| /* Math module -- standard C math library functions, pi and e */ |
| |
| /* Here are some comments from Tim Peters, extracted from the |
| discussion attached to http://bugs.python.org/issue1640. They |
| describe the general aims of the math module with respect to |
| special values, IEEE-754 floating-point exceptions, and Python |
| exceptions. |
| |
| These are the "spirit of 754" rules: |
| |
| 1. If the mathematical result is a real number, but of magnitude too |
| large to approximate by a machine float, overflow is signaled and the |
| result is an infinity (with the appropriate sign). |
| |
| 2. If the mathematical result is a real number, but of magnitude too |
| small to approximate by a machine float, underflow is signaled and the |
| result is a zero (with the appropriate sign). |
| |
| 3. At a singularity (a value x such that the limit of f(y) as y |
| approaches x exists and is an infinity), "divide by zero" is signaled |
| and the result is an infinity (with the appropriate sign). This is |
| complicated a little by that the left-side and right-side limits may |
| not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 |
| from the positive or negative directions. In that specific case, the |
| sign of the zero determines the result of 1/0. |
| |
| 4. At a point where a function has no defined result in the extended |
| reals (i.e., the reals plus an infinity or two), invalid operation is |
| signaled and a NaN is returned. |
| |
| And these are what Python has historically /tried/ to do (but not |
| always successfully, as platform libm behavior varies a lot): |
| |
| For #1, raise OverflowError. |
| |
| For #2, return a zero (with the appropriate sign if that happens by |
| accident ;-)). |
| |
| For #3 and #4, raise ValueError. It may have made sense to raise |
| Python's ZeroDivisionError in #3, but historically that's only been |
| raised for division by zero and mod by zero. |
| |
| */ |
| |
| /* |
| In general, on an IEEE-754 platform the aim is to follow the C99 |
| standard, including Annex 'F', whenever possible. Where the |
| standard recommends raising the 'divide-by-zero' or 'invalid' |
| floating-point exceptions, Python should raise a ValueError. Where |
| the standard recommends raising 'overflow', Python should raise an |
| OverflowError. In all other circumstances a value should be |
| returned. |
| */ |
| |
| #include "Python.h" |
| #include "pycore_bitutils.h" // _Py_bit_length() |
| #include "pycore_dtoa.h" |
| #include "_math.h" |
| |
| #include "clinic/mathmodule.c.h" |
| |
| /*[clinic input] |
| module math |
| [clinic start generated code]*/ |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/ |
| |
| |
| /* |
| sin(pi*x), giving accurate results for all finite x (especially x |
| integral or close to an integer). This is here for use in the |
| reflection formula for the gamma function. It conforms to IEEE |
| 754-2008 for finite arguments, but not for infinities or nans. |
| */ |
| |
| static const double pi = 3.141592653589793238462643383279502884197; |
| static const double logpi = 1.144729885849400174143427351353058711647; |
| #if !defined(HAVE_ERF) || !defined(HAVE_ERFC) |
| static const double sqrtpi = 1.772453850905516027298167483341145182798; |
| #endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */ |
| |
| |
| /* Version of PyFloat_AsDouble() with in-line fast paths |
| for exact floats and integers. Gives a substantial |
| speed improvement for extracting float arguments. |
| */ |
| |
| #define ASSIGN_DOUBLE(target_var, obj, error_label) \ |
| if (PyFloat_CheckExact(obj)) { \ |
| target_var = PyFloat_AS_DOUBLE(obj); \ |
| } \ |
| else if (PyLong_CheckExact(obj)) { \ |
| target_var = PyLong_AsDouble(obj); \ |
| if (target_var == -1.0 && PyErr_Occurred()) { \ |
| goto error_label; \ |
| } \ |
| } \ |
| else { \ |
| target_var = PyFloat_AsDouble(obj); \ |
| if (target_var == -1.0 && PyErr_Occurred()) { \ |
| goto error_label; \ |
| } \ |
| } |
| |
| static double |
| m_sinpi(double x) |
| { |
| double y, r; |
| int n; |
| /* this function should only ever be called for finite arguments */ |
| assert(Py_IS_FINITE(x)); |
| y = fmod(fabs(x), 2.0); |
| n = (int)round(2.0*y); |
| assert(0 <= n && n <= 4); |
| switch (n) { |
| case 0: |
| r = sin(pi*y); |
| break; |
| case 1: |
| r = cos(pi*(y-0.5)); |
| break; |
| case 2: |
| /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give |
| -0.0 instead of 0.0 when y == 1.0. */ |
| r = sin(pi*(1.0-y)); |
| break; |
| case 3: |
| r = -cos(pi*(y-1.5)); |
| break; |
| case 4: |
| r = sin(pi*(y-2.0)); |
| break; |
| default: |
| Py_UNREACHABLE(); |
| } |
| return copysign(1.0, x)*r; |
| } |
| |
| /* Implementation of the real gamma function. In extensive but non-exhaustive |
| random tests, this function proved accurate to within <= 10 ulps across the |
| entire float domain. Note that accuracy may depend on the quality of the |
| system math functions, the pow function in particular. Special cases |
| follow C99 annex F. The parameters and method are tailored to platforms |
| whose double format is the IEEE 754 binary64 format. |
| |
| Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 |
| and g=6.024680040776729583740234375; these parameters are amongst those |
| used by the Boost library. Following Boost (again), we re-express the |
| Lanczos sum as a rational function, and compute it that way. The |
| coefficients below were computed independently using MPFR, and have been |
| double-checked against the coefficients in the Boost source code. |
| |
| For x < 0.0 we use the reflection formula. |
| |
| There's one minor tweak that deserves explanation: Lanczos' formula for |
| Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x |
| values, x+g-0.5 can be represented exactly. However, in cases where it |
| can't be represented exactly the small error in x+g-0.5 can be magnified |
| significantly by the pow and exp calls, especially for large x. A cheap |
| correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error |
| involved in the computation of x+g-0.5 (that is, e = computed value of |
| x+g-0.5 - exact value of x+g-0.5). Here's the proof: |
| |
| Correction factor |
| ----------------- |
| Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 |
| double, and e is tiny. Then: |
| |
| pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) |
| = pow(y, x-0.5)/exp(y) * C, |
| |
| where the correction_factor C is given by |
| |
| C = pow(1-e/y, x-0.5) * exp(e) |
| |
| Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: |
| |
| C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y |
| |
| But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and |
| |
| pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), |
| |
| Note that for accuracy, when computing r*C it's better to do |
| |
| r + e*g/y*r; |
| |
| than |
| |
| r * (1 + e*g/y); |
| |
| since the addition in the latter throws away most of the bits of |
| information in e*g/y. |
| */ |
| |
| #define LANCZOS_N 13 |
| static const double lanczos_g = 6.024680040776729583740234375; |
| static const double lanczos_g_minus_half = 5.524680040776729583740234375; |
| static const double lanczos_num_coeffs[LANCZOS_N] = { |
| 23531376880.410759688572007674451636754734846804940, |
| 42919803642.649098768957899047001988850926355848959, |
| 35711959237.355668049440185451547166705960488635843, |
| 17921034426.037209699919755754458931112671403265390, |
| 6039542586.3520280050642916443072979210699388420708, |
| 1439720407.3117216736632230727949123939715485786772, |
| 248874557.86205415651146038641322942321632125127801, |
| 31426415.585400194380614231628318205362874684987640, |
| 2876370.6289353724412254090516208496135991145378768, |
| 186056.26539522349504029498971604569928220784236328, |
| 8071.6720023658162106380029022722506138218516325024, |
| 210.82427775157934587250973392071336271166969580291, |
| 2.5066282746310002701649081771338373386264310793408 |
| }; |
| |
| /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ |
| static const double lanczos_den_coeffs[LANCZOS_N] = { |
| 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, |
| 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; |
| |
| /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ |
| #define NGAMMA_INTEGRAL 23 |
| static const double gamma_integral[NGAMMA_INTEGRAL] = { |
| 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, |
| 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, |
| 1307674368000.0, 20922789888000.0, 355687428096000.0, |
| 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, |
| 51090942171709440000.0, 1124000727777607680000.0, |
| }; |
| |
| /* Lanczos' sum L_g(x), for positive x */ |
| |
| static double |
| lanczos_sum(double x) |
| { |
| double num = 0.0, den = 0.0; |
| int i; |
| assert(x > 0.0); |
| /* evaluate the rational function lanczos_sum(x). For large |
| x, the obvious algorithm risks overflow, so we instead |
| rescale the denominator and numerator of the rational |
| function by x**(1-LANCZOS_N) and treat this as a |
| rational function in 1/x. This also reduces the error for |
| larger x values. The choice of cutoff point (5.0 below) is |
| somewhat arbitrary; in tests, smaller cutoff values than |
| this resulted in lower accuracy. */ |
| if (x < 5.0) { |
| for (i = LANCZOS_N; --i >= 0; ) { |
| num = num * x + lanczos_num_coeffs[i]; |
| den = den * x + lanczos_den_coeffs[i]; |
| } |
| } |
| else { |
| for (i = 0; i < LANCZOS_N; i++) { |
| num = num / x + lanczos_num_coeffs[i]; |
| den = den / x + lanczos_den_coeffs[i]; |
| } |
| } |
| return num/den; |
| } |
| |
| /* Constant for +infinity, generated in the same way as float('inf'). */ |
| |
| static double |
| m_inf(void) |
| { |
| #ifndef PY_NO_SHORT_FLOAT_REPR |
| return _Py_dg_infinity(0); |
| #else |
| return Py_HUGE_VAL; |
| #endif |
| } |
| |
| /* Constant nan value, generated in the same way as float('nan'). */ |
| /* We don't currently assume that Py_NAN is defined everywhere. */ |
| |
| #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) |
| |
| static double |
| m_nan(void) |
| { |
| #ifndef PY_NO_SHORT_FLOAT_REPR |
| return _Py_dg_stdnan(0); |
| #else |
| return Py_NAN; |
| #endif |
| } |
| |
| #endif |
| |
| static double |
| m_tgamma(double x) |
| { |
| double absx, r, y, z, sqrtpow; |
| |
| /* special cases */ |
| if (!Py_IS_FINITE(x)) { |
| if (Py_IS_NAN(x) || x > 0.0) |
| return x; /* tgamma(nan) = nan, tgamma(inf) = inf */ |
| else { |
| errno = EDOM; |
| return Py_NAN; /* tgamma(-inf) = nan, invalid */ |
| } |
| } |
| if (x == 0.0) { |
| errno = EDOM; |
| /* tgamma(+-0.0) = +-inf, divide-by-zero */ |
| return copysign(Py_HUGE_VAL, x); |
| } |
| |
| /* integer arguments */ |
| if (x == floor(x)) { |
| if (x < 0.0) { |
| errno = EDOM; /* tgamma(n) = nan, invalid for */ |
| return Py_NAN; /* negative integers n */ |
| } |
| if (x <= NGAMMA_INTEGRAL) |
| return gamma_integral[(int)x - 1]; |
| } |
| absx = fabs(x); |
| |
| /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */ |
| if (absx < 1e-20) { |
| r = 1.0/x; |
| if (Py_IS_INFINITY(r)) |
| errno = ERANGE; |
| return r; |
| } |
| |
| /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for |
| x > 200, and underflows to +-0.0 for x < -200, not a negative |
| integer. */ |
| if (absx > 200.0) { |
| if (x < 0.0) { |
| return 0.0/m_sinpi(x); |
| } |
| else { |
| errno = ERANGE; |
| return Py_HUGE_VAL; |
| } |
| } |
| |
| y = absx + lanczos_g_minus_half; |
| /* compute error in sum */ |
| if (absx > lanczos_g_minus_half) { |
| /* note: the correction can be foiled by an optimizing |
| compiler that (incorrectly) thinks that an expression like |
| a + b - a - b can be optimized to 0.0. This shouldn't |
| happen in a standards-conforming compiler. */ |
| double q = y - absx; |
| z = q - lanczos_g_minus_half; |
| } |
| else { |
| double q = y - lanczos_g_minus_half; |
| z = q - absx; |
| } |
| z = z * lanczos_g / y; |
| if (x < 0.0) { |
| r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx); |
| r -= z * r; |
| if (absx < 140.0) { |
| r /= pow(y, absx - 0.5); |
| } |
| else { |
| sqrtpow = pow(y, absx / 2.0 - 0.25); |
| r /= sqrtpow; |
| r /= sqrtpow; |
| } |
| } |
| else { |
| r = lanczos_sum(absx) / exp(y); |
| r += z * r; |
| if (absx < 140.0) { |
| r *= pow(y, absx - 0.5); |
| } |
| else { |
| sqrtpow = pow(y, absx / 2.0 - 0.25); |
| r *= sqrtpow; |
| r *= sqrtpow; |
| } |
| } |
| if (Py_IS_INFINITY(r)) |
| errno = ERANGE; |
| return r; |
| } |
| |
| /* |
| lgamma: natural log of the absolute value of the Gamma function. |
| For large arguments, Lanczos' formula works extremely well here. |
| */ |
| |
| static double |
| m_lgamma(double x) |
| { |
| double r; |
| double absx; |
| |
| /* special cases */ |
| if (!Py_IS_FINITE(x)) { |
| if (Py_IS_NAN(x)) |
| return x; /* lgamma(nan) = nan */ |
| else |
| return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ |
