| |
| /* Return the initial module search path. */ |
| /* Used by DOS, OS/2, Windows 3.1, Windows 95/98, Windows NT. */ |
| |
| /* ---------------------------------------------------------------- |
| PATH RULES FOR WINDOWS: |
| This describes how sys.path is formed on Windows. It describes the |
| functionality, not the implementation (ie, the order in which these |
| are actually fetched is different) |
| |
| * Python always adds an empty entry at the start, which corresponds |
| to the current directory. |
| |
| * If the PYTHONPATH env. var. exists, its entries are added next. |
| |
| * We look in the registry for "application paths" - that is, sub-keys |
| under the main PythonPath registry key. These are added next (the |
| order of sub-key processing is undefined). |
| HKEY_CURRENT_USER is searched and added first. |
| HKEY_LOCAL_MACHINE is searched and added next. |
| (Note that all known installers only use HKLM, so HKCU is typically |
| empty) |
| |
| * We attempt to locate the "Python Home" - if the PYTHONHOME env var |
| is set, we believe it. Otherwise, we use the path of our host .EXE's |
| to try and locate our "landmark" (lib\\os.py) and deduce our home. |
| - If we DO have a Python Home: The relevant sub-directories (Lib, |
| plat-win, lib-tk, etc) are based on the Python Home |
| - If we DO NOT have a Python Home, the core Python Path is |
| loaded from the registry. This is the main PythonPath key, |
| and both HKLM and HKCU are combined to form the path) |
| |
| * Iff - we can not locate the Python Home, have not had a PYTHONPATH |
| specified, and can't locate any Registry entries (ie, we have _nothing_ |
| we can assume is a good path), a default path with relative entries is |
| used (eg. .\Lib;.\plat-win, etc) |
| |
| |
| The end result of all this is: |
| * When running python.exe, or any other .exe in the main Python directory |
| (either an installed version, or directly from the PCbuild directory), |
| the core path is deduced, and the core paths in the registry are |
| ignored. Other "application paths" in the registry are always read. |
| |
| * When Python is hosted in another exe (different directory, embedded via |
| COM, etc), the Python Home will not be deduced, so the core path from |
| the registry is used. Other "application paths" in the registry are |
| always read. |
| |
| * If Python can't find its home and there is no registry (eg, frozen |
| exe, some very strange installation setup) you get a path with |
| some default, but relative, paths. |
| |
| ---------------------------------------------------------------- */ |
| |
| |
| #include "Python.h" |
| #include "osdefs.h" |
| |
| #ifdef MS_WINDOWS |
| #include <windows.h> |
| #include <tchar.h> |
| #endif |
| |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <string.h> |
| |
| /* Search in some common locations for the associated Python libraries. |
| * |
| * Py_GetPath() tries to return a sensible Python module search path. |
| * |
| * The approach is an adaptation for Windows of the strategy used in |
| * ../Modules/getpath.c; it uses the Windows Registry as one of its |
| * information sources. |
| */ |
| |
| #ifndef LANDMARK |
| #define LANDMARK "lib\\os.py" |
| #endif |
| |
| static char prefix[MAXPATHLEN+1]; |
