |
| /* Instance methods: */ |
| |
| {"ctime", (PyCFunction)date_ctime, METH_NOARGS, |
| PyDoc_STR("Return ctime() style string.")}, |
| |
| {"strftime", (PyCFunction)date_strftime, METH_VARARGS | METH_KEYWORDS, |
| PyDoc_STR("format -> strftime() style string.")}, |
| |
| {"__format__", (PyCFunction)date_format, METH_VARARGS, |
| PyDoc_STR("Formats self with strftime.")}, |
| |
| {"timetuple", (PyCFunction)date_timetuple, METH_NOARGS, |
| PyDoc_STR("Return time tuple, compatible with time.localtime().")}, |
| |
| {"isocalendar", (PyCFunction)date_isocalendar, METH_NOARGS, |
| PyDoc_STR("Return a 3-tuple containing ISO year, week number, and " |
| "weekday.")}, |
| |
| {"isoformat", (PyCFunction)date_isoformat, METH_NOARGS, |
| PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")}, |
| |
| {"isoweekday", (PyCFunction)date_isoweekday, METH_NOARGS, |
| PyDoc_STR("Return the day of the week represented by the date.\n" |
| "Monday == 1 ... Sunday == 7")}, |
| |
| {"toordinal", (PyCFunction)date_toordinal, METH_NOARGS, |
| PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year " |
| "1 is day 1.")}, |
| |
| {"weekday", (PyCFunction)date_weekday, METH_NOARGS, |
| PyDoc_STR("Return the day of the week represented by the date.\n" |
| "Monday == 0 ... Sunday == 6")}, |
| |
| {"replace", (PyCFunction)date_replace, METH_VARARGS | METH_KEYWORDS, |
| PyDoc_STR("Return date with new specified fields.")}, |
| |
| {"__reduce__", (PyCFunction)date_reduce, METH_NOARGS, |
| PyDoc_STR("__reduce__() -> (cls, state)")}, |
| |
| {NULL, NULL} |
| }; |
| |
| static char date_doc[] = |
| PyDoc_STR("date(year, month, day) --> date object"); |
| |
| static PyNumberMethods date_as_number = { |
| date_add, /* nb_add */ |
| date_subtract, /* nb_subtract */ |
| 0, /* nb_multiply */ |
| 0, /* nb_remainder */ |
| 0, /* nb_divmod */ |
| 0, /* nb_power */ |
| 0, /* nb_negative */ |
| 0, /* nb_positive */ |
| 0, /* nb_absolute */ |
| 0, /* nb_bool */ |
| }; |
| |
| static PyTypeObject PyDateTime_DateType = { |
| PyVarObject_HEAD_INIT(NULL, 0) |
| "datetime.date", /* tp_name */ |
| sizeof(PyDateTime_Date), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| 0, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)date_repr, /* tp_repr */ |
| &date_as_number, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)date_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| (reprfunc)date_str, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| date_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| date_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| date_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| date_getset, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| date_new, /* tp_new */ |
| 0, /* tp_free */ |
| }; |
| |
| /* |
| * PyDateTime_TZInfo implementation. |
| */ |
| |
| /* This is a pure abstract base class, so doesn't do anything beyond |
| * raising NotImplemented exceptions. Real tzinfo classes need |
| * to derive from this. This is mostly for clarity, and for efficiency in |
| * datetime and time constructors (their tzinfo arguments need to |
| * be subclasses of this tzinfo class, which is easy and quick to check). |
| * |
| * Note: For reasons having to do with pickling of subclasses, we have |
| * to allow tzinfo objects to be instantiated. This wasn't an issue |
| * in the Python implementation (__init__() could raise NotImplementedError |
| * there without ill effect), but doing so in the C implementation hit a |
| * brick wall. |
| */ |
| |
| static PyObject * |
| tzinfo_nogo(const char* methodname) |
| { |
| PyErr_Format(PyExc_NotImplementedError, |
| "a tzinfo subclass must implement %s()", |
| methodname); |
| return NULL; |
| } |
| |
| /* Methods. A subclass must implement these. */ |
| |
| static PyObject * |
| tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt) |
| { |
| return tzinfo_nogo("tzname"); |
| } |
| |
| static PyObject * |
| tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt) |
| { |
| return tzinfo_nogo("utcoffset"); |
| } |
| |
| static PyObject * |
| tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt) |
| { |
| return tzinfo_nogo("dst"); |
| } |
| |
| static PyObject * |
| tzinfo_fromutc(PyDateTime_TZInfo *self, PyDateTime_DateTime *dt) |
| { |
| int y, m, d, hh, mm, ss, us; |
| |
| PyObject *result; |
| int off, dst; |
| int none; |
| int delta; |
| |
| if (! PyDateTime_Check(dt)) { |
| PyErr_SetString(PyExc_TypeError, |
| "fromutc: argument must be a datetime"); |
| return NULL; |
| } |
| if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) { |
| PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo " |
| "is not self"); |
| return NULL; |
| } |
| |
| off = call_utcoffset(dt->tzinfo, (PyObject *)dt, &none); |
| if (off == -1 && PyErr_Occurred()) |
| return NULL; |
| if (none) { |
| PyErr_SetString(PyExc_ValueError, "fromutc: non-None " |
| "utcoffset() result required"); |
| return NULL; |
| } |
| |
| dst = call_dst(dt->tzinfo, (PyObject *)dt, &none); |
| if (dst == -1 && PyErr_Occurred()) |
| return NULL; |
| if (none) { |
| PyErr_SetString(PyExc_ValueError, "fromutc: non-None " |
| "dst() result required"); |
| return NULL; |
| } |
| |
| y = GET_YEAR(dt); |
| m = GET_MONTH(dt); |
| d = GET_DAY(dt); |
| hh = DATE_GET_HOUR(dt); |
| mm = DATE_GET_MINUTE(dt); |
| ss = DATE_GET_SECOND(dt); |
| us = DATE_GET_MICROSECOND(dt); |
| |
| delta = off - dst; |
| mm += delta; |
| if ((mm < 0 || mm >= 60) && |
| normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0) |
| return NULL; |
| result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo); |
| if (result == NULL) |
| return result; |
| |
| dst = call_dst(dt->tzinfo, result, &none); |
| if (dst == -1 && PyErr_Occurred()) |
| goto Fail; |
| if (none) |
| goto Inconsistent; |
| if (dst == 0) |
| return result; |
| |
| mm += dst; |
| if ((mm < 0 || mm >= 60) && |
| normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0) |
| goto Fail; |
| Py_DECREF(result); |
| result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo); |
| return result; |
| |
| Inconsistent: |
| PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave" |
| "inconsistent results; cannot convert"); |
| |
| /* fall thru to failure */ |
| Fail: |
| Py_DECREF(result); |
| return NULL; |
| } |
| |
| /* |
| * Pickle support. This is solely so that tzinfo subclasses can use |
| * pickling -- tzinfo itself is supposed to be uninstantiable. |
| */ |
| |
| static PyObject * |
| tzinfo_reduce(PyObject *self) |
| { |
| PyObject *args, *state, *tmp; |
| PyObject *getinitargs, *getstate; |
| |
| tmp = PyTuple_New(0); |
| if (tmp == NULL) |
| return NULL; |
| |
| getinitargs = PyObject_GetAttrString(self, "__getinitargs__"); |
| if (getinitargs != NULL) { |
| args = PyObject_CallObject(getinitargs, tmp); |
| Py_DECREF(getinitargs); |
| if (args == NULL) { |
| Py_DECREF(tmp); |
| return NULL; |
| } |
| } |
| else { |
| PyErr_Clear(); |
| args = tmp; |
| Py_INCREF(args); |
| } |
| |
| getstate = PyObject_GetAttrString(self, "__getstate__"); |
| if (getstate != NULL) { |
| state = PyObject_CallObject(getstate, tmp); |
| Py_DECREF(getstate); |
| if (state == NULL) { |
| Py_DECREF(args); |
| Py_DECREF(tmp); |
| return NULL; |
| } |
| } |
| else { |
| PyObject **dictptr; |
| PyErr_Clear(); |
| state = Py_None; |
| dictptr = _PyObject_GetDictPtr(self); |
| if (dictptr && *dictptr && PyDict_Size(*dictptr)) |
| state = *dictptr; |
| Py_INCREF(state); |
| } |
| |
| Py_DECREF(tmp); |
| |
| if (state == Py_None) { |
| Py_DECREF(state); |
| return Py_BuildValue("(ON)", Py_TYPE(self), args); |
| } |
| else |
| return Py_BuildValue("(ONN)", Py_TYPE(self), args, state); |
| } |
| |
| static PyMethodDef tzinfo_methods[] = { |
| |
| {"tzname", (PyCFunction)tzinfo_tzname, METH_O, |
| PyDoc_STR("datetime -> string name of time zone.")}, |
| |
| {"utcoffset", (PyCFunction)tzinfo_utcoffset, METH_O, |
| PyDoc_STR("datetime -> timedelta showing offset from UTC, negative " |
| "values indicating West of UTC")}, |
| |
| {"dst", (PyCFunction)tzinfo_dst, METH_O, |
| PyDoc_STR("datetime -> DST offset in minutes east of UTC.")}, |
| |
| {"fromutc", (PyCFunction)tzinfo_fromutc, METH_O, |
| PyDoc_STR("datetime -> timedelta showing offset from UTC, negative " |
| "values indicating West of UTC")}, |
| |
| {"__reduce__", (PyCFunction)tzinfo_reduce, METH_NOARGS, |
| PyDoc_STR("-> (cls, state)")}, |
| |
| {NULL, NULL} |
| }; |
| |
| static char tzinfo_doc[] = |
| PyDoc_STR("Abstract base class for time zone info objects."); |
| |
| static PyTypeObject PyDateTime_TZInfoType = { |
| PyVarObject_HEAD_INIT(NULL, 0) |
| "datetime.tzinfo", /* tp_name */ |
| sizeof(PyDateTime_TZInfo), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| 0, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| tzinfo_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| tzinfo_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| PyType_GenericNew, /* tp_new */ |
| 0, /* tp_free */ |
| }; |
| |
| static char *timezone_kws[] = {"offset", "name", NULL}; |
| |
| static PyObject * |
| timezone_new(PyTypeObject *type, PyObject *args, PyObject *kw) |