| } |
| |
| /* integer arguments */ |
| if (x == floor(x) && x <= 2.0) { |
| if (x <= 0.0) { |
| errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */ |
| return Py_HUGE_VAL; /* integers n <= 0 */ |
| } |
| else { |
| return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ |
| } |
| } |
| |
| absx = fabs(x); |
| /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ |
| if (absx < 1e-20) |
| return -log(absx); |
| |
| /* Lanczos' formula. We could save a fraction of a ulp in accuracy by |
| having a second set of numerator coefficients for lanczos_sum that |
| absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g |
| subtraction below; it's probably not worth it. */ |
| r = log(lanczos_sum(absx)) - lanczos_g; |
| r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1); |
| if (x < 0.0) |
| /* Use reflection formula to get value for negative x. */ |
| r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r; |
| if (Py_IS_INFINITY(r)) |
| errno = ERANGE; |
| return r; |
| } |
| |
| #if !defined(HAVE_ERF) || !defined(HAVE_ERFC) |
| |
| /* |
| Implementations of the error function erf(x) and the complementary error |
| function erfc(x). |
| |
| Method: we use a series approximation for erf for small x, and a continued |
| fraction approximation for erfc(x) for larger x; |
| combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), |
| this gives us erf(x) and erfc(x) for all x. |
| |
| The series expansion used is: |
| |
| erf(x) = x*exp(-x*x)/sqrt(pi) * [ |
| 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...] |
| |
| The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k). |
| This series converges well for smallish x, but slowly for larger x. |
| |
| The continued fraction expansion used is: |
| |
| erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - ) |
| 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...] |
| |
| after the first term, the general term has the form: |
| |
| k*(k-0.5)/(2*k+0.5 + x**2 - ...). |
| |
| This expansion converges fast for larger x, but convergence becomes |
| infinitely slow as x approaches 0.0. The (somewhat naive) continued |
| fraction evaluation algorithm used below also risks overflow for large x; |
| but for large x, erfc(x) == 0.0 to within machine precision. (For |
| example, erfc(30.0) is approximately 2.56e-393). |
| |
| Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and |
| continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) < |
| ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the |
| numbers of terms to use for the relevant expansions. */ |
| |
| #define ERF_SERIES_CUTOFF 1.5 |
| #define ERF_SERIES_TERMS 25 |
| #define ERFC_CONTFRAC_CUTOFF 30.0 |
| #define ERFC_CONTFRAC_TERMS 50 |
| |
| /* |
| Error function, via power series. |
| |
| Given a finite float x, return an approximation to erf(x). |
| Converges reasonably fast for small x. |
| */ |
| |
| static double |
| m_erf_series(double x) |
| { |
| double x2, acc, fk, result; |
| int i, saved_errno; |
| |
| x2 = x * x; |
| acc = 0.0; |
| fk = (double)ERF_SERIES_TERMS + 0.5; |
| for (i = 0; i < ERF_SERIES_TERMS; i++) { |
| acc = 2.0 + x2 * acc / fk; |
| fk -= 1.0; |
| } |
| /* Make sure the exp call doesn't affect errno; |
| see m_erfc_contfrac for more. */ |
| saved_errno = errno; |
| result = acc * x * exp(-x2) / sqrtpi; |
| errno = saved_errno; |
| return result; |
| } |
| |
| /* |
| Complementary error function, via continued fraction expansion. |
| |
| Given a positive float x, return an approximation to erfc(x). Converges |
| reasonably fast for x large (say, x > 2.0), and should be safe from |
| overflow if x and nterms are not too large. On an IEEE 754 machine, with x |
| <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller |
| than the smallest representable nonzero float. */ |
| |
| static double |
| m_erfc_contfrac(double x) |
| { |
| double x2, a, da, p, p_last, q, q_last, b, result; |
| int i, saved_errno; |
| |
| if (x >= ERFC_CONTFRAC_CUTOFF) |
| return 0.0; |
| |
| x2 = x*x; |
| a = 0.0; |
| da = 0.5; |
| p = 1.0; p_last = 0.0; |
| q = da + x2; q_last = 1.0; |
| for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) { |
| double temp; |
| a += da; |
| da += 2.0; |
| b = da + x2; |
| temp = p; p = b*p - a*p_last; p_last = temp; |
| temp = q; q = b*q - a*q_last; q_last = temp; |
| } |
| /* Issue #8986: On some platforms, exp sets errno on underflow to zero; |
| save the current errno value so that we can restore it later. */ |
| saved_errno = errno; |
| result = p / q * x * exp(-x2) / sqrtpi; |
| errno = saved_errno; |
| return result; |
| } |
| |
| #endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */ |
| |
| /* Error function erf(x), for general x */ |
| |
| static double |
| m_erf(double x) |
| { |
| #ifdef HAVE_ERF |
| return erf(x); |
| #else |
| double absx, cf; |
| |
| if (Py_IS_NAN(x)) |
| return x; |
| absx = fabs(x); |
| if (absx < ERF_SERIES_CUTOFF) |
| return m_erf_series(x); |
| else { |
| cf = m_erfc_contfrac(absx); |
| return x > 0.0 ? 1.0 - cf : cf - 1.0; |
| } |
| #endif |
| } |
| |
| /* Complementary error function erfc(x), for general x. */ |
| |
| static double |
| m_erfc(double x) |
| { |
| #ifdef HAVE_ERFC |
| return erfc(x); |
| #else |
| double absx, cf; |
| |
| if (Py_IS_NAN(x)) |
| return x; |
| absx = fabs(x); |
| if (absx < ERF_SERIES_CUTOFF) |
| return 1.0 - m_erf_series(x); |
| else { |
| cf = m_erfc_contfrac(absx); |
| return x > 0.0 ? cf : 2.0 - cf; |
| } |
| #endif |
| } |
| |
| /* |
| wrapper for atan2 that deals directly with special cases before |
| delegating to the platform libm for the remaining cases. This |
| is necessary to get consistent behaviour across platforms. |
| Windows, FreeBSD and alpha Tru64 are amongst platforms that don't |
| always follow C99. |
| */ |
| |
| static double |
| m_atan2(double y, double x) |
| { |
| if (Py_IS_NAN(x) || Py_IS_NAN(y)) |
| return Py_NAN; |
| if (Py_IS_INFINITY(y)) { |
| if (Py_IS_INFINITY(x)) { |
| if (copysign(1., x) == 1.) |
| /* atan2(+-inf, +inf) == +-pi/4 */ |
| return copysign(0.25*Py_MATH_PI, y); |
| else |
| /* atan2(+-inf, -inf) == +-pi*3/4 */ |
| return copysign(0.75*Py_MATH_PI, y); |
| } |
| /* atan2(+-inf, x) == +-pi/2 for finite x */ |
| return copysign(0.5*Py_MATH_PI, y); |
| } |
| if (Py_IS_INFINITY(x) || y == 0.) { |
| if (copysign(1., x) == 1.) |
| /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ |
| return copysign(0., y); |
| else |
| /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ |
| return copysign(Py_MATH_PI, y); |
| } |
| return atan2(y, x); |
| } |
| |
| |
| /* IEEE 754-style remainder operation: x - n*y where n*y is the nearest |
| multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754 |
| binary floating-point format, the result is always exact. */ |
| |
| static double |
| m_remainder(double x, double y) |
| { |
| /* Deal with most common case first. */ |
| if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) { |
| double absx, absy, c, m, r; |
| |
| if (y == 0.0) { |
| return Py_NAN; |
| } |
| |
| absx = fabs(x); |
| absy = fabs(y); |
| m = fmod(absx, absy); |
| |
| /* |
| Warning: some subtlety here. What we *want* to know at this point is |
| whether the remainder m is less than, equal to, or greater than half |
| of absy. However, we can't do that comparison directly because we |
| can't be sure that 0.5*absy is representable (the multiplication |
| might incur precision loss due to underflow). So instead we compare |
| m with the complement c = absy - m: m < 0.5*absy if and only if m < |
| c, and so on. The catch is that absy - m might also not be |
| representable, but it turns out that it doesn't matter: |
| |
| - if m > 0.5*absy then absy - m is exactly representable, by |
| Sterbenz's lemma, so m > c |
| - if m == 0.5*absy then again absy - m is exactly representable |
| and m == c |
| - if m < 0.5*absy then either (i) 0.5*absy is exactly representable, |
| in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m < |
| c, or (ii) absy is tiny, either subnormal or in the lowest normal |
| binade. Then absy - m is exactly representable and again m < c. |
| */ |
| |
| c = absy - m; |
| if (m < c) { |
| r = m; |
| } |
| else if (m > c) { |
| r = -c; |
| } |
| else { |
| /* |
| Here absx is exactly halfway between two multiples of absy, |
| and we need to choose the even multiple. x now has the form |
| |
| absx = n * absy + m |
| |
| for some integer n (recalling that m = 0.5*absy at this point). |
| If n is even we want to return m; if n is odd, we need to |
| return -m. |
| |
| So |
| |
| 0.5 * (absx - m) = (n/2) * absy |
| |
| and now reducing modulo absy gives us: |
| |
| | m, if n is odd |
| fmod(0.5 * (absx - m), absy) = | |
| | 0, if n is even |
| |
| Now m - 2.0 * fmod(...) gives the desired result: m |
| if n is even, -m if m is odd. |
| |
| Note that all steps in fmod(0.5 * (absx - m), absy) |
| will be computed exactly, with no rounding error |
| introduced. |
| */ |
| assert(m == c); |
| r = m - 2.0 * fmod(0.5 * (absx - m), absy); |
| } |
| return copysign(1.0, x) * r; |
| } |
| |
| /* Special values. */ |
| if (Py_IS_NAN(x)) { |
| return x; |
| } |
| if (Py_IS_NAN(y)) { |
| return y; |
| } |
| if (Py_IS_INFINITY(x)) { |
| return Py_NAN; |
| } |
| assert(Py_IS_INFINITY(y)); |
| return x; |
| } |
| |
| |
| /* |
| Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), |
| log(-ve), log(NaN). Here are wrappers for log and log10 that deal with |
| special values directly, passing positive non-special values through to |
| the system log/log10. |
| */ |
| |
| static double |
| m_log(double x) |
| { |
| if (Py_IS_FINITE(x)) { |
| if (x > 0.0) |
| return log(x); |
| errno = EDOM; |
| if (x == 0.0) |
| return -Py_HUGE_VAL; /* log(0) = -inf */ |
| else |
| return Py_NAN; /* log(-ve) = nan */ |
| } |
| else if (Py_IS_NAN(x)) |
| return x; /* log(nan) = nan */ |
| else if (x > 0.0) |
| return x; /* log(inf) = inf */ |
| else { |
| errno = EDOM; |
| return Py_NAN; /* log(-inf) = nan */ |
| } |
| } |
| |
| /* |
| log2: log to base 2. |
| |
| Uses an algorithm that should: |
| |
| (a) produce exact results for powers of 2, and |
| (b) give a monotonic log2 (for positive finite floats), |
| assuming that the system log is monotonic. |
| */ |
| |
| static double |
| m_log2(double x) |
| { |
| if (!Py_IS_FINITE(x)) { |
| if (Py_IS_NAN(x)) |
| return x; /* log2(nan) = nan */ |
| else if (x > 0.0) |
| return x; /* log2(+inf) = +inf */ |
| else { |
| errno = EDOM; |
| return Py_NAN; /* log2(-inf) = nan, invalid-operation */ |
| } |
| } |
| |
| if (x > 0.0) { |
| #ifdef HAVE_LOG2 |
| return log2(x); |
| #else |
| double m; |
| int e; |
| m = frexp(x, &e); |
| /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when |
| * x is just greater than 1.0: in that case e is 1, log(m) is negative, |
| * and we get significant cancellation error from the addition of |
| * log(m) / log(2) to e. The slight rewrite of the expression below |
| * avoids this problem. |
| */ |
| if (x >= 1.0) { |
| return log(2.0 * m) / log(2.0) + (e - 1); |
| } |
| else { |
| return log(m) / log(2.0) + e; |
| } |
| #endif |
| } |
| else if (x == 0.0) { |
| errno = EDOM; |
| return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */ |
| } |
| else { |
| errno = EDOM; |
| return Py_NAN; /* log2(-inf) = nan, invalid-operation */ |
| } |
| } |
| |
| static double |
| m_log10(double x) |
| { |
| if (Py_IS_FINITE(x)) { |
| if (x > 0.0) |
| return log10(x); |
| errno = EDOM; |
| if (x == 0.0) |
| return -Py_HUGE_VAL; /* log10(0) = -inf */ |
| else |
| return Py_NAN; /* log10(-ve) = nan */ |
| } |
| else if (Py_IS_NAN(x)) |
| return x; /* log10(nan) = nan */ |
| else if (x > 0.0) |
| return x; /* log10(inf) = inf */ |
| else { |
| errno = EDOM; |
| return Py_NAN; /* log10(-inf) = nan */ |
| } |
| } |
| |
| |
| static PyObject * |
| math_gcd(PyObject *module, PyObject * const *args, Py_ssize_t nargs) |
| { |
| PyObject *res, *x; |
| Py_ssize_t i; |
| |
| if (nargs == 0) { |
| return PyLong_FromLong(0); |
| } |
| res = PyNumber_Index(args[0]); |
| if (res == NULL) { |
| return NULL; |
| } |
| if (nargs == 1) { |
| Py_SETREF(res, PyNumber_Absolute(res)); |
| return res; |
| } |
| for (i = 1; i < nargs; i++) { |
| x = _PyNumber_Index(args[i]); |
| if (x == NULL) { |
| Py_DECREF(res); |
| return NULL; |
| } |
| if (res == _PyLong_One) { |
| /* Fast path: just check arguments. |
| It is okay to use identity comparison here. */ |
| Py_DECREF(x); |
| continue; |
| } |
| Py_SETREF(res, _PyLong_GCD(res, x)); |
| Py_DECREF(x); |
| if (res == NULL) { |
| return NULL; |
| } |
| } |
| return res; |
| } |
| |
| PyDoc_STRVAR(math_gcd_doc, |
| "gcd($module, *integers)\n" |
| "--\n" |
| "\n" |
| "Greatest Common Divisor."); |
| |
| |
| static PyObject * |
| long_lcm(PyObject *a, PyObject *b) |
| { |
| PyObject *g, *m, *f, *ab; |
| |
| if (Py_SIZE(a) == 0 || Py_SIZE(b) == 0) { |