| static char progpath[MAXPATHLEN+1]; |
| static char dllpath[MAXPATHLEN+1]; |
| static char *module_search_path = NULL; |
| |
| |
| static int |
| is_sep(char ch) /* determine if "ch" is a separator character */ |
| { |
| #ifdef ALTSEP |
| return ch == SEP || ch == ALTSEP; |
| #else |
| return ch == SEP; |
| #endif |
| } |
| |
| /* assumes 'dir' null terminated in bounds. Never writes |
| beyond existing terminator. |
| */ |
| static void |
| reduce(char *dir) |
| { |
| size_t i = strlen(dir); |
| while (i > 0 && !is_sep(dir[i])) |
| --i; |
| dir[i] = '\0'; |
| } |
| |
| |
| static int |
| exists(char *filename) |
| { |
| struct stat buf; |
| return stat(filename, &buf) == 0; |
| } |
| |
| /* Assumes 'filename' MAXPATHLEN+1 bytes long - |
| may extend 'filename' by one character. |
| */ |
| static int |
| ismodule(char *filename) /* Is module -- check for .pyc/.pyo too */ |
| { |
| if (exists(filename)) |
| return 1; |
| |
| /* Check for the compiled version of prefix. */ |
| if (strlen(filename) < MAXPATHLEN) { |
| strcat(filename, Py_OptimizeFlag ? "o" : "c"); |
| if (exists(filename)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Add a path component, by appending stuff to buffer. |
| buffer must have at least MAXPATHLEN + 1 bytes allocated, and contain a |
| NUL-terminated string with no more than MAXPATHLEN characters (not counting |
| the trailing NUL). It's a fatal error if it contains a string longer than |
| that (callers must be careful!). If these requirements are met, it's |
| guaranteed that buffer will still be a NUL-terminated string with no more |
| than MAXPATHLEN characters at exit. If stuff is too long, only as much of |
| stuff as fits will be appended. |
| */ |
| static void |
| join(char *buffer, char *stuff) |
| { |
| size_t n, k; |
| if (is_sep(stuff[0])) |
| n = 0; |
| else { |
| n = strlen(buffer); |
| if (n > 0 && !is_sep(buffer[n-1]) && n < MAXPATHLEN) |
| buffer[n++] = SEP; |
| } |
| if (n > MAXPATHLEN) |
| Py_FatalError("buffer overflow in getpathp.c's joinpath()"); |
| k = strlen(stuff); |
| if (n + k > MAXPATHLEN) |
| k = MAXPATHLEN - n; |
| strncpy(buffer+n, stuff, k); |
| buffer[n+k] = '\0'; |
| } |
| |
| /* gotlandmark only called by search_for_prefix, which ensures |
| 'prefix' is null terminated in bounds. join() ensures |
| 'landmark' can not overflow prefix if too long. |
| */ |
| static int |
| gotlandmark(char *landmark) |
| { |
| int n, ok; |
| |
| n = strlen(prefix); |
| join(prefix, landmark); |
| ok = ismodule(prefix); |
| prefix[n] = '\0'; |
| return ok; |
| } |
| |
| /* assumes argv0_path is MAXPATHLEN+1 bytes long, already \0 term'd. |
| assumption provided by only caller, calculate_path() */ |
| static int |
| search_for_prefix(char *argv0_path, char *landmark) |
| { |
| /* Search from argv0_path, until landmark is found */ |
| strcpy(prefix, argv0_path); |
| do { |
| if (gotlandmark(landmark)) |
| return 1; |
| reduce(prefix); |
| } while (prefix[0]); |
| return 0; |
| } |
| |
| #ifdef MS_WINDOWS |
| |
| /* a string loaded from the DLL at startup.*/ |
| extern const char *PyWin_DLLVersionString; |
| |
| |
| /* Load a PYTHONPATH value from the registry. |
| Load from either HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER. |
| |
| Works in both Unicode and 8bit environments. Only uses the |