| { |
| PyObject *offset; |
| PyObject *name = NULL; |
| if (PyArg_ParseTupleAndKeywords(args, kw, "O!|O!:timezone", timezone_kws, |
| &PyDateTime_DeltaType, &offset, |
| &PyUnicode_Type, &name)) |
| return new_timezone(offset, name); |
| |
| return NULL; |
| } |
| |
| static void |
| timezone_dealloc(PyDateTime_TimeZone *self) |
| { |
| Py_CLEAR(self->offset); |
| Py_CLEAR(self->name); |
| Py_TYPE(self)->tp_free((PyObject *)self); |
| } |
| |
| static PyObject * |
| timezone_richcompare(PyDateTime_TimeZone *self, |
| PyDateTime_TimeZone *other, int op) |
| { |
| if (op != Py_EQ && op != Py_NE) { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| return delta_richcompare(self->offset, other->offset, op); |
| } |
| |
| static long |
| timezone_hash(PyDateTime_TimeZone *self) |
| { |
| return delta_hash((PyDateTime_Delta *)self->offset); |
| } |
| |
| /* Check argument type passed to tzname, utcoffset, or dst methods. |
| Returns 0 for good argument. Returns -1 and sets exception info |
| otherwise. |
| */ |
| static int |
| _timezone_check_argument(PyObject *dt, const char *meth) |
| { |
| if (dt == Py_None || PyDateTime_Check(dt)) |
| return 0; |
| PyErr_Format(PyExc_TypeError, "%s(dt) argument must be a datetime instance" |
| " or None, not %.200s", meth, Py_TYPE(dt)->tp_name); |
| return -1; |
| } |
| |
| static PyObject * |
| timezone_str(PyDateTime_TimeZone *self) |
| { |
| char buf[10]; |
| int hours, minutes, seconds; |
| PyObject *offset; |
| char sign; |
| |
| if (self->name != NULL) { |
| Py_INCREF(self->name); |
| return self->name; |
| } |
| /* Offset is normalized, so it is negative if days < 0 */ |
| if (GET_TD_DAYS(self->offset) < 0) { |
| sign = '-'; |
| offset = delta_negative((PyDateTime_Delta *)self->offset); |
| if (offset == NULL) |
| return NULL; |
| } |
| else { |
| sign = '+'; |
| offset = self->offset; |
| Py_INCREF(offset); |
| } |
| /* Offset is not negative here. */ |
| seconds = GET_TD_SECONDS(offset); |
| Py_DECREF(offset); |
| minutes = divmod(seconds, 60, &seconds); |
| hours = divmod(minutes, 60, &minutes); |
| assert(seconds == 0); |
| /* XXX ignore sub-minute data, curently not allowed. */ |
| PyOS_snprintf(buf, sizeof(buf), "UTC%c%02d:%02d", sign, hours, minutes); |
| |
| return PyUnicode_FromString(buf); |
| } |
| |
| static PyObject * |
| timezone_tzname(PyDateTime_TimeZone *self, PyObject *dt) |
| { |
| if (_timezone_check_argument(dt, "tzname") == -1) |
| return NULL; |
| |
| return timezone_str(self); |
| } |
| |
| static PyObject * |
| timezone_utcoffset(PyDateTime_TimeZone *self, PyObject *dt) |
| { |
| if (_timezone_check_argument(dt, "utcoffset") == -1) |
| return NULL; |
| |
| Py_INCREF(self->offset); |
| return self->offset; |
| } |
| |
| static PyObject * |
| timezone_dst(PyObject *self, PyObject *dt) |
| { |
| if (_timezone_check_argument(dt, "dst") == -1) |
| return NULL; |
| |
| Py_RETURN_NONE; |
| } |
| |
| static PyObject * |
| add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta, |
| int factor); |
| |
| static PyObject * |
| timezone_fromutc(PyDateTime_TimeZone *self, PyDateTime_DateTime *dt) |
| { |
| if (! PyDateTime_Check(dt)) { |
| PyErr_SetString(PyExc_TypeError, |
| "fromutc: argument must be a datetime"); |
| return NULL; |
| } |
| if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) { |
| PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo " |
| "is not self"); |
| return NULL; |
| } |
| |
| return add_datetime_timedelta(dt, (PyDateTime_Delta *)self->offset, 1); |
| } |
| |
| static PyObject * |
| timezone_getinitargs(PyDateTime_TimeZone *self) |
| { |
| if (self->name == NULL) |
| return Py_BuildValue("(O)", self->offset); |
| return Py_BuildValue("(OO)", self->offset, self->name); |
| } |
| |
| static PyMethodDef timezone_methods[] = { |
| {"tzname", (PyCFunction)timezone_tzname, METH_O, |
| PyDoc_STR("If name is specified when timezone is created, returns the name." |
| " Otherwise returns offset as 'UTC(+|-)HH:MM'.")}, |
| |
| {"utcoffset", (PyCFunction)timezone_utcoffset, METH_O, |
| PyDoc_STR("Return fixed offset.")}, |
| |
| {"dst", (PyCFunction)timezone_dst, METH_O, |
| PyDoc_STR("Return None.")}, |
| |
| {"fromutc", (PyCFunction)timezone_fromutc, METH_O, |
| PyDoc_STR("datetime in UTC -> datetime in local time.")}, |
| |
| {"__getinitargs__", (PyCFunction)timezone_getinitargs, METH_NOARGS, |
| PyDoc_STR("pickle support")}, |
| |
| {NULL, NULL} |
| }; |
| |
| static char timezone_doc[] = |
| PyDoc_STR("Fixed offset from UTC implementation of tzinfo."); |
| |
| static PyTypeObject PyDateTime_TimeZoneType = { |
| PyVarObject_HEAD_INIT(NULL, 0) |
| "datetime.timezone", /* tp_name */ |
| sizeof(PyDateTime_TimeZone), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| (destructor)timezone_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)timezone_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| (reprfunc)timezone_str, /* tp_str */ |
| 0, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT, /* tp_flags */ |
| timezone_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| (richcmpfunc)timezone_richcompare,/* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| timezone_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| 0, /* tp_getset */ |
| &PyDateTime_TZInfoType, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| timezone_new, /* tp_new */ |
| }; |
| |
| /* |
| * PyDateTime_Time implementation. |
| */ |
| |
| /* Accessor properties. |
| */ |
| |
| static PyObject * |
| time_hour(PyDateTime_Time *self, void *unused) |
| { |
| return PyLong_FromLong(TIME_GET_HOUR(self)); |
| } |
| |
| static PyObject * |
| time_minute(PyDateTime_Time *self, void *unused) |
| { |
| return PyLong_FromLong(TIME_GET_MINUTE(self)); |
| } |
| |
| /* The name time_second conflicted with some platform header file. */ |
| static PyObject * |
| py_time_second(PyDateTime_Time *self, void *unused) |
| { |
| return PyLong_FromLong(TIME_GET_SECOND(self)); |
| } |
| |
| static PyObject * |
| time_microsecond(PyDateTime_Time *self, void *unused) |
| { |
| return PyLong_FromLong(TIME_GET_MICROSECOND(self)); |
| } |
| |
| static PyObject * |
| time_tzinfo(PyDateTime_Time *self, void *unused) |
| { |
| PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None; |
| Py_INCREF(result); |
| return result; |
| } |
| |
| static PyGetSetDef time_getset[] = { |
| {"hour", (getter)time_hour}, |
| {"minute", (getter)time_minute}, |
| {"second", (getter)py_time_second}, |
| {"microsecond", (getter)time_microsecond}, |
| {"tzinfo", (getter)time_tzinfo}, |
| {NULL} |
| }; |
| |
| /* |
| * Constructors. |
| */ |
| |
| static char *time_kws[] = {"hour", "minute", "second", "microsecond", |
| "tzinfo", NULL}; |
| |
| static PyObject * |
| time_new(PyTypeObject *type, PyObject *args, PyObject *kw) |
| { |
| PyObject *self = NULL; |
| PyObject *state; |
| int hour = 0; |
| int minute = 0; |
| int second = 0; |
| int usecond = 0; |
| PyObject *tzinfo = Py_None; |
| |
| /* Check for invocation from pickle with __getstate__ state */ |
| if (PyTuple_GET_SIZE(args) >= 1 && |
| PyTuple_GET_SIZE(args) <= 2 && |
| PyBytes_Check(state = PyTuple_GET_ITEM(args, 0)) && |
| PyBytes_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE && |
| ((unsigned char) (PyBytes_AS_STRING(state)[0])) < 24) |
| { |
| PyDateTime_Time *me; |
| char aware; |
| |
| if (PyTuple_GET_SIZE(args) == 2) { |
| tzinfo = PyTuple_GET_ITEM(args, 1); |
| if (check_tzinfo_subclass(tzinfo) < 0) { |
| PyErr_SetString(PyExc_TypeError, "bad " |
| "tzinfo state arg"); |
| return NULL; |
| } |
| } |
| aware = (char)(tzinfo != Py_None); |
| me = (PyDateTime_Time *) (type->tp_alloc(type, aware)); |
| if (me != NULL) { |
| char *pdata = PyBytes_AS_STRING(state); |
| |
| memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE); |
| me->hashcode = -1; |
| me->hastzinfo = aware; |
| if (aware) { |
| Py_INCREF(tzinfo); |
| me->tzinfo = tzinfo; |
| } |
| } |
| return (PyObject *)me; |
| } |
| |
| if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", time_kws, |
| &hour, &minute, &second, &usecond, |
| &tzinfo)) { |
| if (check_time_args(hour, minute, second, usecond) < 0) |
| return NULL; |
| if (check_tzinfo_subclass(tzinfo) < 0) |
| return NULL; |
| self = new_time_ex(hour, minute, second, usecond, tzinfo, |
| type); |
| } |
| return self; |
| } |
| |
| /* |
| * Destructor. |
| */ |
| |
| static void |
| time_dealloc(PyDateTime_Time *self) |
| { |
| if (HASTZINFO(self)) { |
| Py_XDECREF(self->tzinfo); |
| } |
| Py_TYPE(self)->tp_free((PyObject *)self); |
| } |
| |
| /* |
| * Indirect access to tzinfo methods. |
| */ |
| |
| /* These are all METH_NOARGS, so don't need to check the arglist. */ |
| static PyObject * |
| time_utcoffset(PyDateTime_Time *self, PyObject *unused) { |
| return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None, |
| "utcoffset", Py_None); |
| } |
| |
| static PyObject * |
| time_dst(PyDateTime_Time *self, PyObject *unused) { |
| return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None, |
| "dst", Py_None); |
| } |
| |
| static PyObject * |
| time_tzname(PyDateTime_Time *self, PyObject *unused) { |