| return PyLong_FromLong(0); |
| } |
| g = _PyLong_GCD(a, b); |
| if (g == NULL) { |
| return NULL; |
| } |
| f = PyNumber_FloorDivide(a, g); |
| Py_DECREF(g); |
| if (f == NULL) { |
| return NULL; |
| } |
| m = PyNumber_Multiply(f, b); |
| Py_DECREF(f); |
| if (m == NULL) { |
| return NULL; |
| } |
| ab = PyNumber_Absolute(m); |
| Py_DECREF(m); |
| return ab; |
| } |
| |
| |
| static PyObject * |
| math_lcm(PyObject *module, PyObject * const *args, Py_ssize_t nargs) |
| { |
| PyObject *res, *x; |
| Py_ssize_t i; |
| |
| if (nargs == 0) { |
| return PyLong_FromLong(1); |
| } |
| res = PyNumber_Index(args[0]); |
| if (res == NULL) { |
| return NULL; |
| } |
| if (nargs == 1) { |
| Py_SETREF(res, PyNumber_Absolute(res)); |
| return res; |
| } |
| for (i = 1; i < nargs; i++) { |
| x = PyNumber_Index(args[i]); |
| if (x == NULL) { |
| Py_DECREF(res); |
| return NULL; |
| } |
| if (res == _PyLong_Zero) { |
| /* Fast path: just check arguments. |
| It is okay to use identity comparison here. */ |
| Py_DECREF(x); |
| continue; |
| } |
| Py_SETREF(res, long_lcm(res, x)); |
| Py_DECREF(x); |
| if (res == NULL) { |
| return NULL; |
| } |
| } |
| return res; |
| } |
| |
| |
| PyDoc_STRVAR(math_lcm_doc, |
| "lcm($module, *integers)\n" |
| "--\n" |
| "\n" |
| "Least Common Multiple."); |
| |
| |
| /* Call is_error when errno != 0, and where x is the result libm |
| * returned. is_error will usually set up an exception and return |
| * true (1), but may return false (0) without setting up an exception. |
| */ |
| static int |
| is_error(double x) |
| { |
| int result = 1; /* presumption of guilt */ |
| assert(errno); /* non-zero errno is a precondition for calling */ |
| if (errno == EDOM) |
| PyErr_SetString(PyExc_ValueError, "math domain error"); |
| |
| else if (errno == ERANGE) { |
| /* ANSI C generally requires libm functions to set ERANGE |
| * on overflow, but also generally *allows* them to set |
| * ERANGE on underflow too. There's no consistency about |
| * the latter across platforms. |
| * Alas, C99 never requires that errno be set. |
| * Here we suppress the underflow errors (libm functions |
| * should return a zero on underflow, and +- HUGE_VAL on |
| * overflow, so testing the result for zero suffices to |
| * distinguish the cases). |
| * |
| * On some platforms (Ubuntu/ia64) it seems that errno can be |
| * set to ERANGE for subnormal results that do *not* underflow |
| * to zero. So to be safe, we'll ignore ERANGE whenever the |
| * function result is less than one in absolute value. |
| */ |
| if (fabs(x) < 1.0) |
| result = 0; |
| else |
| PyErr_SetString(PyExc_OverflowError, |
| "math range error"); |
| } |
| else |
| /* Unexpected math error */ |
| PyErr_SetFromErrno(PyExc_ValueError); |
| return result; |
| } |
| |
| /* |
| math_1 is used to wrap a libm function f that takes a double |
| argument and returns a double. |
| |
| The error reporting follows these rules, which are designed to do |
| the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
| platforms. |
| |
| - a NaN result from non-NaN inputs causes ValueError to be raised |
| - an infinite result from finite inputs causes OverflowError to be |
| raised if can_overflow is 1, or raises ValueError if can_overflow |
| is 0. |
| - if the result is finite and errno == EDOM then ValueError is |
| raised |
| - if the result is finite and nonzero and errno == ERANGE then |
| OverflowError is raised |
| |
| The last rule is used to catch overflow on platforms which follow |
| C89 but for which HUGE_VAL is not an infinity. |
| |
| For the majority of one-argument functions these rules are enough |
| to ensure that Python's functions behave as specified in 'Annex F' |
| of the C99 standard, with the 'invalid' and 'divide-by-zero' |
| floating-point exceptions mapping to Python's ValueError and the |
| 'overflow' floating-point exception mapping to OverflowError. |
| math_1 only works for functions that don't have singularities *and* |
| the possibility of overflow; fortunately, that covers everything we |
| care about right now. |
| */ |
| |
| static PyObject * |
| math_1_to_whatever(PyObject *arg, double (*func) (double), |
| PyObject *(*from_double_func) (double), |
| int can_overflow) |
| { |
| double x, r; |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| errno = 0; |
| r = (*func)(x); |
| if (Py_IS_NAN(r) && !Py_IS_NAN(x)) { |
| PyErr_SetString(PyExc_ValueError, |
| "math domain error"); /* invalid arg */ |
| return NULL; |
| } |
| if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) { |
| if (can_overflow) |
| PyErr_SetString(PyExc_OverflowError, |
| "math range error"); /* overflow */ |
| else |
| PyErr_SetString(PyExc_ValueError, |
| "math domain error"); /* singularity */ |
| return NULL; |
| } |
| if (Py_IS_FINITE(r) && errno && is_error(r)) |
| /* this branch unnecessary on most platforms */ |
| return NULL; |
| |
| return (*from_double_func)(r); |
| } |
| |
| /* variant of math_1, to be used when the function being wrapped is known to |
| set errno properly (that is, errno = EDOM for invalid or divide-by-zero, |
| errno = ERANGE for overflow). */ |
| |
| static PyObject * |
| math_1a(PyObject *arg, double (*func) (double)) |
| { |
| double x, r; |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| errno = 0; |
| r = (*func)(x); |
| if (errno && is_error(r)) |
| return NULL; |
| return PyFloat_FromDouble(r); |
| } |
| |
| /* |
| math_2 is used to wrap a libm function f that takes two double |
| arguments and returns a double. |
| |
| The error reporting follows these rules, which are designed to do |
| the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 |
| platforms. |
| |
| - a NaN result from non-NaN inputs causes ValueError to be raised |
| - an infinite result from finite inputs causes OverflowError to be |
| raised. |
| - if the result is finite and errno == EDOM then ValueError is |
| raised |
| - if the result is finite and nonzero and errno == ERANGE then |
| OverflowError is raised |
| |
| The last rule is used to catch overflow on platforms which follow |
| C89 but for which HUGE_VAL is not an infinity. |
| |
| For most two-argument functions (copysign, fmod, hypot, atan2) |
| these rules are enough to ensure that Python's functions behave as |
| specified in 'Annex F' of the C99 standard, with the 'invalid' and |
| 'divide-by-zero' floating-point exceptions mapping to Python's |
| ValueError and the 'overflow' floating-point exception mapping to |
| OverflowError. |
| */ |
| |
| static PyObject * |
| math_1(PyObject *arg, double (*func) (double), int can_overflow) |
| { |
| return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow); |
| } |
| |
| static PyObject * |
| math_2(PyObject *const *args, Py_ssize_t nargs, |
| double (*func) (double, double), const char *funcname) |
| { |
| double x, y, r; |
| if (!_PyArg_CheckPositional(funcname, nargs, 2, 2)) |
| return NULL; |
| x = PyFloat_AsDouble(args[0]); |
| if (x == -1.0 && PyErr_Occurred()) { |
| return NULL; |
| } |
| y = PyFloat_AsDouble(args[1]); |
| if (y == -1.0 && PyErr_Occurred()) { |
| return NULL; |
| } |
| errno = 0; |
| r = (*func)(x, y); |
| if (Py_IS_NAN(r)) { |
| if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
| errno = EDOM; |
| else |
| errno = 0; |
| } |
| else if (Py_IS_INFINITY(r)) { |
| if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) |
| errno = ERANGE; |
| else |
| errno = 0; |
| } |
| if (errno && is_error(r)) |
| return NULL; |
| else |
| return PyFloat_FromDouble(r); |
| } |
| |
| #define FUNC1(funcname, func, can_overflow, docstring) \ |
| static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
| return math_1(args, func, can_overflow); \ |
| }\ |
| PyDoc_STRVAR(math_##funcname##_doc, docstring); |
| |
| #define FUNC1A(funcname, func, docstring) \ |
| static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ |
| return math_1a(args, func); \ |
| }\ |
| PyDoc_STRVAR(math_##funcname##_doc, docstring); |
| |
| #define FUNC2(funcname, func, docstring) \ |
| static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \ |
| return math_2(args, nargs, func, #funcname); \ |
| }\ |
| PyDoc_STRVAR(math_##funcname##_doc, docstring); |
| |
| FUNC1(acos, acos, 0, |
| "acos($module, x, /)\n--\n\n" |
| "Return the arc cosine (measured in radians) of x.\n\n" |
| "The result is between 0 and pi.") |
| FUNC1(acosh, m_acosh, 0, |
| "acosh($module, x, /)\n--\n\n" |
| "Return the inverse hyperbolic cosine of x.") |
| FUNC1(asin, asin, 0, |
| "asin($module, x, /)\n--\n\n" |
| "Return the arc sine (measured in radians) of x.\n\n" |
| "The result is between -pi/2 and pi/2.") |
| FUNC1(asinh, m_asinh, 0, |
| "asinh($module, x, /)\n--\n\n" |
| "Return the inverse hyperbolic sine of x.") |
| FUNC1(atan, atan, 0, |
| "atan($module, x, /)\n--\n\n" |
| "Return the arc tangent (measured in radians) of x.\n\n" |
| "The result is between -pi/2 and pi/2.") |
| FUNC2(atan2, m_atan2, |
| "atan2($module, y, x, /)\n--\n\n" |
| "Return the arc tangent (measured in radians) of y/x.\n\n" |
| "Unlike atan(y/x), the signs of both x and y are considered.") |
| FUNC1(atanh, m_atanh, 0, |
| "atanh($module, x, /)\n--\n\n" |
| "Return the inverse hyperbolic tangent of x.") |
| |
| /*[clinic input] |
| math.ceil |
| |
| x as number: object |
| / |
| |
| Return the ceiling of x as an Integral. |
| |
| This is the smallest integer >= x. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_ceil(PyObject *module, PyObject *number) |
| /*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/ |
| { |
| _Py_IDENTIFIER(__ceil__); |
| |
| if (!PyFloat_CheckExact(number)) { |
| PyObject *method = _PyObject_LookupSpecial(number, &PyId___ceil__); |
| if (method != NULL) { |
| PyObject *result = _PyObject_CallNoArg(method); |
| Py_DECREF(method); |
| return result; |
| } |
| if (PyErr_Occurred()) |
| return NULL; |
| } |
| double x = PyFloat_AsDouble(number); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| |
| return PyLong_FromDouble(ceil(x)); |
| } |
| |
| FUNC2(copysign, copysign, |
| "copysign($module, x, y, /)\n--\n\n" |
| "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n" |
| "On platforms that support signed zeros, copysign(1.0, -0.0)\n" |
| "returns -1.0.\n") |
| FUNC1(cos, cos, 0, |
| "cos($module, x, /)\n--\n\n" |
| "Return the cosine of x (measured in radians).") |
| FUNC1(cosh, cosh, 1, |
| "cosh($module, x, /)\n--\n\n" |
| "Return the hyperbolic cosine of x.") |
| FUNC1A(erf, m_erf, |
| "erf($module, x, /)\n--\n\n" |
| "Error function at x.") |
| FUNC1A(erfc, m_erfc, |
| "erfc($module, x, /)\n--\n\n" |
| "Complementary error function at x.") |
| FUNC1(exp, exp, 1, |
| "exp($module, x, /)\n--\n\n" |
| "Return e raised to the power of x.") |
| FUNC1(expm1, m_expm1, 1, |
| "expm1($module, x, /)\n--\n\n" |
| "Return exp(x)-1.\n\n" |
| "This function avoids the loss of precision involved in the direct " |
| "evaluation of exp(x)-1 for small x.") |
| FUNC1(fabs, fabs, 0, |
| "fabs($module, x, /)\n--\n\n" |
| "Return the absolute value of the float x.") |
| |
| /*[clinic input] |
| math.floor |
| |
| x as number: object |
| / |
| |
| Return the floor of x as an Integral. |
| |
| This is the largest integer <= x. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_floor(PyObject *module, PyObject *number) |
| /*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/ |
| { |
| double x; |
| |
| _Py_IDENTIFIER(__floor__); |
| |
| if (PyFloat_CheckExact(number)) { |
| x = PyFloat_AS_DOUBLE(number); |
| } |
| else |
| { |
| PyObject *method = _PyObject_LookupSpecial(number, &PyId___floor__); |
| if (method != NULL) { |
| PyObject *result = _PyObject_CallNoArg(method); |
| Py_DECREF(method); |
| return result; |
| } |
| if (PyErr_Occurred()) |
| return NULL; |
| x = PyFloat_AsDouble(number); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| } |
| return PyLong_FromDouble(floor(x)); |
| } |
| |
| FUNC1A(gamma, m_tgamma, |
| "gamma($module, x, /)\n--\n\n" |
| "Gamma function at x.") |
| FUNC1A(lgamma, m_lgamma, |
| "lgamma($module, x, /)\n--\n\n" |
| "Natural logarithm of absolute value of Gamma function at x.") |
| FUNC1(log1p, m_log1p, 0, |
| "log1p($module, x, /)\n--\n\n" |
| "Return the natural logarithm of 1+x (base e).\n\n" |
| "The result is computed in a way which is accurate for x near zero.") |
| FUNC2(remainder, m_remainder, |
| "remainder($module, x, y, /)\n--\n\n" |
| "Difference between x and the closest integer multiple of y.\n\n" |
| "Return x - n*y where n*y is the closest integer multiple of y.\n" |
| "In the case where x is exactly halfway between two multiples of\n" |
| "y, the nearest even value of n is used. The result is always exact.") |
| FUNC1(sin, sin, 0, |
| "sin($module, x, /)\n--\n\n" |
| "Return the sine of x (measured in radians).") |
| FUNC1(sinh, sinh, 1, |
| "sinh($module, x, /)\n--\n\n" |
| "Return the hyperbolic sine of x.") |