| Ex family of functions so it also works with Windows CE. |
| |
| Returns NULL, or a pointer that should be freed. |
| |
| XXX - this code is pretty strange, as it used to also |
| work on Win16, where the buffer sizes werent available |
| in advance. It could be simplied now Win16/Win32s is dead! |
| */ |
| |
| static char * |
| getpythonregpath(HKEY keyBase, int skipcore) |
| { |
| HKEY newKey = 0; |
| DWORD dataSize = 0; |
| DWORD numKeys = 0; |
| LONG rc; |
| char *retval = NULL; |
| TCHAR *dataBuf = NULL; |
| static const TCHAR keyPrefix[] = _T("Software\\Python\\PythonCore\\"); |
| static const TCHAR keySuffix[] = _T("\\PythonPath"); |
| size_t versionLen; |
| DWORD index; |
| TCHAR *keyBuf = NULL; |
| TCHAR *keyBufPtr; |
| TCHAR **ppPaths = NULL; |
| |
| /* Tried to use sysget("winver") but here is too early :-( */ |
| versionLen = _tcslen(PyWin_DLLVersionString); |
| /* Space for all the chars, plus one \0 */ |
| keyBuf = keyBufPtr = malloc(sizeof(keyPrefix) + |
| sizeof(TCHAR)*(versionLen-1) + |
| sizeof(keySuffix)); |
| if (keyBuf==NULL) goto done; |
| |
| memcpy(keyBufPtr, keyPrefix, sizeof(keyPrefix)-sizeof(TCHAR)); |
| keyBufPtr += sizeof(keyPrefix)/sizeof(TCHAR) - 1; |
| memcpy(keyBufPtr, PyWin_DLLVersionString, versionLen * sizeof(TCHAR)); |
| keyBufPtr += versionLen; |
| /* NULL comes with this one! */ |
| memcpy(keyBufPtr, keySuffix, sizeof(keySuffix)); |
| /* Open the root Python key */ |
| rc=RegOpenKeyEx(keyBase, |
| keyBuf, /* subkey */ |
| 0, /* reserved */ |
| KEY_READ, |
| &newKey); |
| if (rc!=ERROR_SUCCESS) goto done; |
| /* Find out how big our core buffer is, and how many subkeys we have */ |
| rc = RegQueryInfoKey(newKey, NULL, NULL, NULL, &numKeys, NULL, NULL, |
| NULL, NULL, &dataSize, NULL, NULL); |
| if (rc!=ERROR_SUCCESS) goto done; |
| if (skipcore) dataSize = 0; /* Only count core ones if we want them! */ |
| /* Allocate a temp array of char buffers, so we only need to loop |
| reading the registry once |
| */ |
| ppPaths = malloc( sizeof(TCHAR *) * numKeys ); |
| if (ppPaths==NULL) goto done; |
| memset(ppPaths, 0, sizeof(TCHAR *) * numKeys); |
| /* Loop over all subkeys, allocating a temp sub-buffer. */ |
| for(index=0;index<numKeys;index++) { |
| TCHAR keyBuf[MAX_PATH+1]; |
| HKEY subKey = 0; |
| DWORD reqdSize = MAX_PATH+1; |
| /* Get the sub-key name */ |
| DWORD rc = RegEnumKeyEx(newKey, index, keyBuf, &reqdSize, |
| NULL, NULL, NULL, NULL ); |
| if (rc!=ERROR_SUCCESS) goto done; |
| /* Open the sub-key */ |
| rc=RegOpenKeyEx(newKey, |
| keyBuf, /* subkey */ |
| 0, /* reserved */ |
| KEY_READ, |
| &subKey); |
| if (rc!=ERROR_SUCCESS) goto done; |
| /* Find the value of the buffer size, malloc, then read it */ |
| RegQueryValueEx(subKey, NULL, 0, NULL, NULL, &reqdSize); |
| if (reqdSize) { |
| ppPaths[index] = malloc(reqdSize); |
| if (ppPaths[index]) { |
| RegQueryValueEx(subKey, NULL, 0, NULL, |
| (LPBYTE)ppPaths[index], |
| &reqdSize); |
| dataSize += reqdSize + 1; /* 1 for the ";" */ |
| } |
| } |
| RegCloseKey(subKey); |
| } |
| /* original datasize from RegQueryInfo doesn't include the \0 */ |
| dataBuf = malloc((dataSize+1) * sizeof(TCHAR)); |
| if (dataBuf) { |
| TCHAR *szCur = dataBuf; |
| DWORD reqdSize = dataSize; |
| /* Copy our collected strings */ |