| return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None, |
| Py_None); |
| } |
| |
| /* |
| * Various ways to turn a time into a string. |
| */ |
| |
| static PyObject * |
| time_repr(PyDateTime_Time *self) |
| { |
| const char *type_name = Py_TYPE(self)->tp_name; |
| int h = TIME_GET_HOUR(self); |
| int m = TIME_GET_MINUTE(self); |
| int s = TIME_GET_SECOND(self); |
| int us = TIME_GET_MICROSECOND(self); |
| PyObject *result = NULL; |
| |
| if (us) |
| result = PyUnicode_FromFormat("%s(%d, %d, %d, %d)", |
| type_name, h, m, s, us); |
| else if (s) |
| result = PyUnicode_FromFormat("%s(%d, %d, %d)", |
| type_name, h, m, s); |
| else |
| result = PyUnicode_FromFormat("%s(%d, %d)", type_name, h, m); |
| if (result != NULL && HASTZINFO(self)) |
| result = append_keyword_tzinfo(result, self->tzinfo); |
| return result; |
| } |
| |
| static PyObject * |
| time_str(PyDateTime_Time *self) |
| { |
| return PyObject_CallMethod((PyObject *)self, "isoformat", "()"); |
| } |
| |
| static PyObject * |
| time_isoformat(PyDateTime_Time *self, PyObject *unused) |
| { |
| char buf[100]; |
| PyObject *result; |
| int us = TIME_GET_MICROSECOND(self);; |
| |
| if (us) |
| result = PyUnicode_FromFormat("%02d:%02d:%02d.%06d", |
| TIME_GET_HOUR(self), |
| TIME_GET_MINUTE(self), |
| TIME_GET_SECOND(self), |
| us); |
| else |
| result = PyUnicode_FromFormat("%02d:%02d:%02d", |
| TIME_GET_HOUR(self), |
| TIME_GET_MINUTE(self), |
| TIME_GET_SECOND(self)); |
| |
| if (result == NULL || ! HASTZINFO(self) || self->tzinfo == Py_None) |
| return result; |
| |
| /* We need to append the UTC offset. */ |
| if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo, |
| Py_None) < 0) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buf)); |
| return result; |
| } |
| |
| static PyObject * |
| time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw) |
| { |
| PyObject *result; |
| PyObject *tuple; |
| PyObject *format; |
| static char *keywords[] = {"format", NULL}; |
| |
| if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords, |
| &format)) |
| return NULL; |
| |
| /* Python's strftime does insane things with the year part of the |
| * timetuple. The year is forced to (the otherwise nonsensical) |
| * 1900 to worm around that. |
| */ |
| tuple = Py_BuildValue("iiiiiiiii", |
| 1900, 1, 1, /* year, month, day */ |
| TIME_GET_HOUR(self), |
| TIME_GET_MINUTE(self), |
| TIME_GET_SECOND(self), |
| 0, 1, -1); /* weekday, daynum, dst */ |
| if (tuple == NULL) |
| return NULL; |
| assert(PyTuple_Size(tuple) == 9); |
| result = wrap_strftime((PyObject *)self, format, tuple, |
| Py_None); |
| Py_DECREF(tuple); |
| return result; |
| } |
| |
| /* |
| * Miscellaneous methods. |
| */ |
| |
| static PyObject * |
| time_richcompare(PyObject *self, PyObject *other, int op) |
| { |
| int diff; |
| naivety n1, n2; |
| int offset1, offset2; |
| |
| if (! PyTime_Check(other)) { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| if (classify_two_utcoffsets(self, &offset1, &n1, Py_None, |
| other, &offset2, &n2, Py_None) < 0) |
| return NULL; |
| assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN); |
| /* If they're both naive, or both aware and have the same offsets, |
| * we get off cheap. Note that if they're both naive, offset1 == |
| * offset2 == 0 at this point. |
| */ |
| if (n1 == n2 && offset1 == offset2) { |
| diff = memcmp(((PyDateTime_Time *)self)->data, |
| ((PyDateTime_Time *)other)->data, |
| _PyDateTime_TIME_DATASIZE); |
| return diff_to_bool(diff, op); |
| } |
| |
| if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) { |
| assert(offset1 != offset2); /* else last "if" handled it */ |
| /* Convert everything except microseconds to seconds. These |
| * can't overflow (no more than the # of seconds in 2 days). |
| */ |
| offset1 = TIME_GET_HOUR(self) * 3600 + |
| (TIME_GET_MINUTE(self) - offset1) * 60 + |
| TIME_GET_SECOND(self); |
| offset2 = TIME_GET_HOUR(other) * 3600 + |
| (TIME_GET_MINUTE(other) - offset2) * 60 + |
| TIME_GET_SECOND(other); |
| diff = offset1 - offset2; |
| if (diff == 0) |
| diff = TIME_GET_MICROSECOND(self) - |
| TIME_GET_MICROSECOND(other); |
| return diff_to_bool(diff, op); |
| } |
| |
| assert(n1 != n2); |
| PyErr_SetString(PyExc_TypeError, |
| "can't compare offset-naive and " |
| "offset-aware times"); |
| return NULL; |
| } |
| |
| static long |
| time_hash(PyDateTime_Time *self) |
| { |
| if (self->hashcode == -1) { |
| naivety n; |
| int offset; |
| PyObject *temp; |
| |
| n = classify_utcoffset((PyObject *)self, Py_None, &offset); |
| assert(n != OFFSET_UNKNOWN); |
| if (n == OFFSET_ERROR) |
| return -1; |
| |
| /* Reduce this to a hash of another object. */ |
| if (offset == 0) { |
| self->hashcode = generic_hash( |
| (unsigned char *)self->data, _PyDateTime_TIME_DATASIZE); |
| return self->hashcode; |
| } |
| else { |
| int hour; |
| int minute; |
| |
| assert(n == OFFSET_AWARE); |
| assert(HASTZINFO(self)); |
| hour = divmod(TIME_GET_HOUR(self) * 60 + |
| TIME_GET_MINUTE(self) - offset, |
| 60, |
| &minute); |
| if (0 <= hour && hour < 24) |
| temp = new_time(hour, minute, |
| TIME_GET_SECOND(self), |
| TIME_GET_MICROSECOND(self), |
| Py_None); |
| else |
| temp = Py_BuildValue("iiii", |
| hour, minute, |
| TIME_GET_SECOND(self), |
| TIME_GET_MICROSECOND(self)); |
| } |
| if (temp != NULL) { |
| self->hashcode = PyObject_Hash(temp); |
| Py_DECREF(temp); |
| } |
| } |
| return self->hashcode; |
| } |
| |
| static PyObject * |
| time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw) |
| { |
| PyObject *clone; |
| PyObject *tuple; |
| int hh = TIME_GET_HOUR(self); |
| int mm = TIME_GET_MINUTE(self); |
| int ss = TIME_GET_SECOND(self); |
| int us = TIME_GET_MICROSECOND(self); |
| PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None; |
| |
| if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace", |
| time_kws, |
| &hh, &mm, &ss, &us, &tzinfo)) |
| return NULL; |
| tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo); |
| if (tuple == NULL) |
| return NULL; |
| clone = time_new(Py_TYPE(self), tuple, NULL); |
| Py_DECREF(tuple); |
| return clone; |
| } |
| |
| static int |
| time_bool(PyDateTime_Time *self) |
| { |
| int offset; |
| int none; |
| |
| if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) { |
| /* Since utcoffset is in whole minutes, nothing can |
| * alter the conclusion that this is nonzero. |
| */ |
| return 1; |
| } |
| offset = 0; |
| if (HASTZINFO(self) && self->tzinfo != Py_None) { |
| offset = call_utcoffset(self->tzinfo, Py_None, &none); |
| if (offset == -1 && PyErr_Occurred()) |
| return -1; |
| } |
| return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0; |
| } |
| |
| /* Pickle support, a simple use of __reduce__. */ |
| |
| /* Let basestate be the non-tzinfo data string. |
| * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo). |
| * So it's a tuple in any (non-error) case. |
| * __getstate__ isn't exposed. |
| */ |
| static PyObject * |
| time_getstate(PyDateTime_Time *self) |
| { |
| PyObject *basestate; |
| PyObject *result = NULL; |
| |
| basestate = PyBytes_FromStringAndSize((char *)self->data, |
| _PyDateTime_TIME_DATASIZE); |
| if (basestate != NULL) { |
| if (! HASTZINFO(self) || self->tzinfo == Py_None) |
| result = PyTuple_Pack(1, basestate); |
| else |
| result = PyTuple_Pack(2, basestate, self->tzinfo); |
| Py_DECREF(basestate); |
| } |
| return result; |
| } |
| |
| static PyObject * |
| time_reduce(PyDateTime_Time *self, PyObject *arg) |
| { |
| return Py_BuildValue("(ON)", Py_TYPE(self), time_getstate(self)); |
| } |
| |
| static PyMethodDef time_methods[] = { |
| |
| {"isoformat", (PyCFunction)time_isoformat, METH_NOARGS, |
| PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]" |
| "[+HH:MM].")}, |
| |
| {"strftime", (PyCFunction)time_strftime, METH_VARARGS | METH_KEYWORDS, |
| PyDoc_STR("format -> strftime() style string.")}, |
| |
| {"__format__", (PyCFunction)date_format, METH_VARARGS, |
| PyDoc_STR("Formats self with strftime.")}, |
| |
| {"utcoffset", (PyCFunction)time_utcoffset, METH_NOARGS, |
| PyDoc_STR("Return self.tzinfo.utcoffset(self).")}, |
| |
| {"tzname", (PyCFunction)time_tzname, METH_NOARGS, |
| PyDoc_STR("Return self.tzinfo.tzname(self).")}, |
| |
| {"dst", (PyCFunction)time_dst, METH_NOARGS, |
| PyDoc_STR("Return self.tzinfo.dst(self).")}, |
| |
| {"replace", (PyCFunction)time_replace, METH_VARARGS | METH_KEYWORDS, |
| PyDoc_STR("Return time with new specified fields.")}, |
| |
| {"__reduce__", (PyCFunction)time_reduce, METH_NOARGS, |
| PyDoc_STR("__reduce__() -> (cls, state)")}, |
| |
| {NULL, NULL} |
| }; |
| |
| static char time_doc[] = |
| PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\ |
| \n\ |
| All arguments are optional. tzinfo may be None, or an instance of\n\ |
| a tzinfo subclass. The remaining arguments may be ints or longs.\n"); |
| |
| static PyNumberMethods time_as_number = { |
| 0, /* nb_add */ |
| 0, /* nb_subtract */ |
| 0, /* nb_multiply */ |
| 0, /* nb_remainder */ |
| 0, /* nb_divmod */ |
| 0, /* nb_power */ |
| 0, /* nb_negative */ |
| 0, /* nb_positive */ |
| 0, /* nb_absolute */ |
| (inquiry)time_bool, /* nb_bool */ |