| FUNC1(sqrt, sqrt, 0, |
| "sqrt($module, x, /)\n--\n\n" |
| "Return the square root of x.") |
| FUNC1(tan, tan, 0, |
| "tan($module, x, /)\n--\n\n" |
| "Return the tangent of x (measured in radians).") |
| FUNC1(tanh, tanh, 0, |
| "tanh($module, x, /)\n--\n\n" |
| "Return the hyperbolic tangent of x.") |
| |
| /* Precision summation function as msum() by Raymond Hettinger in |
| <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, |
| enhanced with the exact partials sum and roundoff from Mark |
| Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. |
| See those links for more details, proofs and other references. |
| |
| Note 1: IEEE 754R floating point semantics are assumed, |
| but the current implementation does not re-establish special |
| value semantics across iterations (i.e. handling -Inf + Inf). |
| |
| Note 2: No provision is made for intermediate overflow handling; |
| therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while |
| sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the |
| overflow of the first partial sum. |
| |
| Note 3: The intermediate values lo, yr, and hi are declared volatile so |
| aggressive compilers won't algebraically reduce lo to always be exactly 0.0. |
| Also, the volatile declaration forces the values to be stored in memory as |
| regular doubles instead of extended long precision (80-bit) values. This |
| prevents double rounding because any addition or subtraction of two doubles |
| can be resolved exactly into double-sized hi and lo values. As long as the |
| hi value gets forced into a double before yr and lo are computed, the extra |
| bits in downstream extended precision operations (x87 for example) will be |
| exactly zero and therefore can be losslessly stored back into a double, |
| thereby preventing double rounding. |
| |
| Note 4: A similar implementation is in Modules/cmathmodule.c. |
| Be sure to update both when making changes. |
| |
| Note 5: The signature of math.fsum() differs from builtins.sum() |
| because the start argument doesn't make sense in the context of |
| accurate summation. Since the partials table is collapsed before |
| returning a result, sum(seq2, start=sum(seq1)) may not equal the |
| accurate result returned by sum(itertools.chain(seq1, seq2)). |
| */ |
| |
| #define NUM_PARTIALS 32 /* initial partials array size, on stack */ |
| |
| /* Extend the partials array p[] by doubling its size. */ |
| static int /* non-zero on error */ |
| _fsum_realloc(double **p_ptr, Py_ssize_t n, |
| double *ps, Py_ssize_t *m_ptr) |
| { |
| void *v = NULL; |
| Py_ssize_t m = *m_ptr; |
| |
| m += m; /* double */ |
| if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) { |
| double *p = *p_ptr; |
| if (p == ps) { |
| v = PyMem_Malloc(sizeof(double) * m); |
| if (v != NULL) |
| memcpy(v, ps, sizeof(double) * n); |
| } |
| else |
| v = PyMem_Realloc(p, sizeof(double) * m); |
| } |
| if (v == NULL) { /* size overflow or no memory */ |
| PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); |
| return 1; |
| } |
| *p_ptr = (double*) v; |
| *m_ptr = m; |
| return 0; |
| } |
| |
| /* Full precision summation of a sequence of floats. |
| |
| def msum(iterable): |
| partials = [] # sorted, non-overlapping partial sums |
| for x in iterable: |
| i = 0 |
| for y in partials: |
| if abs(x) < abs(y): |
| x, y = y, x |
| hi = x + y |
| lo = y - (hi - x) |
| if lo: |
| partials[i] = lo |
| i += 1 |
| x = hi |
| partials[i:] = [x] |
| return sum_exact(partials) |
| |
| Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo |
| are exactly equal to x+y. The inner loop applies hi/lo summation to each |
| partial so that the list of partial sums remains exact. |
| |
| Sum_exact() adds the partial sums exactly and correctly rounds the final |
| result (using the round-half-to-even rule). The items in partials remain |
| non-zero, non-special, non-overlapping and strictly increasing in |
| magnitude, but possibly not all having the same sign. |
| |
| Depends on IEEE 754 arithmetic guarantees and half-even rounding. |
| */ |
| |
| /*[clinic input] |
| math.fsum |
| |
| seq: object |
| / |
| |
| Return an accurate floating point sum of values in the iterable seq. |
| |
| Assumes IEEE-754 floating point arithmetic. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_fsum(PyObject *module, PyObject *seq) |
| /*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/ |
| { |
| PyObject *item, *iter, *sum = NULL; |
| Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; |
| double x, y, t, ps[NUM_PARTIALS], *p = ps; |
| double xsave, special_sum = 0.0, inf_sum = 0.0; |
| volatile double hi, yr, lo; |
| |
| iter = PyObject_GetIter(seq); |
| if (iter == NULL) |
| return NULL; |
| |
| for(;;) { /* for x in iterable */ |
| assert(0 <= n && n <= m); |
| assert((m == NUM_PARTIALS && p == ps) || |
| (m > NUM_PARTIALS && p != NULL)); |
| |
| item = PyIter_Next(iter); |
| if (item == NULL) { |
| if (PyErr_Occurred()) |
| goto _fsum_error; |
| break; |
| } |
| ASSIGN_DOUBLE(x, item, error_with_item); |
| Py_DECREF(item); |
| |
| xsave = x; |
| for (i = j = 0; j < n; j++) { /* for y in partials */ |
| y = p[j]; |
| if (fabs(x) < fabs(y)) { |
| t = x; x = y; y = t; |
| } |
| hi = x + y; |
| yr = hi - x; |
| lo = y - yr; |
| if (lo != 0.0) |
| p[i++] = lo; |
| x = hi; |
| } |
| |
| n = i; /* ps[i:] = [x] */ |
| if (x != 0.0) { |
| if (! Py_IS_FINITE(x)) { |
| /* a nonfinite x could arise either as |
| a result of intermediate overflow, or |
| as a result of a nan or inf in the |
| summands */ |
| if (Py_IS_FINITE(xsave)) { |
| PyErr_SetString(PyExc_OverflowError, |
| "intermediate overflow in fsum"); |
| goto _fsum_error; |
| } |
| if (Py_IS_INFINITY(xsave)) |
| inf_sum += xsave; |
| special_sum += xsave; |
| /* reset partials */ |
| n = 0; |
| } |
| else if (n >= m && _fsum_realloc(&p, n, ps, &m)) |
| goto _fsum_error; |
| else |
| p[n++] = x; |
| } |
| } |
| |
| if (special_sum != 0.0) { |
| if (Py_IS_NAN(inf_sum)) |
| PyErr_SetString(PyExc_ValueError, |
| "-inf + inf in fsum"); |
| else |
| sum = PyFloat_FromDouble(special_sum); |
| goto _fsum_error; |
| } |
| |
| hi = 0.0; |
| if (n > 0) { |
| hi = p[--n]; |
| /* sum_exact(ps, hi) from the top, stop when the sum becomes |
| inexact. */ |
| while (n > 0) { |
| x = hi; |
| y = p[--n]; |
| assert(fabs(y) < fabs(x)); |
| hi = x + y; |
| yr = hi - x; |
| lo = y - yr; |
| if (lo != 0.0) |
| break; |
| } |
| /* Make half-even rounding work across multiple partials. |
| Needed so that sum([1e-16, 1, 1e16]) will round-up the last |
| digit to two instead of down to zero (the 1e-16 makes the 1 |
| slightly closer to two). With a potential 1 ULP rounding |
| error fixed-up, math.fsum() can guarantee commutativity. */ |
| if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || |
| (lo > 0.0 && p[n-1] > 0.0))) { |
| y = lo * 2.0; |
| x = hi + y; |
| yr = x - hi; |
| if (y == yr) |
| hi = x; |
| } |
| } |
| sum = PyFloat_FromDouble(hi); |
| |
| _fsum_error: |
| Py_DECREF(iter); |
| if (p != ps) |
| PyMem_Free(p); |
| return sum; |
| |
| error_with_item: |
| Py_DECREF(item); |
| goto _fsum_error; |
| } |
| |
| #undef NUM_PARTIALS |
| |
| |
| static unsigned long |
| count_set_bits(unsigned long n) |
| { |
| unsigned long count = 0; |
| while (n != 0) { |
| ++count; |
| n &= n - 1; /* clear least significant bit */ |
| } |
| return count; |
| } |
| |
| /* Integer square root |
| |
| Given a nonnegative integer `n`, we want to compute the largest integer |
| `a` for which `a * a <= n`, or equivalently the integer part of the exact |
| square root of `n`. |
| |
| We use an adaptive-precision pure-integer version of Newton's iteration. Given |
| a positive integer `n`, the algorithm produces at each iteration an integer |
| approximation `a` to the square root of `n >> s` for some even integer `s`, |
| with `s` decreasing as the iterations progress. On the final iteration, `s` is |
| zero and we have an approximation to the square root of `n` itself. |
| |
| At every step, the approximation `a` is strictly within 1.0 of the true square |
| root, so we have |
| |
| (a - 1)**2 < (n >> s) < (a + 1)**2 |
| |
| After the final iteration, a check-and-correct step is needed to determine |
| whether `a` or `a - 1` gives the desired integer square root of `n`. |
| |
| The algorithm is remarkable in its simplicity. There's no need for a |
| per-iteration check-and-correct step, and termination is straightforward: the |
| number of iterations is known in advance (it's exactly `floor(log2(log2(n)))` |
| for `n > 1`). The only tricky part of the correctness proof is in establishing |
| that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one |
| iteration to the next. A sketch of the proof of this is given below. |
| |
| In addition to the proof sketch, a formal, computer-verified proof |
| of correctness (using Lean) of an equivalent recursive algorithm can be found |
| here: |
| |
| https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean |
| |
| |
| Here's Python code equivalent to the C implementation below: |
| |
| def isqrt(n): |
| """ |
| Return the integer part of the square root of the input. |
| """ |
| n = operator.index(n) |
| |
| if n < 0: |
| raise ValueError("isqrt() argument must be nonnegative") |
| if n == 0: |
| return 0 |
| |
| c = (n.bit_length() - 1) // 2 |
| a = 1 |
| d = 0 |
| for s in reversed(range(c.bit_length())): |
| # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2 |
| e = d |
| d = c >> s |
| a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a |
| |
| return a - (a*a > n) |
| |
| |
| Sketch of proof of correctness |
| ------------------------------ |
| |
| The delicate part of the correctness proof is showing that the loop invariant |
| is preserved from one iteration to the next. That is, just before the line |
| |
| a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a |
| |
| is executed in the above code, we know that |
| |
| (1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2. |
| |
| (since `e` is always the value of `d` from the previous iteration). We must |
| prove that after that line is executed, we have |
| |
| (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2 |
| |
| To facilitate the proof, we make some changes of notation. Write `m` for |
| `n >> 2*(c-d)`, and write `b` for the new value of `a`, so |
| |
| b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a |
| |
| or equivalently: |
| |
| (2) b = (a << d - e - 1) + (m >> d - e + 1) // a |
| |
| Then we can rewrite (1) as: |
| |
| (3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2 |
| |
| and we must show that (b - 1)**2 < m < (b + 1)**2. |
| |
| From this point on, we switch to mathematical notation, so `/` means exact |
| division rather than integer division and `^` is used for exponentiation. We |
| use the `√` symbol for the exact square root. In (3), we can remove the |
| implicit floor operation to give: |
| |
| (4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2 |
| |
| Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives |
| |
| (5) 0 <= | 2^(d-e)a - √m | < 2^(d-e) |
| |
| Squaring and dividing through by `2^(d-e+1) a` gives |
| |
| (6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a |
| |
| We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the |
| right-hand side of (6) with `1`, and now replacing the central |
| term `m / (2^(d-e+1) a)` with its floor in (6) gives |
| |
| (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1 |
| |
| Or equivalently, from (2): |
| |
| (7) -1 < b - √m < 1 |
| |
| and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed |
| to prove. |
| |
| We're not quite done: we still have to prove the inequality `2^(d - e - 1) <= |
| a` that was used to get line (7) above. From the definition of `c`, we have |
| `4^c <= n`, which implies |
| |
| (8) 4^d <= m |
| |
| also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows |
| that `2d - 2e - 1 <= d` and hence that |
| |
| (9) 4^(2d - 2e - 1) <= m |
| |
| Dividing both sides by `4^(d - e)` gives |
| |
| (10) 4^(d - e - 1) <= m / 4^(d - e) |
| |
| But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence |
| |
| (11) 4^(d - e - 1) < (a + 1)^2 |
| |
| Now taking square roots of both sides and observing that both `2^(d-e-1)` and |
| `a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This |
| completes the proof sketch. |
| |
| */ |
| |
| |
| /* Approximate square root of a large 64-bit integer. |
| |
| Given `n` satisfying `2**62 <= n < 2**64`, return `a` |
| satisfying `(a - 1)**2 < n < (a + 1)**2`. */ |
| |
| static uint64_t |
| _approximate_isqrt(uint64_t n) |
| { |
| uint32_t u = 1U + (n >> 62); |
| u = (u << 1) + (n >> 59) / u; |
| u = (u << 3) + (n >> 53) / u; |
| u = (u << 7) + (n >> 41) / u; |
| return (u << 15) + (n >> 17) / u; |
| } |
| |
| /*[clinic input] |
| math.isqrt |
| |
| n: object |
| / |
| |