| for (index=0;index<numKeys;index++) { |
| if (index > 0) { |
| *(szCur++) = _T(';'); |
| dataSize--; |
| } |
| if (ppPaths[index]) { |
| int len = _tcslen(ppPaths[index]); |
| _tcsncpy(szCur, ppPaths[index], len); |
| szCur += len; |
| dataSize -= len; |
| } |
| } |
| if (skipcore) |
| *szCur = '\0'; |
| else { |
| /* If we have no values, we dont need a ';' */ |
| if (numKeys) { |
| *(szCur++) = _T(';'); |
| dataSize--; |
| } |
| /* Now append the core path entries - |
| this will include the NULL |
| */ |
| rc = RegQueryValueEx(newKey, NULL, 0, NULL, |
| (LPBYTE)szCur, &dataSize); |
| } |
| /* And set the result - caller must free |
| If MBCS, it is fine as is. If Unicode, allocate new |
| buffer and convert. |
| */ |
| #ifdef UNICODE |
| retval = (char *)malloc(reqdSize+1); |
| if (retval) |
| WideCharToMultiByte(CP_ACP, 0, |
| dataBuf, -1, /* source */ |
| retval, reqdSize+1, /* dest */ |
| NULL, NULL); |
| free(dataBuf); |
| #else |
| retval = dataBuf; |
| #endif |
| } |
| done: |
| /* Loop freeing my temp buffers */ |
| if (ppPaths) { |
| for(index=0;index<numKeys;index++) |
| if (ppPaths[index]) free(ppPaths[index]); |
| free(ppPaths); |
| } |
| if (newKey) |
| RegCloseKey(newKey); |
| if (keyBuf) |
| free(keyBuf); |
| return retval; |
| } |
| #endif /* MS_WINDOWS */ |
| |
| static void |
| get_progpath(void) |
| { |
| extern char *Py_GetProgramName(void); |
| char *path = getenv("PATH"); |
| char *prog = Py_GetProgramName(); |
| |
| #ifdef MS_WINDOWS |
| extern HANDLE PyWin_DLLhModule; |
| #ifdef UNICODE |
| WCHAR wprogpath[MAXPATHLEN+1]; |
| /* Windows documents that GetModuleFileName() will "truncate", |
| but makes no mention of the null terminator. Play it safe. |
| PLUS Windows itself defines MAX_PATH as the same, but anyway... |
| */ |
| wprogpath[MAXPATHLEN]=_T('\0'); |
| if (PyWin_DLLhModule && |
| GetModuleFileName(PyWin_DLLhModule, wprogpath, MAXPATHLEN)) { |
| WideCharToMultiByte(CP_ACP, 0, |
| wprogpath, -1, |
| dllpath, MAXPATHLEN+1, |
| NULL, NULL); |
| } |
| wprogpath[MAXPATHLEN]=_T('\0'); |
| if (GetModuleFileName(NULL, wprogpath, MAXPATHLEN)) { |
| WideCharToMultiByte(CP_ACP, 0, |
| wprogpath, -1, |
| progpath, MAXPATHLEN+1, |
| NULL, NULL); |
| return; |
| } |
| #else |
| /* static init of progpath ensures final char remains \0 */ |
| if (PyWin_DLLhModule) |
| if (!GetModuleFileName(PyWin_DLLhModule, dllpath, MAXPATHLEN)) |
| dllpath[0] = 0; |
| if (GetModuleFileName(NULL, progpath, MAXPATHLEN)) |
| return; |
| #endif |
| #endif |
| if (prog == NULL || *prog == '\0') |
| prog = "python"; |
| |
| /* If there is no slash in the argv0 path, then we have to |
| * assume python is on the user's $PATH, since there's no |
| * other way to find a directory to start the search from. If |
| * $PATH isn't exported, you lose. |
| */ |
| #ifdef ALTSEP |
| if (strchr(prog, SEP) || strchr(prog, ALTSEP)) |
| #else |
| if (strchr(prog, SEP)) |
| #endif |
| strncpy(progpath, prog, MAXPATHLEN); |
| else if (path) { |
| while (1) { |
| char *delim = strchr(path, DELIM); |
| |
| if (delim) { |
| size_t len = delim - path; |
| /* ensure we can't overwrite buffer */ |
| len = min(MAXPATHLEN,len); |
| strncpy(progpath, path, len); |
| *(progpath + len) = '\0'; |
| } |
| else |
| strncpy(progpath, path, MAXPATHLEN); |