| }; |
| |
| static PyTypeObject PyDateTime_TimeType = { |
| PyVarObject_HEAD_INIT(NULL, 0) |
| "datetime.time", /* tp_name */ |
| sizeof(PyDateTime_Time), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| (destructor)time_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)time_repr, /* tp_repr */ |
| &time_as_number, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)time_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| (reprfunc)time_str, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| time_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| time_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| time_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| time_getset, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| time_alloc, /* tp_alloc */ |
| time_new, /* tp_new */ |
| 0, /* tp_free */ |
| }; |
| |
| /* |
| * PyDateTime_DateTime implementation. |
| */ |
| |
| /* Accessor properties. Properties for day, month, and year are inherited |
| * from date. |
| */ |
| |
| static PyObject * |
| datetime_hour(PyDateTime_DateTime *self, void *unused) |
| { |
| return PyLong_FromLong(DATE_GET_HOUR(self)); |
| } |
| |
| static PyObject * |
| datetime_minute(PyDateTime_DateTime *self, void *unused) |
| { |
| return PyLong_FromLong(DATE_GET_MINUTE(self)); |
| } |
| |
| static PyObject * |
| datetime_second(PyDateTime_DateTime *self, void *unused) |
| { |
| return PyLong_FromLong(DATE_GET_SECOND(self)); |
| } |
| |
| static PyObject * |
| datetime_microsecond(PyDateTime_DateTime *self, void *unused) |
| { |
| return PyLong_FromLong(DATE_GET_MICROSECOND(self)); |
| } |
| |
| static PyObject * |
| datetime_tzinfo(PyDateTime_DateTime *self, void *unused) |
| { |
| PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None; |
| Py_INCREF(result); |
| return result; |
| } |
| |
| static PyGetSetDef datetime_getset[] = { |
| {"hour", (getter)datetime_hour}, |
| {"minute", (getter)datetime_minute}, |
| {"second", (getter)datetime_second}, |
| {"microsecond", (getter)datetime_microsecond}, |
| {"tzinfo", (getter)datetime_tzinfo}, |
| {NULL} |
| }; |
| |
| /* |
| * Constructors. |
| */ |
| |
| static char *datetime_kws[] = { |
| "year", "month", "day", "hour", "minute", "second", |
| "microsecond", "tzinfo", NULL |
| }; |
| |
| static PyObject * |
| datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw) |
| { |
| PyObject *self = NULL; |
| PyObject *state; |
| int year; |
| int month; |
| int day; |
| int hour = 0; |
| int minute = 0; |
| int second = 0; |
| int usecond = 0; |
| PyObject *tzinfo = Py_None; |
| |
| /* Check for invocation from pickle with __getstate__ state */ |
| if (PyTuple_GET_SIZE(args) >= 1 && |
| PyTuple_GET_SIZE(args) <= 2 && |
| PyBytes_Check(state = PyTuple_GET_ITEM(args, 0)) && |
| PyBytes_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE && |
| MONTH_IS_SANE(PyBytes_AS_STRING(state)[2])) |
| { |
| PyDateTime_DateTime *me; |
| char aware; |
| |
| if (PyTuple_GET_SIZE(args) == 2) { |
| tzinfo = PyTuple_GET_ITEM(args, 1); |
| if (check_tzinfo_subclass(tzinfo) < 0) { |
| PyErr_SetString(PyExc_TypeError, "bad " |
| "tzinfo state arg"); |
| return NULL; |
| } |
| } |
| aware = (char)(tzinfo != Py_None); |
| me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware)); |
| if (me != NULL) { |
| char *pdata = PyBytes_AS_STRING(state); |
| |
| memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE); |
| me->hashcode = -1; |
| me->hastzinfo = aware; |
| if (aware) { |
| Py_INCREF(tzinfo); |
| me->tzinfo = tzinfo; |
| } |
| } |
| return (PyObject *)me; |
| } |
| |
| if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetime_kws, |
| &year, &month, &day, &hour, &minute, |
| &second, &usecond, &tzinfo)) { |
| if (check_date_args(year, month, day) < 0) |
| return NULL; |
| if (check_time_args(hour, minute, second, usecond) < 0) |
| return NULL; |
| if (check_tzinfo_subclass(tzinfo) < 0) |
| return NULL; |
| self = new_datetime_ex(year, month, day, |
| hour, minute, second, usecond, |
| tzinfo, type); |
| } |
| return self; |
| } |
| |
| /* TM_FUNC is the shared type of localtime() and gmtime(). */ |
| typedef struct tm *(*TM_FUNC)(const time_t *timer); |
| |
| /* Internal helper. |
| * Build datetime from a time_t and a distinct count of microseconds. |
| * Pass localtime or gmtime for f, to control the interpretation of timet. |
| */ |
| static PyObject * |
| datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us, |
| PyObject *tzinfo) |
| { |
| struct tm *tm; |
| PyObject *result = NULL; |
| |
| tm = f(&timet); |
| if (tm) { |
| /* The platform localtime/gmtime may insert leap seconds, |
| * indicated by tm->tm_sec > 59. We don't care about them, |
| * except to the extent that passing them on to the datetime |
| * constructor would raise ValueError for a reason that |
| * made no sense to the user. |
| */ |
| if (tm->tm_sec > 59) |
| tm->tm_sec = 59; |
| result = PyObject_CallFunction(cls, "iiiiiiiO", |
| tm->tm_year + 1900, |
| tm->tm_mon + 1, |
| tm->tm_mday, |
| tm->tm_hour, |
| tm->tm_min, |
| tm->tm_sec, |
| us, |
| tzinfo); |
| } |
| else |
| PyErr_SetString(PyExc_ValueError, |
| "timestamp out of range for " |
| "platform localtime()/gmtime() function"); |
| return result; |
| } |
| |
| /* Internal helper. |
| * Build datetime from a Python timestamp. Pass localtime or gmtime for f, |
| * to control the interpretation of the timestamp. Since a double doesn't |
| * have enough bits to cover a datetime's full range of precision, it's |
| * better to call datetime_from_timet_and_us provided you have a way |
| * to get that much precision (e.g., C time() isn't good enough). |
| */ |
| static PyObject * |
| datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp, |
| PyObject *tzinfo) |
| { |
| time_t timet; |
| double fraction; |
| int us; |
| |
| timet = _PyTime_DoubleToTimet(timestamp); |
| if (timet == (time_t)-1 && PyErr_Occurred()) |
| return NULL; |
| fraction = timestamp - (double)timet; |
| us = (int)round_to_long(fraction * 1e6); |
| if (us < 0) { |
| /* Truncation towards zero is not what we wanted |
| for negative numbers (Python's mod semantics) */ |
| timet -= 1; |
| us += 1000000; |
| } |
| /* If timestamp is less than one microsecond smaller than a |
| * full second, round up. Otherwise, ValueErrors are raised |
| * for some floats. */ |
| if (us == 1000000) { |
| timet += 1; |
| us = 0; |
| } |
| return datetime_from_timet_and_us(cls, f, timet, us, tzinfo); |
| } |
| |
| /* Internal helper. |
| * Build most accurate possible datetime for current time. Pass localtime or |
| * gmtime for f as appropriate. |
| */ |
| static PyObject * |
| datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo) |
| { |
| #ifdef HAVE_GETTIMEOFDAY |
| struct timeval t; |
| |
| #ifdef GETTIMEOFDAY_NO_TZ |
| gettimeofday(&t); |
| #else |
| gettimeofday(&t, (struct timezone *)NULL); |
| #endif |
| return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec, |
| tzinfo); |
| |
| #else /* ! HAVE_GETTIMEOFDAY */ |
| /* No flavor of gettimeofday exists on this platform. Python's |
| * time.time() does a lot of other platform tricks to get the |
| * best time it can on the platform, and we're not going to do |
| * better than that (if we could, the better code would belong |
| * in time.time()!) We're limited by the precision of a double, |
| * though. |
| */ |
| PyObject *time; |
| double dtime; |
| |
| time = time_time(); |
| if (time == NULL) |
| return NULL; |
| dtime = PyFloat_AsDouble(time); |
| Py_DECREF(time); |
| if (dtime == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return datetime_from_timestamp(cls, f, dtime, tzinfo); |
| #endif /* ! HAVE_GETTIMEOFDAY */ |
| } |
| |
| /* Return best possible local time -- this isn't constrained by the |
| * precision of a timestamp. |
| */ |
| static PyObject * |
| datetime_now(PyObject *cls, PyObject *args, PyObject *kw) |
| { |
| PyObject *self; |
| PyObject *tzinfo = Py_None; |
| static char *keywords[] = {"tz", NULL}; |
| |
| if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords, |
| &tzinfo)) |
| return NULL; |
| if (check_tzinfo_subclass(tzinfo) < 0) |
| return NULL; |
| |
| self = datetime_best_possible(cls, |
| tzinfo == Py_None ? localtime : gmtime, |
| tzinfo); |
| if (self != NULL && tzinfo != Py_None) { |
| /* Convert UTC to tzinfo's zone. */ |
| PyObject *temp = self; |
| self = PyObject_CallMethod(tzinfo, "fromutc", "O", self); |
| Py_DECREF(temp); |
| } |
| return self; |
| } |
| |
| /* Return best possible UTC time -- this isn't constrained by the |
| * precision of a timestamp. |
| */ |
| static PyObject * |
| datetime_utcnow(PyObject *cls, PyObject *dummy) |
| { |
| return datetime_best_possible(cls, gmtime, Py_None); |
| } |
| |
| /* Return new local datetime from timestamp (Python timestamp -- a double). */ |
| static PyObject * |
| datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw) |
| { |
| PyObject *self; |
| double timestamp; |
| PyObject *tzinfo = Py_None; |
| static char *keywords[] = {"timestamp", "tz", NULL}; |
| |
| if (! PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp", |
| keywords, ×tamp, &tzinfo)) |