| Return the integer part of the square root of the input. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_isqrt(PyObject *module, PyObject *n) |
| /*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/ |
| { |
| int a_too_large, c_bit_length; |
| size_t c, d; |
| uint64_t m, u; |
| PyObject *a = NULL, *b; |
| |
| n = _PyNumber_Index(n); |
| if (n == NULL) { |
| return NULL; |
| } |
| |
| if (_PyLong_Sign(n) < 0) { |
| PyErr_SetString( |
| PyExc_ValueError, |
| "isqrt() argument must be nonnegative"); |
| goto error; |
| } |
| if (_PyLong_Sign(n) == 0) { |
| Py_DECREF(n); |
| return PyLong_FromLong(0); |
| } |
| |
| /* c = (n.bit_length() - 1) // 2 */ |
| c = _PyLong_NumBits(n); |
| if (c == (size_t)(-1)) { |
| goto error; |
| } |
| c = (c - 1U) / 2U; |
| |
| /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a |
| fast, almost branch-free algorithm. In the final correction, we use `u*u |
| - 1 >= m` instead of the simpler `u*u > m` in order to get the correct |
| result in the corner case where `u=2**32`. */ |
| if (c <= 31U) { |
| m = (uint64_t)PyLong_AsUnsignedLongLong(n); |
| Py_DECREF(n); |
| if (m == (uint64_t)(-1) && PyErr_Occurred()) { |
| return NULL; |
| } |
| u = _approximate_isqrt(m << (62U - 2U*c)) >> (31U - c); |
| u -= u * u - 1U >= m; |
| return PyLong_FromUnsignedLongLong((unsigned long long)u); |
| } |
| |
| /* Slow path: n >= 2**64. We perform the first five iterations in C integer |
| arithmetic, then switch to using Python long integers. */ |
| |
| /* From n >= 2**64 it follows that c.bit_length() >= 6. */ |
| c_bit_length = 6; |
| while ((c >> c_bit_length) > 0U) { |
| ++c_bit_length; |
| } |
| |
| /* Initialise d and a. */ |
| d = c >> (c_bit_length - 5); |
| b = _PyLong_Rshift(n, 2U*c - 62U); |
| if (b == NULL) { |
| goto error; |
| } |
| m = (uint64_t)PyLong_AsUnsignedLongLong(b); |
| Py_DECREF(b); |
| if (m == (uint64_t)(-1) && PyErr_Occurred()) { |
| goto error; |
| } |
| u = _approximate_isqrt(m) >> (31U - d); |
| a = PyLong_FromUnsignedLongLong((unsigned long long)u); |
| if (a == NULL) { |
| goto error; |
| } |
| |
| for (int s = c_bit_length - 6; s >= 0; --s) { |
| PyObject *q; |
| size_t e = d; |
| |
| d = c >> s; |
| |
| /* q = (n >> 2*c - e - d + 1) // a */ |
| q = _PyLong_Rshift(n, 2U*c - d - e + 1U); |
| if (q == NULL) { |
| goto error; |
| } |
| Py_SETREF(q, PyNumber_FloorDivide(q, a)); |
| if (q == NULL) { |
| goto error; |
| } |
| |
| /* a = (a << d - 1 - e) + q */ |
| Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e)); |
| if (a == NULL) { |
| Py_DECREF(q); |
| goto error; |
| } |
| Py_SETREF(a, PyNumber_Add(a, q)); |
| Py_DECREF(q); |
| if (a == NULL) { |
| goto error; |
| } |
| } |
| |
| /* The correct result is either a or a - 1. Figure out which, and |
| decrement a if necessary. */ |
| |
| /* a_too_large = n < a * a */ |
| b = PyNumber_Multiply(a, a); |
| if (b == NULL) { |
| goto error; |
| } |
| a_too_large = PyObject_RichCompareBool(n, b, Py_LT); |
| Py_DECREF(b); |
| if (a_too_large == -1) { |
| goto error; |
| } |
| |
| if (a_too_large) { |
| Py_SETREF(a, PyNumber_Subtract(a, _PyLong_One)); |
| } |
| Py_DECREF(n); |
| return a; |
| |
| error: |
| Py_XDECREF(a); |
| Py_DECREF(n); |
| return NULL; |
| } |
| |
| /* Divide-and-conquer factorial algorithm |
| * |
| * Based on the formula and pseudo-code provided at: |
| * http://www.luschny.de/math/factorial/binarysplitfact.html |
| * |
| * Faster algorithms exist, but they're more complicated and depend on |
| * a fast prime factorization algorithm. |
| * |
| * Notes on the algorithm |
| * ---------------------- |
| * |
| * factorial(n) is written in the form 2**k * m, with m odd. k and m are |
| * computed separately, and then combined using a left shift. |
| * |
| * The function factorial_odd_part computes the odd part m (i.e., the greatest |
| * odd divisor) of factorial(n), using the formula: |
| * |
| * factorial_odd_part(n) = |
| * |
| * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j |
| * |
| * Example: factorial_odd_part(20) = |
| * |
| * (1) * |
| * (1) * |
| * (1 * 3 * 5) * |
| * (1 * 3 * 5 * 7 * 9) |
| * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) |
| * |
| * Here i goes from large to small: the first term corresponds to i=4 (any |
| * larger i gives an empty product), and the last term corresponds to i=0. |
| * Each term can be computed from the last by multiplying by the extra odd |
| * numbers required: e.g., to get from the penultimate term to the last one, |
| * we multiply by (11 * 13 * 15 * 17 * 19). |
| * |
| * To see a hint of why this formula works, here are the same numbers as above |
| * but with the even parts (i.e., the appropriate powers of 2) included. For |
| * each subterm in the product for i, we multiply that subterm by 2**i: |
| * |
| * factorial(20) = |
| * |
| * (16) * |
| * (8) * |
| * (4 * 12 * 20) * |
| * (2 * 6 * 10 * 14 * 18) * |
| * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) |
| * |
| * The factorial_partial_product function computes the product of all odd j in |
| * range(start, stop) for given start and stop. It's used to compute the |
| * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It |
| * operates recursively, repeatedly splitting the range into two roughly equal |
| * pieces until the subranges are small enough to be computed using only C |
| * integer arithmetic. |
| * |
| * The two-valuation k (i.e., the exponent of the largest power of 2 dividing |
| * the factorial) is computed independently in the main math_factorial |
| * function. By standard results, its value is: |
| * |
| * two_valuation = n//2 + n//4 + n//8 + .... |
| * |
| * It can be shown (e.g., by complete induction on n) that two_valuation is |
| * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of |
| * '1'-bits in the binary expansion of n. |
| */ |
| |
| /* factorial_partial_product: Compute product(range(start, stop, 2)) using |
| * divide and conquer. Assumes start and stop are odd and stop > start. |
| * max_bits must be >= bit_length(stop - 2). */ |
| |
| static PyObject * |
| factorial_partial_product(unsigned long start, unsigned long stop, |
| unsigned long max_bits) |
| { |
| unsigned long midpoint, num_operands; |
| PyObject *left = NULL, *right = NULL, *result = NULL; |
| |
| /* If the return value will fit an unsigned long, then we can |
| * multiply in a tight, fast loop where each multiply is O(1). |
| * Compute an upper bound on the number of bits required to store |
| * the answer. |
| * |
| * Storing some integer z requires floor(lg(z))+1 bits, which is |
| * conveniently the value returned by bit_length(z). The |
| * product x*y will require at most |
| * bit_length(x) + bit_length(y) bits to store, based |
| * on the idea that lg product = lg x + lg y. |
| * |
| * We know that stop - 2 is the largest number to be multiplied. From |
| * there, we have: bit_length(answer) <= num_operands * |
| * bit_length(stop - 2) |
| */ |
| |
| num_operands = (stop - start) / 2; |
| /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the |
| * unlikely case of an overflow in num_operands * max_bits. */ |
| if (num_operands <= 8 * SIZEOF_LONG && |
| num_operands * max_bits <= 8 * SIZEOF_LONG) { |
| unsigned long j, total; |
| for (total = start, j = start + 2; j < stop; j += 2) |
| total *= j; |
| return PyLong_FromUnsignedLong(total); |
| } |
| |
| /* find midpoint of range(start, stop), rounded up to next odd number. */ |
| midpoint = (start + num_operands) | 1; |
| left = factorial_partial_product(start, midpoint, |
| _Py_bit_length(midpoint - 2)); |
| if (left == NULL) |
| goto error; |
| right = factorial_partial_product(midpoint, stop, max_bits); |
| if (right == NULL) |
| goto error; |
| result = PyNumber_Multiply(left, right); |
| |
| error: |
| Py_XDECREF(left); |
| Py_XDECREF(right); |
| return result; |
| } |
| |
| /* factorial_odd_part: compute the odd part of factorial(n). */ |
| |
| static PyObject * |
| factorial_odd_part(unsigned long n) |
| { |
| long i; |
| unsigned long v, lower, upper; |
| PyObject *partial, *tmp, *inner, *outer; |
| |
| inner = PyLong_FromLong(1); |
| if (inner == NULL) |
| return NULL; |
| outer = inner; |
| Py_INCREF(outer); |
| |
| upper = 3; |
| for (i = _Py_bit_length(n) - 2; i >= 0; i--) { |
| v = n >> i; |
| if (v <= 2) |
| continue; |
| lower = upper; |
| /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */ |
| upper = (v + 1) | 1; |
| /* Here inner is the product of all odd integers j in the range (0, |
| n/2**(i+1)]. The factorial_partial_product call below gives the |
| product of all odd integers j in the range (n/2**(i+1), n/2**i]. */ |
| partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2)); |
| /* inner *= partial */ |
| if (partial == NULL) |
| goto error; |
| tmp = PyNumber_Multiply(inner, partial); |
| Py_DECREF(partial); |
| if (tmp == NULL) |
| goto error; |
| Py_DECREF(inner); |
| inner = tmp; |
| /* Now inner is the product of all odd integers j in the range (0, |
| n/2**i], giving the inner product in the formula above. */ |
| |
| /* outer *= inner; */ |
| tmp = PyNumber_Multiply(outer, inner); |
| if (tmp == NULL) |
| goto error; |
| Py_DECREF(outer); |
| outer = tmp; |
| } |
| Py_DECREF(inner); |
| return outer; |
| |
| error: |
| Py_DECREF(outer); |
| Py_DECREF(inner); |
| return NULL; |
| } |
| |
| |
| /* Lookup table for small factorial values */ |
| |
| static const unsigned long SmallFactorials[] = { |
| 1, 1, 2, 6, 24, 120, 720, 5040, 40320, |
| 362880, 3628800, 39916800, 479001600, |
| #if SIZEOF_LONG >= 8 |
| 6227020800, 87178291200, 1307674368000, |
| 20922789888000, 355687428096000, 6402373705728000, |
| 121645100408832000, 2432902008176640000 |
| #endif |
| }; |
| |
| /*[clinic input] |
| math.factorial |
| |
| x as arg: object |
| / |
| |
| Find x!. |
| |
| Raise a ValueError if x is negative or non-integral. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_factorial(PyObject *module, PyObject *arg) |
| /*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/ |
| { |
| long x, two_valuation; |
| int overflow; |
| PyObject *result, *odd_part; |
| |
| x = PyLong_AsLongAndOverflow(arg, &overflow); |
| if (x == -1 && PyErr_Occurred()) { |
| return NULL; |
| } |
| else if (overflow == 1) { |
| PyErr_Format(PyExc_OverflowError, |
| "factorial() argument should not exceed %ld", |
| LONG_MAX); |
| return NULL; |
| } |
| else if (overflow == -1 || x < 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "factorial() not defined for negative values"); |
| return NULL; |
| } |
| |
| /* use lookup table if x is small */ |
| if (x < (long)Py_ARRAY_LENGTH(SmallFactorials)) |
| return PyLong_FromUnsignedLong(SmallFactorials[x]); |
| |
| /* else express in the form odd_part * 2**two_valuation, and compute as |
| odd_part << two_valuation. */ |
| odd_part = factorial_odd_part(x); |
| if (odd_part == NULL) |
| return NULL; |
| two_valuation = x - count_set_bits(x); |
| result = _PyLong_Lshift(odd_part, two_valuation); |
| Py_DECREF(odd_part); |
| return result; |
| } |
| |
| |
| /*[clinic input] |
| math.trunc |
| |
| x: object |
| / |
| |
| Truncates the Real x to the nearest Integral toward 0. |
| |
| Uses the __trunc__ magic method. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_trunc(PyObject *module, PyObject *x) |
| /*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/ |
| { |
| _Py_IDENTIFIER(__trunc__); |
| PyObject *trunc, *result; |
| |
| if (PyFloat_CheckExact(x)) { |
| return PyFloat_Type.tp_as_number->nb_int(x); |
| } |
| |
| if (Py_TYPE(x)->tp_dict == NULL) { |
| if (PyType_Ready(Py_TYPE(x)) < 0) |
| return NULL; |
| } |
| |
| trunc = _PyObject_LookupSpecial(x, &PyId___trunc__); |
| if (trunc == NULL) { |
| if (!PyErr_Occurred()) |
| PyErr_Format(PyExc_TypeError, |
| "type %.100s doesn't define __trunc__ method", |
| Py_TYPE(x)->tp_name); |
| return NULL; |
| } |
| result = _PyObject_CallNoArg(trunc); |
| Py_DECREF(trunc); |
| return result; |
| } |
| |
| |
| /*[clinic input] |
| math.frexp |
| |
| x: double |
| / |
| |
| Return the mantissa and exponent of x, as pair (m, e). |
| |
| m is a float and e is an int, such that x = m * 2.**e. |
| If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_frexp_impl(PyObject *module, double x) |
| /*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/ |
| { |
| int i; |
| /* deal with special cases directly, to sidestep platform |
| differences */ |
| if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { |
| i = 0; |
| } |
| else { |
| x = frexp(x, &i); |
| } |
| return Py_BuildValue("(di)", x, i); |
| } |
| |
| |
| /*[clinic input] |
| math.ldexp |
| |
| x: double |
| i: object |
| / |
| |
| Return x * (2**i). |
| |
| This is essentially the inverse of frexp(). |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_ldexp_impl(PyObject *module, double x, PyObject *i) |
| /*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/ |
| { |
| double r; |