| |
| /* join() is safe for MAXPATHLEN+1 size buffer */ |
| join(progpath, prog); |
| if (exists(progpath)) |
| break; |
| |
| if (!delim) { |
| progpath[0] = '\0'; |
| break; |
| } |
| path = delim + 1; |
| } |
| } |
| else |
| progpath[0] = '\0'; |
| } |
| |
| static void |
| calculate_path(void) |
| { |
| char argv0_path[MAXPATHLEN+1]; |
| char *buf; |
| size_t bufsz; |
| char *pythonhome = Py_GetPythonHome(); |
| char *envpath = Py_GETENV("PYTHONPATH"); |
| |
| #ifdef MS_WINDOWS |
| int skiphome, skipdefault; |
| char *machinepath = NULL; |
| char *userpath = NULL; |
| char zip_path[MAXPATHLEN+1]; |
| size_t len; |
| #endif |
| |
| get_progpath(); |
| /* progpath guaranteed \0 terminated in MAXPATH+1 bytes. */ |
| strcpy(argv0_path, progpath); |
| reduce(argv0_path); |
| if (pythonhome == NULL || *pythonhome == '\0') { |
| if (search_for_prefix(argv0_path, LANDMARK)) |
| pythonhome = prefix; |
| else |
| pythonhome = NULL; |
| } |
| else |
| strncpy(prefix, pythonhome, MAXPATHLEN); |
| |
| if (envpath && *envpath == '\0') |
| envpath = NULL; |
| |
| |
| #ifdef MS_WINDOWS |
| /* Calculate zip archive path */ |
| if (dllpath[0]) /* use name of python DLL */ |
| strncpy(zip_path, dllpath, MAXPATHLEN); |
| else /* use name of executable program */ |
| strncpy(zip_path, progpath, MAXPATHLEN); |
| zip_path[MAXPATHLEN] = '\0'; |
| len = strlen(zip_path); |
| if (len > 4) { |
| zip_path[len-3] = 'z'; /* change ending to "zip" */ |
| zip_path[len-2] = 'i'; |
| zip_path[len-1] = 'p'; |
| } |
| else { |
| zip_path[0] = 0; |
| } |
| |
| skiphome = pythonhome==NULL ? 0 : 1; |
| machinepath = getpythonregpath(HKEY_LOCAL_MACHINE, skiphome); |
| userpath = getpythonregpath(HKEY_CURRENT_USER, skiphome); |
| /* We only use the default relative PYTHONPATH if we havent |
| anything better to use! */ |
| skipdefault = envpath!=NULL || pythonhome!=NULL || \ |
| machinepath!=NULL || userpath!=NULL; |
| #endif |
| |
| /* We need to construct a path from the following parts. |
| (1) the PYTHONPATH environment variable, if set; |
| (2) for Win32, the zip archive file path; |
| (3) for Win32, the machinepath and userpath, if set; |
| (4) the PYTHONPATH config macro, with the leading "." |
| of each component replaced with pythonhome, if set; |
| (5) the directory containing the executable (argv0_path). |
| The length calculation calculates #4 first. |
| Extra rules: |
| - If PYTHONHOME is set (in any way) item (3) is ignored. |
| - If registry values are used, (4) and (5) are ignored. |
| */ |
| |
| /* Calculate size of return buffer */ |
| if (pythonhome != NULL) { |
| char *p; |
| bufsz = 1; |
| for (p = PYTHONPATH; *p; p++) { |
| if (*p == DELIM) |
| bufsz++; /* number of DELIM plus one */ |
| } |
| bufsz *= strlen(pythonhome); |
| } |
| else |
| bufsz = 0; |
| bufsz += strlen(PYTHONPATH) + 1; |
| bufsz += strlen(argv0_path) + 1; |
| #ifdef MS_WINDOWS |
| if (userpath) |
| bufsz += strlen(userpath) + 1; |
| if (machinepath) |
| bufsz += strlen(machinepath) + 1; |
| bufsz += strlen(zip_path) + 1; |
| #endif |
| if (envpath != NULL) |
| bufsz += strlen(envpath) + 1; |
| |
| module_search_path = buf = malloc(bufsz); |
| if (buf == NULL) { |
| /* We can't exit, so print a warning and limp along */ |
| fprintf(stderr, "Can't malloc dynamic PYTHONPATH.\n"); |