| return NULL; |
| if (check_tzinfo_subclass(tzinfo) < 0) |
| return NULL; |
| |
| self = datetime_from_timestamp(cls, |
| tzinfo == Py_None ? localtime : gmtime, |
| timestamp, |
| tzinfo); |
| if (self != NULL && tzinfo != Py_None) { |
| /* Convert UTC to tzinfo's zone. */ |
| PyObject *temp = self; |
| self = PyObject_CallMethod(tzinfo, "fromutc", "O", self); |
| Py_DECREF(temp); |
| } |
| return self; |
| } |
| |
| /* Return new UTC datetime from timestamp (Python timestamp -- a double). */ |
| static PyObject * |
| datetime_utcfromtimestamp(PyObject *cls, PyObject *args) |
| { |
| double timestamp; |
| PyObject *result = NULL; |
| |
| if (PyArg_ParseTuple(args, "d:utcfromtimestamp", ×tamp)) |
| result = datetime_from_timestamp(cls, gmtime, timestamp, |
| Py_None); |
| return result; |
| } |
| |
| /* Return new datetime from _strptime.strptime_datetime(). */ |
| static PyObject * |
| datetime_strptime(PyObject *cls, PyObject *args) |
| { |
| static PyObject *module = NULL; |
| const Py_UNICODE *string, *format; |
| |
| if (!PyArg_ParseTuple(args, "uu:strptime", &string, &format)) |
| return NULL; |
| |
| if (module == NULL) { |
| module = PyImport_ImportModuleNoBlock("_strptime"); |
| if (module == NULL) |
| return NULL; |
| } |
| return PyObject_CallMethod(module, "_strptime_datetime", "Ouu", |
| cls, string, format); |
| } |
| |
| /* Return new datetime from date/datetime and time arguments. */ |
| static PyObject * |
| datetime_combine(PyObject *cls, PyObject *args, PyObject *kw) |
| { |
| static char *keywords[] = {"date", "time", NULL}; |
| PyObject *date; |
| PyObject *time; |
| PyObject *result = NULL; |
| |
| if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords, |
| &PyDateTime_DateType, &date, |
| &PyDateTime_TimeType, &time)) { |
| PyObject *tzinfo = Py_None; |
| |
| if (HASTZINFO(time)) |
| tzinfo = ((PyDateTime_Time *)time)->tzinfo; |
| result = PyObject_CallFunction(cls, "iiiiiiiO", |
| GET_YEAR(date), |
| GET_MONTH(date), |
| GET_DAY(date), |
| TIME_GET_HOUR(time), |
| TIME_GET_MINUTE(time), |
| TIME_GET_SECOND(time), |
| TIME_GET_MICROSECOND(time), |
| tzinfo); |
| } |
| return result; |
| } |
| |
| /* |
| * Destructor. |
| */ |
| |
| static void |
| datetime_dealloc(PyDateTime_DateTime *self) |
| { |
| if (HASTZINFO(self)) { |
| Py_XDECREF(self->tzinfo); |
| } |
| Py_TYPE(self)->tp_free((PyObject *)self); |
| } |
| |
| /* |
| * Indirect access to tzinfo methods. |
| */ |
| |
| /* These are all METH_NOARGS, so don't need to check the arglist. */ |
| static PyObject * |
| datetime_utcoffset(PyDateTime_DateTime *self, PyObject *unused) { |
| return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None, |
| "utcoffset", (PyObject *)self); |
| } |
| |
| static PyObject * |
| datetime_dst(PyDateTime_DateTime *self, PyObject *unused) { |
| return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None, |
| "dst", (PyObject *)self); |
| } |
| |
| static PyObject * |
| datetime_tzname(PyDateTime_DateTime *self, PyObject *unused) { |
| return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None, |
| (PyObject *)self); |
| } |
| |
| /* |
| * datetime arithmetic. |
| */ |
| |
| /* factor must be 1 (to add) or -1 (to subtract). The result inherits |
| * the tzinfo state of date. |
| */ |
| static PyObject * |
| add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta, |
| int factor) |
| { |
| /* Note that the C-level additions can't overflow, because of |
| * invariant bounds on the member values. |
| */ |
| int year = GET_YEAR(date); |
| int month = GET_MONTH(date); |
| int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor; |
| int hour = DATE_GET_HOUR(date); |
| int minute = DATE_GET_MINUTE(date); |
| int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor; |
| int microsecond = DATE_GET_MICROSECOND(date) + |
| GET_TD_MICROSECONDS(delta) * factor; |
| |
| assert(factor == 1 || factor == -1); |
| if (normalize_datetime(&year, &month, &day, |
| &hour, &minute, &second, µsecond) < 0) |
| return NULL; |
| else |
| return new_datetime(year, month, day, |
| hour, minute, second, microsecond, |
| HASTZINFO(date) ? date->tzinfo : Py_None); |
| } |
| |
| static PyObject * |
| datetime_add(PyObject *left, PyObject *right) |
| { |
| if (PyDateTime_Check(left)) { |
| /* datetime + ??? */ |
| if (PyDelta_Check(right)) |
| /* datetime + delta */ |
| return add_datetime_timedelta( |
| (PyDateTime_DateTime *)left, |
| (PyDateTime_Delta *)right, |
| 1); |
| } |
| else if (PyDelta_Check(left)) { |
| /* delta + datetime */ |
| return add_datetime_timedelta((PyDateTime_DateTime *) right, |
| (PyDateTime_Delta *) left, |
| 1); |
| } |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| static PyObject * |
| datetime_subtract(PyObject *left, PyObject *right) |
| { |
| PyObject *result = Py_NotImplemented; |
| |
| if (PyDateTime_Check(left)) { |
| /* datetime - ??? */ |
| if (PyDateTime_Check(right)) { |
| /* datetime - datetime */ |
| naivety n1, n2; |
| int offset1, offset2; |
| int delta_d, delta_s, delta_us; |
| |
| if (classify_two_utcoffsets(left, &offset1, &n1, left, |
| right, &offset2, &n2, |
| right) < 0) |
| return NULL; |
| assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN); |
| if (n1 != n2) { |
| PyErr_SetString(PyExc_TypeError, |
| "can't subtract offset-naive and " |
| "offset-aware datetimes"); |
| return NULL; |
| } |
| delta_d = ymd_to_ord(GET_YEAR(left), |
| GET_MONTH(left), |
| GET_DAY(left)) - |
| ymd_to_ord(GET_YEAR(right), |
| GET_MONTH(right), |
| GET_DAY(right)); |
| /* These can't overflow, since the values are |
| * normalized. At most this gives the number of |
| * seconds in one day. |
| */ |
| delta_s = (DATE_GET_HOUR(left) - |
| DATE_GET_HOUR(right)) * 3600 + |
| (DATE_GET_MINUTE(left) - |
| DATE_GET_MINUTE(right)) * 60 + |
| (DATE_GET_SECOND(left) - |
| DATE_GET_SECOND(right)); |
| delta_us = DATE_GET_MICROSECOND(left) - |
| DATE_GET_MICROSECOND(right); |
| /* (left - offset1) - (right - offset2) = |
| * (left - right) + (offset2 - offset1) |
| */ |
| delta_s += (offset2 - offset1) * 60; |
| result = new_delta(delta_d, delta_s, delta_us, 1); |
| } |
| else if (PyDelta_Check(right)) { |
| /* datetime - delta */ |
| result = add_datetime_timedelta( |
| (PyDateTime_DateTime *)left, |
| (PyDateTime_Delta *)right, |
| -1); |
| } |
| } |
| |
| if (result == Py_NotImplemented) |
| Py_INCREF(result); |
| return result; |
| } |
| |
| /* Various ways to turn a datetime into a string. */ |
| |
| static PyObject * |
| datetime_repr(PyDateTime_DateTime *self) |
| { |
| const char *type_name = Py_TYPE(self)->tp_name; |
| PyObject *baserepr; |
| |
| if (DATE_GET_MICROSECOND(self)) { |
| baserepr = PyUnicode_FromFormat( |
| "%s(%d, %d, %d, %d, %d, %d, %d)", |
| type_name, |
| GET_YEAR(self), GET_MONTH(self), GET_DAY(self), |
| DATE_GET_HOUR(self), DATE_GET_MINUTE(self), |
| DATE_GET_SECOND(self), |
| DATE_GET_MICROSECOND(self)); |
| } |
| else if (DATE_GET_SECOND(self)) { |
| baserepr = PyUnicode_FromFormat( |
| "%s(%d, %d, %d, %d, %d, %d)", |
| type_name, |
| GET_YEAR(self), GET_MONTH(self), GET_DAY(self), |
| DATE_GET_HOUR(self), DATE_GET_MINUTE(self), |
| DATE_GET_SECOND(self)); |
| } |
| else { |
| baserepr = PyUnicode_FromFormat( |
| "%s(%d, %d, %d, %d, %d)", |
| type_name, |
| GET_YEAR(self), GET_MONTH(self), GET_DAY(self), |
| DATE_GET_HOUR(self), DATE_GET_MINUTE(self)); |
| } |
| if (baserepr == NULL || ! HASTZINFO(self)) |
| return baserepr; |
| return append_keyword_tzinfo(baserepr, self->tzinfo); |
| } |
| |
| static PyObject * |
| datetime_str(PyDateTime_DateTime *self) |
| { |
| return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " "); |
| } |
| |
| static PyObject * |
| datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw) |
| { |
| int sep = 'T'; |
| static char *keywords[] = {"sep", NULL}; |
| char buffer[100]; |
| PyObject *result; |
| int us = DATE_GET_MICROSECOND(self); |
| |
| if (!PyArg_ParseTupleAndKeywords(args, kw, "|C:isoformat", keywords, &sep)) |
| return NULL; |
| if (us) |
| result = PyUnicode_FromFormat("%04d-%02d-%02d%c%02d:%02d:%02d.%06d", |
| GET_YEAR(self), GET_MONTH(self), |
| GET_DAY(self), (int)sep, |
| DATE_GET_HOUR(self), DATE_GET_MINUTE(self), |
| DATE_GET_SECOND(self), us); |
| else |
| result = PyUnicode_FromFormat("%04d-%02d-%02d%c%02d:%02d:%02d", |
| GET_YEAR(self), GET_MONTH(self), |
| GET_DAY(self), (int)sep, |
| DATE_GET_HOUR(self), DATE_GET_MINUTE(self), |
| DATE_GET_SECOND(self)); |
| |
| if (!result || !HASTZINFO(self)) |
| return result; |
| |
| /* We need to append the UTC offset. */ |
| if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo, |
| (PyObject *)self) < 0) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buffer)); |
| return result; |
| } |
| |
| static PyObject * |
| datetime_ctime(PyDateTime_DateTime *self) |
| { |
| return format_ctime((PyDateTime_Date *)self, |
| DATE_GET_HOUR(self), |
| DATE_GET_MINUTE(self), |
| DATE_GET_SECOND(self)); |
| } |
| |
| /* Miscellaneous methods. */ |
| |
| static PyObject * |
| datetime_richcompare(PyObject *self, PyObject *other, int op) |
| { |
| int diff; |
| naivety n1, n2; |