| long exp; |
| int overflow; |
| |
| if (PyLong_Check(i)) { |
| /* on overflow, replace exponent with either LONG_MAX |
| or LONG_MIN, depending on the sign. */ |
| exp = PyLong_AsLongAndOverflow(i, &overflow); |
| if (exp == -1 && PyErr_Occurred()) |
| return NULL; |
| if (overflow) |
| exp = overflow < 0 ? LONG_MIN : LONG_MAX; |
| } |
| else { |
| PyErr_SetString(PyExc_TypeError, |
| "Expected an int as second argument to ldexp."); |
| return NULL; |
| } |
| |
| if (x == 0. || !Py_IS_FINITE(x)) { |
| /* NaNs, zeros and infinities are returned unchanged */ |
| r = x; |
| errno = 0; |
| } else if (exp > INT_MAX) { |
| /* overflow */ |
| r = copysign(Py_HUGE_VAL, x); |
| errno = ERANGE; |
| } else if (exp < INT_MIN) { |
| /* underflow to +-0 */ |
| r = copysign(0., x); |
| errno = 0; |
| } else { |
| errno = 0; |
| r = ldexp(x, (int)exp); |
| if (Py_IS_INFINITY(r)) |
| errno = ERANGE; |
| } |
| |
| if (errno && is_error(r)) |
| return NULL; |
| return PyFloat_FromDouble(r); |
| } |
| |
| |
| /*[clinic input] |
| math.modf |
| |
| x: double |
| / |
| |
| Return the fractional and integer parts of x. |
| |
| Both results carry the sign of x and are floats. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_modf_impl(PyObject *module, double x) |
| /*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/ |
| { |
| double y; |
| /* some platforms don't do the right thing for NaNs and |
| infinities, so we take care of special cases directly. */ |
| if (!Py_IS_FINITE(x)) { |
| if (Py_IS_INFINITY(x)) |
| return Py_BuildValue("(dd)", copysign(0., x), x); |
| else if (Py_IS_NAN(x)) |
| return Py_BuildValue("(dd)", x, x); |
| } |
| |
| errno = 0; |
| x = modf(x, &y); |
| return Py_BuildValue("(dd)", x, y); |
| } |
| |
| |
| /* A decent logarithm is easy to compute even for huge ints, but libm can't |
| do that by itself -- loghelper can. func is log or log10, and name is |
| "log" or "log10". Note that overflow of the result isn't possible: an int |
| can contain no more than INT_MAX * SHIFT bits, so has value certainly less |
| than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is |
| small enough to fit in an IEEE single. log and log10 are even smaller. |
| However, intermediate overflow is possible for an int if the number of bits |
| in that int is larger than PY_SSIZE_T_MAX. */ |
| |
| static PyObject* |
| loghelper(PyObject* arg, double (*func)(double), const char *funcname) |
| { |
| /* If it is int, do it ourselves. */ |
| if (PyLong_Check(arg)) { |
| double x, result; |
| Py_ssize_t e; |
| |
| /* Negative or zero inputs give a ValueError. */ |
| if (Py_SIZE(arg) <= 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "math domain error"); |
| return NULL; |
| } |
| |
| x = PyLong_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) { |
| if (!PyErr_ExceptionMatches(PyExc_OverflowError)) |
| return NULL; |
| /* Here the conversion to double overflowed, but it's possible |
| to compute the log anyway. Clear the exception and continue. */ |
| PyErr_Clear(); |
| x = _PyLong_Frexp((PyLongObject *)arg, &e); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ |
| result = func(x) + func(2.0) * e; |
| } |
| else |
| /* Successfully converted x to a double. */ |
| result = func(x); |
| return PyFloat_FromDouble(result); |
| } |
| |
| /* Else let libm handle it by itself. */ |
| return math_1(arg, func, 0); |
| } |
| |
| |
| /*[clinic input] |
| math.log |
| |
| x: object |
| [ |
| base: object(c_default="NULL") = math.e |
| ] |
| / |
| |
| Return the logarithm of x to the given base. |
| |
| If the base not specified, returns the natural logarithm (base e) of x. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_log_impl(PyObject *module, PyObject *x, int group_right_1, |
| PyObject *base) |
| /*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/ |
| { |
| PyObject *num, *den; |
| PyObject *ans; |
| |
| num = loghelper(x, m_log, "log"); |
| if (num == NULL || base == NULL) |
| return num; |
| |
| den = loghelper(base, m_log, "log"); |
| if (den == NULL) { |
| Py_DECREF(num); |
| return NULL; |
| } |
| |
| ans = PyNumber_TrueDivide(num, den); |
| Py_DECREF(num); |
| Py_DECREF(den); |
| return ans; |
| } |
| |
| |
| /*[clinic input] |
| math.log2 |
| |
| x: object |
| / |
| |
| Return the base 2 logarithm of x. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_log2(PyObject *module, PyObject *x) |
| /*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/ |
| { |
| return loghelper(x, m_log2, "log2"); |
| } |
| |
| |
| /*[clinic input] |
| math.log10 |
| |
| x: object |
| / |
| |
| Return the base 10 logarithm of x. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_log10(PyObject *module, PyObject *x) |
| /*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/ |
| { |
| return loghelper(x, m_log10, "log10"); |
| } |
| |
| |
| /*[clinic input] |
| math.fmod |
| |
| x: double |
| y: double |
| / |
| |
| Return fmod(x, y), according to platform C. |
| |
| x % y may differ. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_fmod_impl(PyObject *module, double x, double y) |
| /*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/ |
| { |
| double r; |
| /* fmod(x, +/-Inf) returns x for finite x. */ |
| if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) |
| return PyFloat_FromDouble(x); |
| errno = 0; |
| r = fmod(x, y); |
| if (Py_IS_NAN(r)) { |
| if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) |
| errno = EDOM; |
| else |
| errno = 0; |
| } |
| if (errno && is_error(r)) |
| return NULL; |
| else |
| return PyFloat_FromDouble(r); |
| } |
| |
| /* |
| Given a *vec* of values, compute the vector norm: |
| |
| sqrt(sum(x ** 2 for x in vec)) |
| |
| The *max* variable should be equal to the largest fabs(x). |
| The *n* variable is the length of *vec*. |
| If n==0, then *max* should be 0.0. |
| If an infinity is present in the vec, *max* should be INF. |
| The *found_nan* variable indicates whether some member of |
| the *vec* is a NaN. |
| |
| To avoid overflow/underflow and to achieve high accuracy giving results |
| that are almost always correctly rounded, four techniques are used: |
| |
| * lossless scaling using a power-of-two scaling factor |
| * accurate squaring using Veltkamp-Dekker splitting [1] |
| * compensated summation using a variant of the Neumaier algorithm [2] |
| * differential correction of the square root [3] |
| |
| The usual presentation of the Neumaier summation algorithm has an |
| expensive branch depending on which operand has the larger |
| magnitude. We avoid this cost by arranging the calculation so that |
| fabs(csum) is always as large as fabs(x). |
| |
| To establish the invariant, *csum* is initialized to 1.0 which is |
| always larger than x**2 after scaling or after division by *max*. |
| After the loop is finished, the initial 1.0 is subtracted out for a |
| net zero effect on the final sum. Since *csum* will be greater than |
| 1.0, the subtraction of 1.0 will not cause fractional digits to be |
| dropped from *csum*. |
| |
| To get the full benefit from compensated summation, the largest |
| addend should be in the range: 0.5 <= |x| <= 1.0. Accordingly, |
| scaling or division by *max* should not be skipped even if not |
| otherwise needed to prevent overflow or loss of precision. |
| |
| The assertion that hi*hi <= 1.0 is a bit subtle. Each vector element |
| gets scaled to a magnitude below 1.0. The Veltkamp-Dekker splitting |
| algorithm gives a *hi* value that is correctly rounded to half |
| precision. When a value at or below 1.0 is correctly rounded, it |
| never goes above 1.0. And when values at or below 1.0 are squared, |
| they remain at or below 1.0, thus preserving the summation invariant. |
| |
| Another interesting assertion is that csum+lo*lo == csum. In the loop, |
| each scaled vector element has a magnitude less than 1.0. After the |
| Veltkamp split, *lo* has a maximum value of 2**-27. So the maximum |
| value of *lo* squared is 2**-54. The value of ulp(1.0)/2.0 is 2**-53. |
| Given that csum >= 1.0, we have: |
| lo**2 <= 2**-54 < 2**-53 == 1/2*ulp(1.0) <= ulp(csum)/2 |
| Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum. |
| |
| To minimize loss of information during the accumulation of fractional |
| values, each term has a separate accumulator. This also breaks up |
| sequential dependencies in the inner loop so the CPU can maximize |
| floating point throughput. [4] On a 2.6 GHz Haswell, adding one |
| dimension has an incremental cost of only 5ns -- for example when |
| moving from hypot(x,y) to hypot(x,y,z). |
| |
| The square root differential correction is needed because a |
| correctly rounded square root of a correctly rounded sum of |
| squares can still be off by as much as one ulp. |
| |
| The differential correction starts with a value *x* that is |
| the difference between the square of *h*, the possibly inaccurately |
| rounded square root, and the accurately computed sum of squares. |
| The correction is the first order term of the Maclaurin series |
| expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5] |
| |
| Essentially, this differential correction is equivalent to one |
| refinement step in Newton's divide-and-average square root |
| algorithm, effectively doubling the number of accurate bits. |
| This technique is used in Dekker's SQRT2 algorithm and again in |
| Borges' ALGORITHM 4 and 5. |
| |
| Without proof for all cases, hypot() cannot claim to be always |
| correctly rounded. However for n <= 1000, prior to the final addition |
| that rounds the overall result, the internal accuracy of "h" together |
| with its correction of "x / (2.0 * h)" is at least 100 bits. [6] |
| Also, hypot() was tested against a Decimal implementation with |
| prec=300. After 100 million trials, no incorrectly rounded examples |
| were found. In addition, perfect commutativity (all permutations are |
| exactly equal) was verified for 1 billion random inputs with n=5. [7] |
| |
| References: |
| |
| 1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf |
| 2. Compensated summation: http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf |
| 3. Square root differential correction: https://arxiv.org/pdf/1904.09481.pdf |
| 4. Data dependency graph: https://bugs.python.org/file49439/hypot.png |
| 5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0 |
| 6. Analysis of internal accuracy: https://bugs.python.org/file49484/best_frac.py |
| 7. Commutativity test: https://bugs.python.org/file49448/test_hypot_commutativity.py |
| |
| */ |
| |
| static inline double |
| vector_norm(Py_ssize_t n, double *vec, double max, int found_nan) |
| { |
| const double T27 = 134217729.0; /* ldexp(1.0, 27) + 1.0) */ |
| double x, scale, oldcsum, csum = 1.0, frac1 = 0.0, frac2 = 0.0, frac3 = 0.0; |
| double t, hi, lo, h; |
| int max_e; |
| Py_ssize_t i; |
| |
| if (Py_IS_INFINITY(max)) { |
| return max; |
| } |
| if (found_nan) { |
| return Py_NAN; |
| } |
| if (max == 0.0 || n <= 1) { |
| return max; |
| } |
| frexp(max, &max_e); |
| if (max_e >= -1023) { |
| scale = ldexp(1.0, -max_e); |
| assert(max * scale >= 0.5); |
| assert(max * scale < 1.0); |
| for (i=0 ; i < n ; i++) { |
| x = vec[i]; |
| assert(Py_IS_FINITE(x) && fabs(x) <= max); |
| |
| x *= scale; |
| assert(fabs(x) < 1.0); |
| |
| t = x * T27; |
| hi = t - (t - x); |
| lo = x - hi; |
| assert(hi + lo == x); |
| |
| x = hi * hi; |
| assert(x <= 1.0); |
| assert(fabs(csum) >= fabs(x)); |
| oldcsum = csum; |
| csum += x; |
| frac1 += (oldcsum - csum) + x; |
| |
| x = 2.0 * hi * lo; |
| assert(fabs(csum) >= fabs(x)); |
| oldcsum = csum; |
| csum += x; |
| frac2 += (oldcsum - csum) + x; |
| |
| assert(csum + lo * lo == csum); |
| frac3 += lo * lo; |
| } |
| h = sqrt(csum - 1.0 + (frac1 + frac2 + frac3)); |
| |
| x = h; |
| t = x * T27; |
| hi = t - (t - x); |
| lo = x - hi; |
| assert (hi + lo == x); |
| |
| x = -hi * hi; |
| assert(fabs(csum) >= fabs(x)); |
| oldcsum = csum; |
| csum += x; |
| frac1 += (oldcsum - csum) + x; |
| |
| x = -2.0 * hi * lo; |
| assert(fabs(csum) >= fabs(x)); |
| oldcsum = csum; |
| csum += x; |
| frac2 += (oldcsum - csum) + x; |
| |
| x = -lo * lo; |
| assert(fabs(csum) >= fabs(x)); |
| oldcsum = csum; |
| csum += x; |
| frac3 += (oldcsum - csum) + x; |
| |
| x = csum - 1.0 + (frac1 + frac2 + frac3); |
| return (h + x / (2.0 * h)) / scale; |
| } |
| /* When max_e < -1023, ldexp(1.0, -max_e) overflows. |
| So instead of multiplying by a scale, we just divide by *max*. |
| */ |
| for (i=0 ; i < n ; i++) { |
| x = vec[i]; |
| assert(Py_IS_FINITE(x) && fabs(x) <= max); |
| x /= max; |
| x = x*x; |
| assert(x <= 1.0); |
| assert(fabs(csum) >= fabs(x)); |
| oldcsum = csum; |
| csum += x; |
| frac1 += (oldcsum - csum) + x; |
| } |
| return max * sqrt(csum - 1.0 + frac1); |
| } |
| |
| #define NUM_STACK_ELEMS 16 |
| |
| /*[clinic input] |
| math.dist |
| |
| p: object |
| q: object |