| if (envpath) { |
| fprintf(stderr, "Using environment $PYTHONPATH.\n"); |
| module_search_path = envpath; |
| } |
| else { |
| fprintf(stderr, "Using default static path.\n"); |
| module_search_path = PYTHONPATH; |
| } |
| #ifdef MS_WINDOWS |
| if (machinepath) |
| free(machinepath); |
| if (userpath) |
| free(userpath); |
| #endif /* MS_WINDOWS */ |
| return; |
| } |
| |
| if (envpath) { |
| strcpy(buf, envpath); |
| buf = strchr(buf, '\0'); |
| *buf++ = DELIM; |
| } |
| #ifdef MS_WINDOWS |
| if (zip_path[0]) { |
| strcpy(buf, zip_path); |
| buf = strchr(buf, '\0'); |
| *buf++ = DELIM; |
| } |
| if (userpath) { |
| strcpy(buf, userpath); |
| buf = strchr(buf, '\0'); |
| *buf++ = DELIM; |
| free(userpath); |
| } |
| if (machinepath) { |
| strcpy(buf, machinepath); |
| buf = strchr(buf, '\0'); |
| *buf++ = DELIM; |
| free(machinepath); |
| } |
| if (pythonhome == NULL) { |
| if (!skipdefault) { |
| strcpy(buf, PYTHONPATH); |
| buf = strchr(buf, '\0'); |
| } |
| } |
| #else |
| if (pythonhome == NULL) { |
| strcpy(buf, PYTHONPATH); |
| buf = strchr(buf, '\0'); |
| } |
| #endif /* MS_WINDOWS */ |
| else { |
| char *p = PYTHONPATH; |
| char *q; |
| size_t n; |
| for (;;) { |
| q = strchr(p, DELIM); |
| if (q == NULL) |
| n = strlen(p); |
| else |
| n = q-p; |
| if (p[0] == '.' && is_sep(p[1])) { |
| strcpy(buf, pythonhome); |
| buf = strchr(buf, '\0'); |
| p++; |
| n--; |
| } |
| strncpy(buf, p, n); |
| buf += n; |
| if (q == NULL) |
| break; |
| *buf++ = DELIM; |
| p = q+1; |
| } |
| } |
| if (argv0_path) { |
| *buf++ = DELIM; |
| strcpy(buf, argv0_path); |
| buf = strchr(buf, '\0'); |
| } |
| *buf = '\0'; |
| /* Now to pull one last hack/trick. If sys.prefix is |
| empty, then try and find it somewhere on the paths |
| we calculated. We scan backwards, as our general policy |
| is that Python core directories are at the *end* of |
| sys.path. We assume that our "lib" directory is |
| on the path, and that our 'prefix' directory is |
| the parent of that. |
| */ |
| if (*prefix=='\0') { |
| char lookBuf[MAXPATHLEN+1]; |
| char *look = buf - 1; /* 'buf' is at the end of the buffer */ |
| while (1) { |
| int nchars; |
| char *lookEnd = look; |
| /* 'look' will end up one character before the |
| start of the path in question - even if this |
| is one character before the start of the buffer |
| */ |
| while (*look != DELIM && look >= module_search_path) |
| look--; |
| nchars = lookEnd-look; |
| strncpy(lookBuf, look+1, nchars); |
| lookBuf[nchars] = '\0'; |
| /* Up one level to the parent */ |
| reduce(lookBuf); |
| if (search_for_prefix(lookBuf, LANDMARK)) { |
| break; |
| } |
| /* If we are out of paths to search - give up */ |
| if (look < module_search_path) |
| break; |
| look--; |
| } |
| } |
| } |
| |
| |
| /* External interface */ |
| |
| char * |
| Py_GetPath(void) |
| { |
| if (!module_search_path) |
| calculate_path(); |
| return module_search_path; |
| } |
| |
| char * |
| Py_GetPrefix(void) |
| { |
| if (!module_search_path) |
| calculate_path(); |
| return prefix; |
| } |
| |
| char * |
| Py_GetExecPrefix(void) |
| { |
| return Py_GetPrefix(); |
| } |
| |
| char * |
| Py_GetProgramFullPath(void) |
| { |
| if (!module_search_path) |
| calculate_path(); |
| return progpath; |
| } |