| int offset1, offset2; |
| |
| if (! PyDateTime_Check(other)) { |
| if (PyDate_Check(other)) { |
| /* Prevent invocation of date_richcompare. We want to |
| return NotImplemented here to give the other object |
| a chance. But since DateTime is a subclass of |
| Date, if the other object is a Date, it would |
| compute an ordering based on the date part alone, |
| and we don't want that. So force unequal or |
| uncomparable here in that case. */ |
| if (op == Py_EQ) |
| Py_RETURN_FALSE; |
| if (op == Py_NE) |
| Py_RETURN_TRUE; |
| return cmperror(self, other); |
| } |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| if (classify_two_utcoffsets(self, &offset1, &n1, self, |
| other, &offset2, &n2, other) < 0) |
| return NULL; |
| assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN); |
| /* If they're both naive, or both aware and have the same offsets, |
| * we get off cheap. Note that if they're both naive, offset1 == |
| * offset2 == 0 at this point. |
| */ |
| if (n1 == n2 && offset1 == offset2) { |
| diff = memcmp(((PyDateTime_DateTime *)self)->data, |
| ((PyDateTime_DateTime *)other)->data, |
| _PyDateTime_DATETIME_DATASIZE); |
| return diff_to_bool(diff, op); |
| } |
| |
| if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) { |
| PyDateTime_Delta *delta; |
| |
| assert(offset1 != offset2); /* else last "if" handled it */ |
| delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self, |
| other); |
| if (delta == NULL) |
| return NULL; |
| diff = GET_TD_DAYS(delta); |
| if (diff == 0) |
| diff = GET_TD_SECONDS(delta) | |
| GET_TD_MICROSECONDS(delta); |
| Py_DECREF(delta); |
| return diff_to_bool(diff, op); |
| } |
| |
| assert(n1 != n2); |
| PyErr_SetString(PyExc_TypeError, |
| "can't compare offset-naive and " |
| "offset-aware datetimes"); |
| return NULL; |
| } |
| |
| static long |
| datetime_hash(PyDateTime_DateTime *self) |
| { |
| if (self->hashcode == -1) { |
| naivety n; |
| int offset; |
| PyObject *temp; |
| |
| n = classify_utcoffset((PyObject *)self, (PyObject *)self, |
| &offset); |
| assert(n != OFFSET_UNKNOWN); |
| if (n == OFFSET_ERROR) |
| return -1; |
| |
| /* Reduce this to a hash of another object. */ |
| if (n == OFFSET_NAIVE) { |
| self->hashcode = generic_hash( |
| (unsigned char *)self->data, _PyDateTime_DATETIME_DATASIZE); |
| return self->hashcode; |
| } |
| else { |
| int days; |
| int seconds; |
| |
| assert(n == OFFSET_AWARE); |
| assert(HASTZINFO(self)); |
| days = ymd_to_ord(GET_YEAR(self), |
| GET_MONTH(self), |
| GET_DAY(self)); |
| seconds = DATE_GET_HOUR(self) * 3600 + |
| (DATE_GET_MINUTE(self) - offset) * 60 + |
| DATE_GET_SECOND(self); |
| temp = new_delta(days, |
| seconds, |
| DATE_GET_MICROSECOND(self), |
| 1); |
| } |
| if (temp != NULL) { |
| self->hashcode = PyObject_Hash(temp); |
| Py_DECREF(temp); |
| } |
| } |
| return self->hashcode; |
| } |
| |
| static PyObject * |
| datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw) |
| { |
| PyObject *clone; |
| PyObject *tuple; |
| int y = GET_YEAR(self); |
| int m = GET_MONTH(self); |
| int d = GET_DAY(self); |
| int hh = DATE_GET_HOUR(self); |
| int mm = DATE_GET_MINUTE(self); |
| int ss = DATE_GET_SECOND(self); |
| int us = DATE_GET_MICROSECOND(self); |
| PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None; |
| |
| if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace", |
| datetime_kws, |
| &y, &m, &d, &hh, &mm, &ss, &us, |
| &tzinfo)) |
| return NULL; |
| tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo); |
| if (tuple == NULL) |
| return NULL; |
| clone = datetime_new(Py_TYPE(self), tuple, NULL); |
| Py_DECREF(tuple); |
| return clone; |
| } |
| |
| static PyObject * |
| datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw) |
| { |
| int y, m, d, hh, mm, ss, us; |
| PyObject *result; |
| int offset, none; |
| |
| PyObject *tzinfo; |
| static char *keywords[] = {"tz", NULL}; |
| |
| if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:astimezone", keywords, |
| &PyDateTime_TZInfoType, &tzinfo)) |
| return NULL; |
| |
| if (!HASTZINFO(self) || self->tzinfo == Py_None) |
| goto NeedAware; |
| |
| /* Conversion to self's own time zone is a NOP. */ |
| if (self->tzinfo == tzinfo) { |
| Py_INCREF(self); |
| return (PyObject *)self; |
| } |
| |
| /* Convert self to UTC. */ |
| offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none); |
| if (offset == -1 && PyErr_Occurred()) |
| return NULL; |
| if (none) |
| goto NeedAware; |
| |
| y = GET_YEAR(self); |
| m = GET_MONTH(self); |
| d = GET_DAY(self); |
| hh = DATE_GET_HOUR(self); |
| mm = DATE_GET_MINUTE(self); |
| ss = DATE_GET_SECOND(self); |
| us = DATE_GET_MICROSECOND(self); |
| |
| mm -= offset; |
| if ((mm < 0 || mm >= 60) && |
| normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0) |
| return NULL; |
| |
| /* Attach new tzinfo and let fromutc() do the rest. */ |
| result = new_datetime(y, m, d, hh, mm, ss, us, tzinfo); |
| if (result != NULL) { |
| PyObject *temp = result; |
| |
| result = PyObject_CallMethod(tzinfo, "fromutc", "O", temp); |
| Py_DECREF(temp); |
| } |
| return result; |
| |
| NeedAware: |
| PyErr_SetString(PyExc_ValueError, "astimezone() cannot be applied to " |
| "a naive datetime"); |
| return NULL; |
| } |
| |
| static PyObject * |
| datetime_timetuple(PyDateTime_DateTime *self) |
| { |
| int dstflag = -1; |
| |
| if (HASTZINFO(self) && self->tzinfo != Py_None) { |
| int none; |
| |
| dstflag = call_dst(self->tzinfo, (PyObject *)self, &none); |
| if (dstflag == -1 && PyErr_Occurred()) |
| return NULL; |
| |
| if (none) |
| dstflag = -1; |
| else if (dstflag != 0) |
| dstflag = 1; |
| |
| } |
| return build_struct_time(GET_YEAR(self), |
| GET_MONTH(self), |
| GET_DAY(self), |
| DATE_GET_HOUR(self), |
| DATE_GET_MINUTE(self), |
| DATE_GET_SECOND(self), |
| dstflag); |
| } |
| |
| static PyObject * |
| datetime_getdate(PyDateTime_DateTime *self) |
| { |
| return new_date(GET_YEAR(self), |
| GET_MONTH(self), |
| GET_DAY(self)); |
| } |
| |
| static PyObject * |
| datetime_gettime(PyDateTime_DateTime *self) |
| { |
| return new_time(DATE_GET_HOUR(self), |
| DATE_GET_MINUTE(self), |
| DATE_GET_SECOND(self), |
| DATE_GET_MICROSECOND(self), |
| Py_None); |
| } |
| |
| static PyObject * |
| datetime_gettimetz(PyDateTime_DateTime *self) |
| { |
| return new_time(DATE_GET_HOUR(self), |
| DATE_GET_MINUTE(self), |
| DATE_GET_SECOND(self), |
| DATE_GET_MICROSECOND(self), |
| HASTZINFO(self) ? self->tzinfo : Py_None); |
| } |
| |
| static PyObject * |
| datetime_utctimetuple(PyDateTime_DateTime *self) |
| { |
| int y = GET_YEAR(self); |
| int m = GET_MONTH(self); |
| int d = GET_DAY(self); |
| int hh = DATE_GET_HOUR(self); |
| int mm = DATE_GET_MINUTE(self); |
| int ss = DATE_GET_SECOND(self); |
| int us = 0; /* microseconds are ignored in a timetuple */ |
| int offset = 0; |
| |
| if (HASTZINFO(self) && self->tzinfo != Py_None) { |
| int none; |
| |
| offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none); |
| if (offset == -1 && PyErr_Occurred()) |
| return NULL; |
| } |
| /* Even if offset is 0, don't call timetuple() -- tm_isdst should be |
| * 0 in a UTC timetuple regardless of what dst() says. |
| */ |
| if (offset) { |
| /* Subtract offset minutes & normalize. */ |
| int stat; |
| |
| mm -= offset; |
| stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us); |
| /* OverflowError may be raised in the edge cases. */ |
| if (stat < 0) |
| return NULL; |
| } |
| return build_struct_time(y, m, d, hh, mm, ss, 0); |
| } |
| |
| /* Pickle support, a simple use of __reduce__. */ |
| |
| /* Let basestate be the non-tzinfo data string. |
| * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo). |
| * So it's a tuple in any (non-error) case. |
| * __getstate__ isn't exposed. |
| */ |
| static PyObject * |
| datetime_getstate(PyDateTime_DateTime *self) |
| { |
| PyObject *basestate; |
| PyObject *result = NULL; |
| |
| basestate = PyBytes_FromStringAndSize((char *)self->data, |
| _PyDateTime_DATETIME_DATASIZE); |
| if (basestate != NULL) { |
| if (! HASTZINFO(self) || self->tzinfo == Py_None) |
| result = PyTuple_Pack(1, basestate); |
| else |
| result = PyTuple_Pack(2, basestate, self->tzinfo); |
| Py_DECREF(basestate); |
| } |
| return result; |
| } |
| |
| static PyObject * |
| datetime_reduce(PyDateTime_DateTime *self, PyObject *arg) |
| { |
| return Py_BuildValue("(ON)", Py_TYPE(self), datetime_getstate(self)); |
| } |
| |
| static PyMethodDef datetime_methods[] = { |
| |
| /* Class methods: */ |
| |
| {"now", (PyCFunction)datetime_now, |
| METH_VARARGS | METH_KEYWORDS | METH_CLASS, |
| PyDoc_STR("[tz] -> new datetime with tz's local day and time.")}, |
| |
| {"utcnow", (PyCFunction)datetime_utcnow, |
| METH_NOARGS | METH_CLASS, |
| PyDoc_STR("Return a new datetime representing UTC day and time.")}, |
| |
| {"fromtimestamp", (PyCFunction)datetime_fromtimestamp, |
| METH_VARARGS | METH_KEYWORDS | METH_CLASS, |
| PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")}, |
| |
| {"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp, |
| METH_VARARGS | METH_CLASS, |
| PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp " |
| "(like time.time()).")}, |
| |
| {"strptime", (PyCFunction)datetime_strptime, |
| METH_VARARGS | METH_CLASS, |
| PyDoc_STR("string, format -> new datetime parsed from a string " |
| "(like time.strptime()).")}, |
| |
| {"combine", (PyCFunction)datetime_combine, |
| METH_VARARGS | METH_KEYWORDS | METH_CLASS, |
| PyDoc_STR("date, time -> datetime with same date and time fields")}, |
| |
| /* Instance methods: */ |
| |
| {"date", (PyCFunction)datetime_getdate, METH_NOARGS, |
| PyDoc_STR("Return date object with same year, month and day.")}, |
| |
| {"time", (PyCFunction)datetime_gettime, METH_NOARGS, |
| PyDoc_STR("Return time object with same time but with tzinfo=None.")}, |
| |
| {"timetz", (PyCFunction)datetime_gettimetz, METH_NOARGS, |
| PyDoc_STR("Return time object with same time and tzinfo.")}, |
| |
| {"ctime", (PyCFunction)datetime_ctime, METH_NOARGS, |
| PyDoc_STR("Return ctime() style string.")}, |
| |
| {"timetuple", (PyCFunction)datetime_timetuple, METH_NOARGS, |
| PyDoc_STR("Return time tuple, compatible with time.localtime().")}, |
| |
| {"utctimetuple", (PyCFunction)datetime_utctimetuple, METH_NOARGS, |
| PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")}, |
| |
| {"isoformat", (PyCFunction)datetime_isoformat, METH_VARARGS | METH_KEYWORDS, |
| PyDoc_STR("[sep] -> string in ISO 8601 format, " |
| "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n" |
| "sep is used to separate the year from the time, and " |
| "defaults to 'T'.")}, |
| |
| {"utcoffset", (PyCFunction)datetime_utcoffset, METH_NOARGS, |
| PyDoc_STR("Return self.tzinfo.utcoffset(self).")}, |
| |
| {"tzname", (PyCFunction)datetime_tzname, METH_NOARGS, |
| PyDoc_STR("Return self.tzinfo.tzname(self).")}, |
| |
| {"dst", (PyCFunction)datetime_dst, METH_NOARGS, |
| PyDoc_STR("Return self.tzinfo.dst(self).")}, |
| |
| {"replace", (PyCFunction)datetime_replace, METH_VARARGS | METH_KEYWORDS, |
| PyDoc_STR("Return datetime with new specified fields.")}, |
| |
| {"astimezone", (PyCFunction)datetime_astimezone, METH_VARARGS | METH_KEYWORDS, |
| PyDoc_STR("tz -> convert to local time in new timezone tz\n")}, |
| |
| {"__reduce__", (PyCFunction)datetime_reduce, METH_NOARGS, |
| PyDoc_STR("__reduce__() -> (cls, state)")}, |
| |
| {NULL, NULL} |
| }; |
| |
| static char datetime_doc[] = |
| PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\ |
| \n\ |
| The year, month and day arguments are required. tzinfo may be None, or an\n\ |
| instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n"); |
| |
| static PyNumberMethods datetime_as_number = { |
| datetime_add, /* nb_add */ |
| datetime_subtract, /* nb_subtract */ |
| 0, /* nb_multiply */ |
| 0, /* nb_remainder */ |
| 0, /* nb_divmod */ |
| 0, /* nb_power */ |
| 0, /* nb_negative */ |
| 0, /* nb_positive */ |
| 0, /* nb_absolute */ |
| 0, /* nb_bool */ |
| }; |
| |
| static PyTypeObject PyDateTime_DateTimeType = { |
| PyVarObject_HEAD_INIT(NULL, 0) |
| "datetime.datetime", /* tp_name */ |
| sizeof(PyDateTime_DateTime), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| (destructor)datetime_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)datetime_repr, /* tp_repr */ |
| &datetime_as_number, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)datetime_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| (reprfunc)datetime_str, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| datetime_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| datetime_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| datetime_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| datetime_getset, /* tp_getset */ |
| &PyDateTime_DateType, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| datetime_alloc, /* tp_alloc */ |
| datetime_new, /* tp_new */ |
| 0, /* tp_free */ |
| }; |
| |
| /* --------------------------------------------------------------------------- |
| * Module methods and initialization. |
| */ |
| |
| static PyMethodDef module_methods[] = { |
| {NULL, NULL} |
| }; |
| |
| /* C API. Clients get at this via PyDateTime_IMPORT, defined in |
| * datetime.h. |
| */ |
| static PyDateTime_CAPI CAPI = { |
| &PyDateTime_DateType, |
| &PyDateTime_DateTimeType, |
| &PyDateTime_TimeType, |
| &PyDateTime_DeltaType, |
| &PyDateTime_TZInfoType, |
| new_date_ex, |
| new_datetime_ex, |
| new_time_ex, |
| new_delta_ex, |
| datetime_fromtimestamp, |
| date_fromtimestamp |
| }; |
| |
| |
| |
| static struct PyModuleDef datetimemodule = { |
| PyModuleDef_HEAD_INIT, |
| "datetime", |
| "Fast implementation of the datetime type.", |
| -1, |
| module_methods, |
| NULL, |
| NULL, |
| NULL, |
| NULL |
| }; |
| |
| PyMODINIT_FUNC |
| PyInit_datetime(void) |
| { |
| PyObject *m; /* a module object */ |
| PyObject *d; /* its dict */ |
| PyObject *x; |
| PyObject *delta; |
| |
| m = PyModule_Create(&datetimemodule); |
| if (m == NULL) |
| return NULL; |
| |
| if (PyType_Ready(&PyDateTime_DateType) < 0) |
| return NULL; |
| if (PyType_Ready(&PyDateTime_DateTimeType) < 0) |
| return NULL; |
| if (PyType_Ready(&PyDateTime_DeltaType) < 0) |
| return NULL; |
| if (PyType_Ready(&PyDateTime_TimeType) < 0) |
| return NULL; |
| if (PyType_Ready(&PyDateTime_TZInfoType) < 0) |
| return NULL; |
| if (PyType_Ready(&PyDateTime_TimeZoneType) < 0) |
| return NULL; |
| |
| /* timedelta values */ |
| d = PyDateTime_DeltaType.tp_dict; |
| |
| x = new_delta(0, 0, 1, 0); |
| if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0); |
| if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0); |
| if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| /* date values */ |
| d = PyDateTime_DateType.tp_dict; |
| |
| x = new_date(1, 1, 1); |
| if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| x = new_date(MAXYEAR, 12, 31); |
| if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| x = new_delta(1, 0, 0, 0); |
| if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| /* time values */ |
| d = PyDateTime_TimeType.tp_dict; |
| |
| x = new_time(0, 0, 0, 0, Py_None); |
| if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| x = new_time(23, 59, 59, 999999, Py_None); |
| if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| x = new_delta(0, 0, 1, 0); |
| if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| /* datetime values */ |
| d = PyDateTime_DateTimeType.tp_dict; |
| |
| x = new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None); |
| if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None); |
| if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| x = new_delta(0, 0, 1, 0); |
| if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| /* timezone values */ |
| d = PyDateTime_TimeZoneType.tp_dict; |
| |
| delta = new_delta(0, 0, 0, 0); |
| if (delta == NULL) |
| return NULL; |
| x = new_timezone(delta, NULL); |
| Py_DECREF(delta); |
| if (x == NULL || PyDict_SetItemString(d, "utc", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| delta = new_delta(-1, 60, 0, 1); /* -23:59 */ |
| if (delta == NULL) |
| return NULL; |
| x = new_timezone(delta, NULL); |
| Py_DECREF(delta); |
| if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| delta = new_delta(0, (23 * 60 + 59) * 60, 0, 0); /* +23:59 */ |
| if (delta == NULL) |
| return NULL; |
| x = new_timezone(delta, NULL); |
| Py_DECREF(delta); |
| if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) |
| return NULL; |
| Py_DECREF(x); |
| |
| /* module initialization */ |
| PyModule_AddIntConstant(m, "MINYEAR", MINYEAR); |
| PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR); |
| |
| Py_INCREF(&PyDateTime_DateType); |
| PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType); |
| |
| Py_INCREF(&PyDateTime_DateTimeType); |
| PyModule_AddObject(m, "datetime", |
| (PyObject *)&PyDateTime_DateTimeType); |
| |
| Py_INCREF(&PyDateTime_TimeType); |
| PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType); |
| |
| Py_INCREF(&PyDateTime_DeltaType); |
| PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType); |
| |
| Py_INCREF(&PyDateTime_TZInfoType); |
| PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType); |
| |
| Py_INCREF(&PyDateTime_TimeZoneType); |
| PyModule_AddObject(m, "timezone", (PyObject *) &PyDateTime_TimeZoneType); |
| |
| x = PyCapsule_New(&CAPI, PyDateTime_CAPSULE_NAME, NULL); |
| if (x == NULL) |
| return NULL; |
| PyModule_AddObject(m, "datetime_CAPI", x); |
| |
| /* A 4-year cycle has an extra leap day over what we'd get from |
| * pasting together 4 single years. |
| */ |
| assert(DI4Y == 4 * 365 + 1); |
| assert(DI4Y == days_before_year(4+1)); |
| |
| /* Similarly, a 400-year cycle has an extra leap day over what we'd |
| * get from pasting together 4 100-year cycles. |
| */ |
| assert(DI400Y == 4 * DI100Y + 1); |
| assert(DI400Y == days_before_year(400+1)); |
| |
| /* OTOH, a 100-year cycle has one fewer leap day than we'd get from |
| * pasting together 25 4-year cycles. |
| */ |
| assert(DI100Y == 25 * DI4Y - 1); |
| assert(DI100Y == days_before_year(100+1)); |
| |
| us_per_us = PyLong_FromLong(1); |
| us_per_ms = PyLong_FromLong(1000); |
| us_per_second = PyLong_FromLong(1000000); |
| us_per_minute = PyLong_FromLong(60000000); |