| / |
| |
| Return the Euclidean distance between two points p and q. |
| |
| The points should be specified as sequences (or iterables) of |
| coordinates. Both inputs must have the same dimension. |
| |
| Roughly equivalent to: |
| sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q))) |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_dist_impl(PyObject *module, PyObject *p, PyObject *q) |
| /*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/ |
| { |
| PyObject *item; |
| double max = 0.0; |
| double x, px, qx, result; |
| Py_ssize_t i, m, n; |
| int found_nan = 0, p_allocated = 0, q_allocated = 0; |
| double diffs_on_stack[NUM_STACK_ELEMS]; |
| double *diffs = diffs_on_stack; |
| |
| if (!PyTuple_Check(p)) { |
| p = PySequence_Tuple(p); |
| if (p == NULL) { |
| return NULL; |
| } |
| p_allocated = 1; |
| } |
| if (!PyTuple_Check(q)) { |
| q = PySequence_Tuple(q); |
| if (q == NULL) { |
| if (p_allocated) { |
| Py_DECREF(p); |
| } |
| return NULL; |
| } |
| q_allocated = 1; |
| } |
| |
| m = PyTuple_GET_SIZE(p); |
| n = PyTuple_GET_SIZE(q); |
| if (m != n) { |
| PyErr_SetString(PyExc_ValueError, |
| "both points must have the same number of dimensions"); |
| return NULL; |
| |
| } |
| if (n > NUM_STACK_ELEMS) { |
| diffs = (double *) PyObject_Malloc(n * sizeof(double)); |
| if (diffs == NULL) { |
| return PyErr_NoMemory(); |
| } |
| } |
| for (i=0 ; i<n ; i++) { |
| item = PyTuple_GET_ITEM(p, i); |
| ASSIGN_DOUBLE(px, item, error_exit); |
| item = PyTuple_GET_ITEM(q, i); |
| ASSIGN_DOUBLE(qx, item, error_exit); |
| x = fabs(px - qx); |
| diffs[i] = x; |
| found_nan |= Py_IS_NAN(x); |
| if (x > max) { |
| max = x; |
| } |
| } |
| result = vector_norm(n, diffs, max, found_nan); |
| if (diffs != diffs_on_stack) { |
| PyObject_Free(diffs); |
| } |
| if (p_allocated) { |
| Py_DECREF(p); |
| } |
| if (q_allocated) { |
| Py_DECREF(q); |
| } |
| return PyFloat_FromDouble(result); |
| |
| error_exit: |
| if (diffs != diffs_on_stack) { |
| PyObject_Free(diffs); |
| } |
| if (p_allocated) { |
| Py_DECREF(p); |
| } |
| if (q_allocated) { |
| Py_DECREF(q); |
| } |
| return NULL; |
| } |
| |
| /* AC: cannot convert yet, waiting for *args support */ |
| static PyObject * |
| math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs) |
| { |
| Py_ssize_t i; |
| PyObject *item; |
| double max = 0.0; |
| double x, result; |
| int found_nan = 0; |
| double coord_on_stack[NUM_STACK_ELEMS]; |
| double *coordinates = coord_on_stack; |
| |
| if (nargs > NUM_STACK_ELEMS) { |
| coordinates = (double *) PyObject_Malloc(nargs * sizeof(double)); |
| if (coordinates == NULL) { |
| return PyErr_NoMemory(); |
| } |
| } |
| for (i = 0; i < nargs; i++) { |
| item = args[i]; |
| ASSIGN_DOUBLE(x, item, error_exit); |
| x = fabs(x); |
| coordinates[i] = x; |
| found_nan |= Py_IS_NAN(x); |
| if (x > max) { |
| max = x; |
| } |
| } |
| result = vector_norm(nargs, coordinates, max, found_nan); |
| if (coordinates != coord_on_stack) { |
| PyObject_Free(coordinates); |
| } |
| return PyFloat_FromDouble(result); |
| |
| error_exit: |
| if (coordinates != coord_on_stack) { |
| PyObject_Free(coordinates); |
| } |
| return NULL; |
| } |
| |
| #undef NUM_STACK_ELEMS |
| |
| PyDoc_STRVAR(math_hypot_doc, |
| "hypot(*coordinates) -> value\n\n\ |
| Multidimensional Euclidean distance from the origin to a point.\n\ |
| \n\ |
| Roughly equivalent to:\n\ |
| sqrt(sum(x**2 for x in coordinates))\n\ |
| \n\ |
| For a two dimensional point (x, y), gives the hypotenuse\n\ |
| using the Pythagorean theorem: sqrt(x*x + y*y).\n\ |
| \n\ |
| For example, the hypotenuse of a 3/4/5 right triangle is:\n\ |
| \n\ |
| >>> hypot(3.0, 4.0)\n\ |
| 5.0\n\ |
| "); |
| |
| /* pow can't use math_2, but needs its own wrapper: the problem is |
| that an infinite result can arise either as a result of overflow |
| (in which case OverflowError should be raised) or as a result of |
| e.g. 0.**-5. (for which ValueError needs to be raised.) |
| */ |
| |
| /*[clinic input] |
| math.pow |
| |
| x: double |
| y: double |
| / |
| |
| Return x**y (x to the power of y). |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_pow_impl(PyObject *module, double x, double y) |
| /*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/ |
| { |
| double r; |
| int odd_y; |
| |
| /* deal directly with IEEE specials, to cope with problems on various |
| platforms whose semantics don't exactly match C99 */ |
| r = 0.; /* silence compiler warning */ |
| if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { |
| errno = 0; |
| if (Py_IS_NAN(x)) |
| r = y == 0. ? 1. : x; /* NaN**0 = 1 */ |
| else if (Py_IS_NAN(y)) |
| r = x == 1. ? 1. : y; /* 1**NaN = 1 */ |
| else if (Py_IS_INFINITY(x)) { |
| odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; |
| if (y > 0.) |
| r = odd_y ? x : fabs(x); |
| else if (y == 0.) |
| r = 1.; |
| else /* y < 0. */ |
| r = odd_y ? copysign(0., x) : 0.; |
| } |
| else if (Py_IS_INFINITY(y)) { |
| if (fabs(x) == 1.0) |
| r = 1.; |
| else if (y > 0. && fabs(x) > 1.0) |
| r = y; |
| else if (y < 0. && fabs(x) < 1.0) { |
| r = -y; /* result is +inf */ |
| if (x == 0.) /* 0**-inf: divide-by-zero */ |
| errno = EDOM; |
| } |
| else |
| r = 0.; |
| } |
| } |
| else { |
| /* let libm handle finite**finite */ |
| errno = 0; |
| r = pow(x, y); |
| /* a NaN result should arise only from (-ve)**(finite |
| non-integer); in this case we want to raise ValueError. */ |
| if (!Py_IS_FINITE(r)) { |
| if (Py_IS_NAN(r)) { |
| errno = EDOM; |
| } |
| /* |
| an infinite result here arises either from: |
| (A) (+/-0.)**negative (-> divide-by-zero) |
| (B) overflow of x**y with x and y finite |
| */ |
| else if (Py_IS_INFINITY(r)) { |
| if (x == 0.) |
| errno = EDOM; |
| else |
| errno = ERANGE; |
| } |
| } |
| } |
| |
| if (errno && is_error(r)) |
| return NULL; |
| else |
| return PyFloat_FromDouble(r); |
| } |
| |
| |
| static const double degToRad = Py_MATH_PI / 180.0; |
| static const double radToDeg = 180.0 / Py_MATH_PI; |
| |
| /*[clinic input] |
| math.degrees |
| |
| x: double |
| / |
| |
| Convert angle x from radians to degrees. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_degrees_impl(PyObject *module, double x) |
| /*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/ |
| { |
| return PyFloat_FromDouble(x * radToDeg); |
| } |
| |
| |
| /*[clinic input] |
| math.radians |
| |
| x: double |
| / |
| |
| Convert angle x from degrees to radians. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_radians_impl(PyObject *module, double x) |
| /*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/ |
| { |
| return PyFloat_FromDouble(x * degToRad); |
| } |
| |
| |
| /*[clinic input] |
| math.isfinite |
| |
| x: double |
| / |
| |
| Return True if x is neither an infinity nor a NaN, and False otherwise. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_isfinite_impl(PyObject *module, double x) |
| /*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/ |
| { |
| return PyBool_FromLong((long)Py_IS_FINITE(x)); |
| } |
| |
| |
| /*[clinic input] |
| math.isnan |
| |
| x: double |
| / |
| |
| Return True if x is a NaN (not a number), and False otherwise. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_isnan_impl(PyObject *module, double x) |
| /*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/ |
| { |
| return PyBool_FromLong((long)Py_IS_NAN(x)); |
| } |
| |
| |
| /*[clinic input] |
| math.isinf |
| |
| x: double |
| / |
| |
| Return True if x is a positive or negative infinity, and False otherwise. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_isinf_impl(PyObject *module, double x) |
| /*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/ |
| { |
| return PyBool_FromLong((long)Py_IS_INFINITY(x)); |
| } |
| |
| |
| /*[clinic input] |
| math.isclose -> bool |
| |
| a: double |
| b: double |
| * |
| rel_tol: double = 1e-09 |
| maximum difference for being considered "close", relative to the |
| magnitude of the input values |
| abs_tol: double = 0.0 |
| maximum difference for being considered "close", regardless of the |
| magnitude of the input values |
| |
| Determine whether two floating point numbers are close in value. |
| |
| Return True if a is close in value to b, and False otherwise. |
| |
| For the values to be considered close, the difference between them |
| must be smaller than at least one of the tolerances. |
| |
| -inf, inf and NaN behave similarly to the IEEE 754 Standard. That |
| is, NaN is not close to anything, even itself. inf and -inf are |
| only close to themselves. |
| [clinic start generated code]*/ |
| |
| static int |
| math_isclose_impl(PyObject *module, double a, double b, double rel_tol, |
| double abs_tol) |
| /*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/ |
| { |
| double diff = 0.0; |
| |
| /* sanity check on the inputs */ |
| if (rel_tol < 0.0 || abs_tol < 0.0 ) { |
| PyErr_SetString(PyExc_ValueError, |
| "tolerances must be non-negative"); |
| return -1; |
| } |
| |
| if ( a == b ) { |
| /* short circuit exact equality -- needed to catch two infinities of |
| the same sign. And perhaps speeds things up a bit sometimes. |
| */ |
| return 1; |
| } |
| |
| /* This catches the case of two infinities of opposite sign, or |
| one infinity and one finite number. Two infinities of opposite |
| sign would otherwise have an infinite relative tolerance. |
| Two infinities of the same sign are caught by the equality check |
| above. |
| */ |
| |
| if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) { |
| return 0; |
| } |
| |
| /* now do the regular computation |
| this is essentially the "weak" test from the Boost library |
| */ |
| |
| diff = fabs(b - a); |
| |
| return (((diff <= fabs(rel_tol * b)) || |
| (diff <= fabs(rel_tol * a))) || |
| (diff <= abs_tol)); |
| } |
| |
| static inline int |
| _check_long_mult_overflow(long a, long b) { |
| |
| /* From Python2's int_mul code: |
| |
| Integer overflow checking for * is painful: Python tried a couple ways, but |
| they didn't work on all platforms, or failed in endcases (a product of |
| -sys.maxint-1 has been a particular pain). |
| |
| Here's another way: |
| |
| The native long product x*y is either exactly right or *way* off, being |
| just the last n bits of the true product, where n is the number of bits |
| in a long (the delivered product is the true product plus i*2**n for |
| some integer i). |
| |
| The native double product (double)x * (double)y is subject to three |
| rounding errors: on a sizeof(long)==8 box, each cast to double can lose |
| info, and even on a sizeof(long)==4 box, the multiplication can lose info. |
| But, unlike the native long product, it's not in *range* trouble: even |
| if sizeof(long)==32 (256-bit longs), the product easily fits in the |
| dynamic range of a double. So the leading 50 (or so) bits of the double |
| product are correct. |
| |
| We check these two ways against each other, and declare victory if they're |
| approximately the same. Else, because the native long product is the only |
| one that can lose catastrophic amounts of information, it's the native long |
| product that must have overflowed. |
| |
| */ |
| |
| long longprod = (long)((unsigned long)a * b); |
| double doubleprod = (double)a * (double)b; |
| double doubled_longprod = (double)longprod; |
| |
| if (doubled_longprod == doubleprod) { |
| return 0; |
| } |
| |
| const double diff = doubled_longprod - doubleprod; |
| const double absdiff = diff >= 0.0 ? diff : -diff; |
| const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod; |
| |
| if (32.0 * absdiff <= absprod) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /*[clinic input] |
| math.prod |
| |
| iterable: object |
| / |
| * |
| start: object(c_default="NULL") = 1 |
| |
| Calculate the product of all the elements in the input iterable. |
| |
| The default start value for the product is 1. |
| |
| When the iterable is empty, return the start value. This function is |
| intended specifically for use with numeric values and may reject |
| non-numeric types. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start) |
| /*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/ |
| { |
| PyObject *result = start; |
| PyObject *temp, *item, *iter; |
| |
| iter = PyObject_GetIter(iterable); |
| if (iter == NULL) { |
| return NULL; |
| } |
| |
| if (result == NULL) { |
| result = PyLong_FromLong(1); |
| if (result == NULL) { |
| Py_DECREF(iter); |
| return NULL; |
| } |
| } else { |
| Py_INCREF(result); |
| } |
| #ifndef SLOW_PROD |
| /* Fast paths for integers keeping temporary products in C. |
| * Assumes all inputs are the same type. |
| * If the assumption fails, default to use PyObjects instead. |
| */ |
| if (PyLong_CheckExact(result)) { |
| int overflow; |
| long i_result = PyLong_AsLongAndOverflow(result, &overflow); |
| /* If this already overflowed, don't even enter the loop. */ |
