| import unittest | 
 | from test import support | 
 |  | 
 | from random import random | 
 | from math import atan2, isnan, copysign | 
 | import operator | 
 |  | 
 | INF = float("inf") | 
 | NAN = float("nan") | 
 | # These tests ensure that complex math does the right thing | 
 |  | 
 | class ComplexTest(unittest.TestCase): | 
 |  | 
 |     def assertAlmostEqual(self, a, b): | 
 |         if isinstance(a, complex): | 
 |             if isinstance(b, complex): | 
 |                 unittest.TestCase.assertAlmostEqual(self, a.real, b.real) | 
 |                 unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag) | 
 |             else: | 
 |                 unittest.TestCase.assertAlmostEqual(self, a.real, b) | 
 |                 unittest.TestCase.assertAlmostEqual(self, a.imag, 0.) | 
 |         else: | 
 |             if isinstance(b, complex): | 
 |                 unittest.TestCase.assertAlmostEqual(self, a, b.real) | 
 |                 unittest.TestCase.assertAlmostEqual(self, 0., b.imag) | 
 |             else: | 
 |                 unittest.TestCase.assertAlmostEqual(self, a, b) | 
 |  | 
 |     def assertCloseAbs(self, x, y, eps=1e-9): | 
 |         """Return true iff floats x and y "are close".""" | 
 |         # put the one with larger magnitude second | 
 |         if abs(x) > abs(y): | 
 |             x, y = y, x | 
 |         if y == 0: | 
 |             return abs(x) < eps | 
 |         if x == 0: | 
 |             return abs(y) < eps | 
 |         # check that relative difference < eps | 
 |         self.assertTrue(abs((x-y)/y) < eps) | 
 |  | 
 |     def assertFloatsAreIdentical(self, x, y): | 
 |         """assert that floats x and y are identical, in the sense that: | 
 |         (1) both x and y are nans, or | 
 |         (2) both x and y are infinities, with the same sign, or | 
 |         (3) both x and y are zeros, with the same sign, or | 
 |         (4) x and y are both finite and nonzero, and x == y | 
 |  | 
 |         """ | 
 |         msg = 'floats {!r} and {!r} are not identical' | 
 |  | 
 |         if isnan(x) or isnan(y): | 
 |             if isnan(x) and isnan(y): | 
 |                 return | 
 |         elif x == y: | 
 |             if x != 0.0: | 
 |                 return | 
 |             # both zero; check that signs match | 
 |             elif copysign(1.0, x) == copysign(1.0, y): | 
 |                 return | 
 |             else: | 
 |                 msg += ': zeros have different signs' | 
 |         self.fail(msg.format(x, y)) | 
 |  | 
 |     def assertClose(self, x, y, eps=1e-9): | 
 |         """Return true iff complexes x and y "are close".""" | 
 |         self.assertCloseAbs(x.real, y.real, eps) | 
 |         self.assertCloseAbs(x.imag, y.imag, eps) | 
 |  | 
 |     def check_div(self, x, y): | 
 |         """Compute complex z=x*y, and check that z/x==y and z/y==x.""" | 
 |         z = x * y | 
 |         if x != 0: | 
 |             q = z / x | 
 |             self.assertClose(q, y) | 
 |             q = z.__truediv__(x) | 
 |             self.assertClose(q, y) | 
 |         if y != 0: | 
 |             q = z / y | 
 |             self.assertClose(q, x) | 
 |             q = z.__truediv__(y) | 
 |             self.assertClose(q, x) | 
 |  | 
 |     def test_truediv(self): | 
 |         simple_real = [float(i) for i in range(-5, 6)] | 
 |         simple_complex = [complex(x, y) for x in simple_real for y in simple_real] | 
 |         for x in simple_complex: | 
 |             for y in simple_complex: | 
 |                 self.check_div(x, y) | 
 |  | 
 |         # A naive complex division algorithm (such as in 2.0) is very prone to | 
 |         # nonsense errors for these (overflows and underflows). | 
 |         self.check_div(complex(1e200, 1e200), 1+0j) | 
 |         self.check_div(complex(1e-200, 1e-200), 1+0j) | 
 |  | 
 |         # Just for fun. | 
 |         for i in range(100): | 
 |             self.check_div(complex(random(), random()), | 
 |                            complex(random(), random())) | 
 |  | 
 |         self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j) | 
 |         # FIXME: The following currently crashes on Alpha | 
 |         # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j) | 
 |  | 
 |         self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j) | 
 |         self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j) | 
 |  | 
 |         for denom_real, denom_imag in [(0, NAN), (NAN, 0), (NAN, NAN)]: | 
 |             z = complex(0, 0) / complex(denom_real, denom_imag) | 