| seconds_per_day = PyLong_FromLong(24 * 3600); |
| if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL || |
| us_per_minute == NULL || seconds_per_day == NULL) |
| return NULL; |
| |
| /* The rest are too big for 32-bit ints, but even |
| * us_per_week fits in 40 bits, so doubles should be exact. |
| */ |
| us_per_hour = PyLong_FromDouble(3600000000.0); |
| us_per_day = PyLong_FromDouble(86400000000.0); |
| us_per_week = PyLong_FromDouble(604800000000.0); |
| if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL) |
| return NULL; |
| return m; |
| } |
| |
| /* --------------------------------------------------------------------------- |
| Some time zone algebra. For a datetime x, let |
| x.n = x stripped of its timezone -- its naive time. |
| x.o = x.utcoffset(), and assuming that doesn't raise an exception or |
| return None |
| x.d = x.dst(), and assuming that doesn't raise an exception or |
| return None |
| x.s = x's standard offset, x.o - x.d |
| |
| Now some derived rules, where k is a duration (timedelta). |
| |
| 1. x.o = x.s + x.d |
| This follows from the definition of x.s. |
| |
| 2. If x and y have the same tzinfo member, x.s = y.s. |
| This is actually a requirement, an assumption we need to make about |
| sane tzinfo classes. |
| |
| 3. The naive UTC time corresponding to x is x.n - x.o. |
| This is again a requirement for a sane tzinfo class. |
| |
| 4. (x+k).s = x.s |
| This follows from #2, and that datimetimetz+timedelta preserves tzinfo. |
| |
| 5. (x+k).n = x.n + k |
| Again follows from how arithmetic is defined. |
| |
| Now we can explain tz.fromutc(x). Let's assume it's an interesting case |
| (meaning that the various tzinfo methods exist, and don't blow up or return |
| None when called). |
| |
| The function wants to return a datetime y with timezone tz, equivalent to x. |
| x is already in UTC. |
| |
| By #3, we want |
| |
| y.n - y.o = x.n [1] |
| |
| The algorithm starts by attaching tz to x.n, and calling that y. So |
| x.n = y.n at the start. Then it wants to add a duration k to y, so that [1] |
| becomes true; in effect, we want to solve [2] for k: |
| |
| (y+k).n - (y+k).o = x.n [2] |
| |
| By #1, this is the same as |
| |
| (y+k).n - ((y+k).s + (y+k).d) = x.n [3] |
| |
| By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start. |
| Substituting that into [3], |
| |
| x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving |
| k - (y+k).s - (y+k).d = 0; rearranging, |
| k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so |
| k = y.s - (y+k).d |
| |
| On the RHS, (y+k).d can't be computed directly, but y.s can be, and we |
| approximate k by ignoring the (y+k).d term at first. Note that k can't be |
| very large, since all offset-returning methods return a duration of magnitude |
| less than 24 hours. For that reason, if y is firmly in std time, (y+k).d must |
| be 0, so ignoring it has no consequence then. |
| |
| In any case, the new value is |
| |
| z = y + y.s [4] |
| |
| It's helpful to step back at look at [4] from a higher level: it's simply |
| mapping from UTC to tz's standard time. |
| |
| At this point, if |
| |
| z.n - z.o = x.n [5] |
| |
| we have an equivalent time, and are almost done. The insecurity here is |
| at the start of daylight time. Picture US Eastern for concreteness. The wall |
| time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good |
| sense then. The docs ask that an Eastern tzinfo class consider such a time to |
| be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST |
| on the day DST starts. We want to return the 1:MM EST spelling because that's |
| the only spelling that makes sense on the local wall clock. |
| |
| In fact, if [5] holds at this point, we do have the standard-time spelling, |
| but that takes a bit of proof. We first prove a stronger result. What's the |
| difference between the LHS and RHS of [5]? Let |
| |
| diff = x.n - (z.n - z.o) [6] |
| |
| Now |
| z.n = by [4] |
| (y + y.s).n = by #5 |
| y.n + y.s = since y.n = x.n |
| x.n + y.s = since z and y are have the same tzinfo member, |
| y.s = z.s by #2 |
| x.n + z.s |
| |
| Plugging that back into [6] gives |
| |
| diff = |
| x.n - ((x.n + z.s) - z.o) = expanding |
| x.n - x.n - z.s + z.o = cancelling |
| - z.s + z.o = by #2 |
| z.d |
| |
| So diff = z.d. |
| |
| If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time |
| spelling we wanted in the endcase described above. We're done. Contrarily, |
| if z.d = 0, then we have a UTC equivalent, and are also done. |
| |
| If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to |
| add to z (in effect, z is in tz's standard time, and we need to shift the |
| local clock into tz's daylight time). |
| |
| Let |
| |
| z' = z + z.d = z + diff [7] |
| |
| and we can again ask whether |
| |
| z'.n - z'.o = x.n [8] |
| |
| If so, we're done. If not, the tzinfo class is insane, according to the |
| assumptions we've made. This also requires a bit of proof. As before, let's |
| compute the difference between the LHS and RHS of [8] (and skipping some of |
| the justifications for the kinds of substitutions we've done several times |
| already): |
| |
| diff' = x.n - (z'.n - z'.o) = replacing z'.n via [7] |
| x.n - (z.n + diff - z'.o) = replacing diff via [6] |
| x.n - (z.n + x.n - (z.n - z.o) - z'.o) = |
| x.n - z.n - x.n + z.n - z.o + z'.o = cancel x.n |
| - z.n + z.n - z.o + z'.o = cancel z.n |
| - z.o + z'.o = #1 twice |
| -z.s - z.d + z'.s + z'.d = z and z' have same tzinfo |
| z'.d - z.d |
| |
| So z' is UTC-equivalent to x iff z'.d = z.d at this point. If they are equal, |
| we've found the UTC-equivalent so are done. In fact, we stop with [7] and |
| return z', not bothering to compute z'.d. |
| |
| How could z.d and z'd differ? z' = z + z.d [7], so merely moving z' by |
| a dst() offset, and starting *from* a time already in DST (we know z.d != 0), |
| would have to change the result dst() returns: we start in DST, and moving |
| a little further into it takes us out of DST. |
| |
| There isn't a sane case where this can happen. The closest it gets is at |
| the end of DST, where there's an hour in UTC with no spelling in a hybrid |
| tzinfo class. In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT. During |
| that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM |
| UTC) because the docs insist on that, but 0:MM is taken as being in daylight |
| time (4:MM UTC). There is no local time mapping to 5:MM UTC. The local |
| clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in |
| standard time. Since that's what the local clock *does*, we want to map both |
| UTC hours 5:MM and 6:MM to 1:MM Eastern. The result is ambiguous |
| in local time, but so it goes -- it's the way the local clock works. |
| |
| When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0, |
| so z=0:MM. z.d=60 (minutes) then, so [5] doesn't hold and we keep going. |
| z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8] |
| (correctly) concludes that z' is not UTC-equivalent to x. |
| |
| Because we know z.d said z was in daylight time (else [5] would have held and |
| we would have stopped then), and we know z.d != z'.d (else [8] would have held |
| and we would have stopped then), and there are only 2 possible values dst() can |
| return in Eastern, it follows that z'.d must be 0 (which it is in the example, |
| but the reasoning doesn't depend on the example -- it depends on there being |
| two possible dst() outcomes, one zero and the other non-zero). Therefore |
| z' must be in standard time, and is the spelling we want in this case. |
| |
| Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is |
| concerned (because it takes z' as being in standard time rather than the |
| daylight time we intend here), but returning it gives the real-life "local |
| clock repeats an hour" behavior when mapping the "unspellable" UTC hour into |
| tz. |
| |
| When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with |
| the 1:MM standard time spelling we want. |
| |
| So how can this break? One of the assumptions must be violated. Two |
| possibilities: |
| |
| 1) [2] effectively says that y.s is invariant across all y belong to a given |
| time zone. This isn't true if, for political reasons or continental drift, |
| a region decides to change its base offset from UTC. |
| |
| 2) There may be versions of "double daylight" time where the tail end of |
| the analysis gives up a step too early. I haven't thought about that |
| enough to say. |
| |
| In any case, it's clear that the default fromutc() is strong enough to handle |
| "almost all" time zones: so long as the standard offset is invariant, it |
| doesn't matter if daylight time transition points change from year to year, or |
| if daylight time is skipped in some years; it doesn't matter how large or |
| small dst() may get within its bounds; and it doesn't even matter if some |
| perverse time zone returns a negative dst()). So a breaking case must be |
| pretty bizarre, and a tzinfo subclass can override fromutc() if it is. |
| --------------------------------------------------------------------------- */ |