| if (overflow == 0) { |
| Py_DECREF(result); |
| result = NULL; |
| } |
| /* Loop over all the items in the iterable until we finish, we overflow |
| * or we found a non integer element */ |
| while(result == NULL) { |
| item = PyIter_Next(iter); |
| if (item == NULL) { |
| Py_DECREF(iter); |
| if (PyErr_Occurred()) { |
| return NULL; |
| } |
| return PyLong_FromLong(i_result); |
| } |
| if (PyLong_CheckExact(item)) { |
| long b = PyLong_AsLongAndOverflow(item, &overflow); |
| if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) { |
| long x = i_result * b; |
| i_result = x; |
| Py_DECREF(item); |
| continue; |
| } |
| } |
| /* Either overflowed or is not an int. |
| * Restore real objects and process normally */ |
| result = PyLong_FromLong(i_result); |
| if (result == NULL) { |
| Py_DECREF(item); |
| Py_DECREF(iter); |
| return NULL; |
| } |
| temp = PyNumber_Multiply(result, item); |
| Py_DECREF(result); |
| Py_DECREF(item); |
| result = temp; |
| if (result == NULL) { |
| Py_DECREF(iter); |
| return NULL; |
| } |
| } |
| } |
| |
| /* Fast paths for floats keeping temporary products in C. |
| * Assumes all inputs are the same type. |
| * If the assumption fails, default to use PyObjects instead. |
| */ |
| if (PyFloat_CheckExact(result)) { |
| double f_result = PyFloat_AS_DOUBLE(result); |
| Py_DECREF(result); |
| result = NULL; |
| while(result == NULL) { |
| item = PyIter_Next(iter); |
| if (item == NULL) { |
| Py_DECREF(iter); |
| if (PyErr_Occurred()) { |
| return NULL; |
| } |
| return PyFloat_FromDouble(f_result); |
| } |
| if (PyFloat_CheckExact(item)) { |
| f_result *= PyFloat_AS_DOUBLE(item); |
| Py_DECREF(item); |
| continue; |
| } |
| if (PyLong_CheckExact(item)) { |
| long value; |
| int overflow; |
| value = PyLong_AsLongAndOverflow(item, &overflow); |
| if (!overflow) { |
| f_result *= (double)value; |
| Py_DECREF(item); |
| continue; |
| } |
| } |
| result = PyFloat_FromDouble(f_result); |
| if (result == NULL) { |
| Py_DECREF(item); |
| Py_DECREF(iter); |
| return NULL; |
| } |
| temp = PyNumber_Multiply(result, item); |
| Py_DECREF(result); |
| Py_DECREF(item); |
| result = temp; |
| if (result == NULL) { |
| Py_DECREF(iter); |
| return NULL; |
| } |
| } |
| } |
| #endif |
| /* Consume rest of the iterable (if any) that could not be handled |
| * by specialized functions above.*/ |
| for(;;) { |
| item = PyIter_Next(iter); |
| if (item == NULL) { |
| /* error, or end-of-sequence */ |
| if (PyErr_Occurred()) { |
| Py_DECREF(result); |
| result = NULL; |
| } |
| break; |
| } |
| temp = PyNumber_Multiply(result, item); |
| Py_DECREF(result); |
| Py_DECREF(item); |
| result = temp; |
| if (result == NULL) |
| break; |
| } |
| Py_DECREF(iter); |
| return result; |
| } |
| |
| |
| /*[clinic input] |
| math.perm |
| |
| n: object |
| k: object = None |
| / |
| |
| Number of ways to choose k items from n items without repetition and with order. |
| |
| Evaluates to n! / (n - k)! when k <= n and evaluates |
| to zero when k > n. |
| |
| If k is not specified or is None, then k defaults to n |
| and the function returns n!. |
| |
| Raises TypeError if either of the arguments are not integers. |
| Raises ValueError if either of the arguments are negative. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_perm_impl(PyObject *module, PyObject *n, PyObject *k) |
| /*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/ |
| { |
| PyObject *result = NULL, *factor = NULL; |
| int overflow, cmp; |
| long long i, factors; |
| |
| if (k == Py_None) { |
| return math_factorial(module, n); |
| } |
| n = PyNumber_Index(n); |
| if (n == NULL) { |
| return NULL; |
| } |
| k = PyNumber_Index(k); |
| if (k == NULL) { |
| Py_DECREF(n); |
| return NULL; |
| } |
| |
| if (Py_SIZE(n) < 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "n must be a non-negative integer"); |
| goto error; |
| } |
| if (Py_SIZE(k) < 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "k must be a non-negative integer"); |
| goto error; |
| } |
| |
| cmp = PyObject_RichCompareBool(n, k, Py_LT); |
| if (cmp != 0) { |
| if (cmp > 0) { |
| result = PyLong_FromLong(0); |
| goto done; |
| } |
| goto error; |
| } |
| |
| factors = PyLong_AsLongLongAndOverflow(k, &overflow); |
| if (overflow > 0) { |
| PyErr_Format(PyExc_OverflowError, |
| "k must not exceed %lld", |
| LLONG_MAX); |
| goto error; |
| } |
| else if (factors == -1) { |
| /* k is nonnegative, so a return value of -1 can only indicate error */ |
| goto error; |
| } |
| |
| if (factors == 0) { |
| result = PyLong_FromLong(1); |
| goto done; |
| } |
| |
| result = n; |
| Py_INCREF(result); |
| if (factors == 1) { |
| goto done; |
| } |
| |
| factor = n; |
| Py_INCREF(factor); |
| for (i = 1; i < factors; ++i) { |
| Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One)); |
| if (factor == NULL) { |
| goto error; |
| } |
| Py_SETREF(result, PyNumber_Multiply(result, factor)); |
| if (result == NULL) { |
| goto error; |
| } |
| } |
| Py_DECREF(factor); |
| |
| done: |
| Py_DECREF(n); |
| Py_DECREF(k); |
| return result; |
| |
| error: |
| Py_XDECREF(factor); |
| Py_XDECREF(result); |
| Py_DECREF(n); |
| Py_DECREF(k); |
| return NULL; |
| } |
| |
| |
| /*[clinic input] |
| math.comb |
| |
| n: object |
| k: object |
| / |
| |
| Number of ways to choose k items from n items without repetition and without order. |
| |
| Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates |
| to zero when k > n. |
| |
| Also called the binomial coefficient because it is equivalent |
| to the coefficient of k-th term in polynomial expansion of the |
| expression (1 + x)**n. |
| |
| Raises TypeError if either of the arguments are not integers. |
| Raises ValueError if either of the arguments are negative. |
| |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_comb_impl(PyObject *module, PyObject *n, PyObject *k) |
| /*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/ |
| { |
| PyObject *result = NULL, *factor = NULL, *temp; |
| int overflow, cmp; |
| long long i, factors; |
| |
| n = PyNumber_Index(n); |
| if (n == NULL) { |
| return NULL; |
| } |
| k = PyNumber_Index(k); |
| if (k == NULL) { |
| Py_DECREF(n); |
| return NULL; |
| } |
| |
| if (Py_SIZE(n) < 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "n must be a non-negative integer"); |
| goto error; |
| } |
| if (Py_SIZE(k) < 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "k must be a non-negative integer"); |
| goto error; |
| } |
| |
| /* k = min(k, n - k) */ |
| temp = PyNumber_Subtract(n, k); |
| if (temp == NULL) { |
| goto error; |
| } |
| if (Py_SIZE(temp) < 0) { |
| Py_DECREF(temp); |
| result = PyLong_FromLong(0); |
| goto done; |
| } |
| cmp = PyObject_RichCompareBool(temp, k, Py_LT); |
| if (cmp > 0) { |
| Py_SETREF(k, temp); |
| } |
| else { |
| Py_DECREF(temp); |
| if (cmp < 0) { |
| goto error; |
| } |
| } |
| |
| factors = PyLong_AsLongLongAndOverflow(k, &overflow); |
| if (overflow > 0) { |
| PyErr_Format(PyExc_OverflowError, |
| "min(n - k, k) must not exceed %lld", |
| LLONG_MAX); |
| goto error; |
| } |
| if (factors == -1) { |
| /* k is nonnegative, so a return value of -1 can only indicate error */ |
| goto error; |
| } |
| |
| if (factors == 0) { |
| result = PyLong_FromLong(1); |
| goto done; |
| } |
| |
| result = n; |
| Py_INCREF(result); |
| if (factors == 1) { |
| goto done; |
| } |
| |
| factor = n; |
| Py_INCREF(factor); |
| for (i = 1; i < factors; ++i) { |
| Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One)); |
| if (factor == NULL) { |
| goto error; |
| } |
| Py_SETREF(result, PyNumber_Multiply(result, factor)); |
| if (result == NULL) { |
| goto error; |
| } |
| |
| temp = PyLong_FromUnsignedLongLong((unsigned long long)i + 1); |
| if (temp == NULL) { |
| goto error; |
| } |
| Py_SETREF(result, PyNumber_FloorDivide(result, temp)); |
| Py_DECREF(temp); |
| if (result == NULL) { |
| goto error; |
| } |
| } |
| Py_DECREF(factor); |
| |
| done: |
| Py_DECREF(n); |
| Py_DECREF(k); |
| return result; |
| |
| error: |
| Py_XDECREF(factor); |
| Py_XDECREF(result); |
| Py_DECREF(n); |
| Py_DECREF(k); |
| return NULL; |
| } |
| |
| |
| /*[clinic input] |
| math.nextafter |
| |
| x: double |
| y: double |
| / |
| |
| Return the next floating-point value after x towards y. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| math_nextafter_impl(PyObject *module, double x, double y) |
| /*[clinic end generated code: output=750c8266c1c540ce input=02b2d50cd1d9f9b6]*/ |
| { |
| #if defined(_AIX) |
| if (x == y) { |
| /* On AIX 7.1, libm nextafter(-0.0, +0.0) returns -0.0. |
| Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */ |
| return PyFloat_FromDouble(y); |
| } |
| #endif |
| return PyFloat_FromDouble(nextafter(x, y)); |
| } |
| |
| |
| /*[clinic input] |
| math.ulp -> double |
| |
| x: double |
| / |
| |
| Return the value of the least significant bit of the float x. |
| [clinic start generated code]*/ |
| |
| static double |
| math_ulp_impl(PyObject *module, double x) |
| /*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/ |
| { |
| if (Py_IS_NAN(x)) { |
| return x; |
| } |
| x = fabs(x); |
| if (Py_IS_INFINITY(x)) { |
| return x; |
| } |
| double inf = m_inf(); |
| double x2 = nextafter(x, inf); |
| if (Py_IS_INFINITY(x2)) { |
| /* special case: x is the largest positive representable float */ |
| x2 = nextafter(x, -inf); |
| return x - x2; |
| } |
| return x2 - x; |
| } |
| |
| static int |
| math_exec(PyObject *module) |
| { |
| if (PyModule_AddObject(module, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) { |
| return -1; |
| } |
| if (PyModule_AddObject(module, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) { |
| return -1; |
| } |
| // 2pi |
| if (PyModule_AddObject(module, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) { |
| return -1; |
| } |
| if (PyModule_AddObject(module, "inf", PyFloat_FromDouble(m_inf())) < 0) { |
| return -1; |
| } |
| #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) |
| if (PyModule_AddObject(module, "nan", PyFloat_FromDouble(m_nan())) < 0) { |
| return -1; |
| } |
| #endif |
| return 0; |
| } |
| |
| static PyMethodDef math_methods[] = { |
| {"acos", math_acos, METH_O, math_acos_doc}, |
| {"acosh", math_acosh, METH_O, math_acosh_doc}, |
| {"asin", math_asin, METH_O, math_asin_doc}, |
| {"asinh", math_asinh, METH_O, math_asinh_doc}, |
| {"atan", math_atan, METH_O, math_atan_doc}, |
| {"atan2", (PyCFunction)(void(*)(void))math_atan2, METH_FASTCALL, math_atan2_doc}, |
| {"atanh", math_atanh, METH_O, math_atanh_doc}, |
| MATH_CEIL_METHODDEF |
| {"copysign", (PyCFunction)(void(*)(void))math_copysign, METH_FASTCALL, math_copysign_doc}, |
| {"cos", math_cos, METH_O, math_cos_doc}, |
| {"cosh", math_cosh, METH_O, math_cosh_doc}, |
| MATH_DEGREES_METHODDEF |
| MATH_DIST_METHODDEF |
| {"erf", math_erf, METH_O, math_erf_doc}, |
| {"erfc", math_erfc, METH_O, math_erfc_doc}, |
| {"exp", math_exp, METH_O, math_exp_doc}, |
| {"expm1", math_expm1, METH_O, math_expm1_doc}, |
| {"fabs", math_fabs, METH_O, math_fabs_doc}, |
| MATH_FACTORIAL_METHODDEF |
| MATH_FLOOR_METHODDEF |
| MATH_FMOD_METHODDEF |
| MATH_FREXP_METHODDEF |
| MATH_FSUM_METHODDEF |
| {"gamma", math_gamma, METH_O, math_gamma_doc}, |
| {"gcd", (PyCFunction)(void(*)(void))math_gcd, METH_FASTCALL, math_gcd_doc}, |
| {"hypot", (PyCFunction)(void(*)(void))math_hypot, METH_FASTCALL, math_hypot_doc}, |
| MATH_ISCLOSE_METHODDEF |
| MATH_ISFINITE_METHODDEF |
| MATH_ISINF_METHODDEF |
| MATH_ISNAN_METHODDEF |
| MATH_ISQRT_METHODDEF |
| {"lcm", (PyCFunction)(void(*)(void))math_lcm, METH_FASTCALL, math_lcm_doc}, |
| MATH_LDEXP_METHODDEF |
| {"lgamma", math_lgamma, METH_O, math_lgamma_doc}, |
| MATH_LOG_METHODDEF |
| {"log1p", math_log1p, METH_O, math_log1p_doc}, |
| MATH_LOG10_METHODDEF |
| MATH_LOG2_METHODDEF |
| MATH_MODF_METHODDEF |
| MATH_POW_METHODDEF |
| MATH_RADIANS_METHODDEF |
| {"remainder", (PyCFunction)(void(*)(void))math_remainder, METH_FASTCALL, math_remainder_doc}, |
| {"sin", math_sin, METH_O, math_sin_doc}, |
| {"sinh", math_sinh, METH_O, math_sinh_doc}, |
| {"sqrt", math_sqrt, METH_O, math_sqrt_doc}, |
| {"tan", math_tan, METH_O, math_tan_doc}, |
| {"tanh", math_tanh, METH_O, math_tanh_doc}, |
| MATH_TRUNC_METHODDEF |
| MATH_PROD_METHODDEF |
| MATH_PERM_METHODDEF |
| MATH_COMB_METHODDEF |
| MATH_NEXTAFTER_METHODDEF |
| MATH_ULP_METHODDEF |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyModuleDef_Slot math_slots[] = { |
| {Py_mod_exec, math_exec}, |
| {0, NULL} |
| }; |
| |
| PyDoc_STRVAR(module_doc, |
| "This module provides access to the mathematical functions\n" |
| "defined by the C standard."); |
| |
| static struct PyModuleDef mathmodule = { |
| PyModuleDef_HEAD_INIT, |
| .m_name = "math", |
| .m_doc = module_doc, |
| .m_size = 0, |
| .m_methods = math_methods, |
| .m_slots = math_slots, |
| }; |
| |
| PyMODINIT_FUNC |
| PyInit_math(void) |
| { |
| return PyModuleDef_Init(&mathmodule); |
| } |