 |             self.assertTrue(isnan(z.real)) | 
 |             self.assertTrue(isnan(z.imag)) | 
 |  | 
 |     def test_floordiv(self): | 
 |         self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 1.5+0j) | 
 |         self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 0+0j) | 
 |  | 
 |     def test_richcompare(self): | 
 |         self.assertIs(complex.__eq__(1+1j, 1<<10000), False) | 
 |         self.assertIs(complex.__lt__(1+1j, None), NotImplemented) | 
 |         self.assertIs(complex.__eq__(1+1j, 1+1j), True) | 
 |         self.assertIs(complex.__eq__(1+1j, 2+2j), False) | 
 |         self.assertIs(complex.__ne__(1+1j, 1+1j), False) | 
 |         self.assertIs(complex.__ne__(1+1j, 2+2j), True) | 
 |         for i in range(1, 100): | 
 |             f = i / 100.0 | 
 |             self.assertIs(complex.__eq__(f+0j, f), True) | 
 |             self.assertIs(complex.__ne__(f+0j, f), False) | 
 |             self.assertIs(complex.__eq__(complex(f, f), f), False) | 
 |             self.assertIs(complex.__ne__(complex(f, f), f), True) | 
 |         self.assertIs(complex.__lt__(1+1j, 2+2j), NotImplemented) | 
 |         self.assertIs(complex.__le__(1+1j, 2+2j), NotImplemented) | 
 |         self.assertIs(complex.__gt__(1+1j, 2+2j), NotImplemented) | 
 |         self.assertIs(complex.__ge__(1+1j, 2+2j), NotImplemented) | 
 |         self.assertRaises(TypeError, operator.lt, 1+1j, 2+2j) | 
 |         self.assertRaises(TypeError, operator.le, 1+1j, 2+2j) | 
 |         self.assertRaises(TypeError, operator.gt, 1+1j, 2+2j) | 
 |         self.assertRaises(TypeError, operator.ge, 1+1j, 2+2j) | 
 |         self.assertIs(operator.eq(1+1j, 1+1j), True) | 
 |         self.assertIs(operator.eq(1+1j, 2+2j), False) | 
 |         self.assertIs(operator.ne(1+1j, 1+1j), False) | 
 |         self.assertIs(operator.ne(1+1j, 2+2j), True) | 
 |  | 
 |     def test_richcompare_boundaries(self): | 
 |         def check(n, deltas, is_equal, imag = 0.0): | 
 |             for delta in deltas: | 
 |                 i = n + delta | 
 |                 z = complex(i, imag) | 
 |                 self.assertIs(complex.__eq__(z, i), is_equal(delta)) | 
 |                 self.assertIs(complex.__ne__(z, i), not is_equal(delta)) | 
 |         # For IEEE-754 doubles the following should hold: | 
 |         #    x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0 | 
 |         # where the interval is representable, of course. | 
 |         for i in range(1, 10): | 
 |             pow = 52 + i | 
 |             mult = 2 ** i | 
 |             check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0) | 
 |             check(2 ** pow, range(1, 101), lambda delta: False, float(i)) | 
 |         check(2 ** 53, range(-100, 0), lambda delta: True) | 
 |  | 
 |     def test_mod(self): | 
 |         # % is no longer supported on complex numbers | 
 |         self.assertRaises(TypeError, (1+1j).__mod__, 0+0j) | 
 |         self.assertRaises(TypeError, lambda: (3.33+4.43j) % 0) | 
 |         self.assertRaises(TypeError, (1+1j).__mod__, 4.3j) | 
 |  | 
 |     def test_divmod(self): | 
 |         self.assertRaises(TypeError, divmod, 1+1j, 1+0j) | 
 |         self.assertRaises(TypeError, divmod, 1+1j, 0+0j) | 
 |  | 
 |     def test_pow(self): | 
 |         self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0) | 
 |         self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0) | 
 |         self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j) | 
 |         self.assertAlmostEqual(pow(1j, -1), 1/1j) | 
 |         self.assertAlmostEqual(pow(1j, 200), 1) | 
 |         self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j) | 
 |  | 
 |         a = 3.33+4.43j | 
 |         self.assertEqual(a ** 0j, 1) | 
 |         self.assertEqual(a ** 0.+0.j, 1) | 
 |  | 
 |         self.assertEqual(3j ** 0j, 1) | 
 |         self.assertEqual(3j ** 0, 1) | 
 |  | 
 |         try: | 
 |             0j ** a | 
 |         except ZeroDivisionError: | 
 |             pass | 
 |         else: | 
 |             self.fail("should fail 0.0 to negative or complex power") | 
 |  | 
 |         try: | 
 |             0j ** (3-2j) | 
 |         except ZeroDivisionError: | 
 |             pass | 
 |         else: | 
 |             self.fail("should fail 0.0 to negative or complex power") | 
 |  | 
 |         # The following is used to exercise certain code paths | 
 |         self.assertEqual(a ** 105, a ** 105) | 
 |         self.assertEqual(a ** -105, a ** -105) | 
 |         self.assertEqual(a ** -30, a ** -30) | 
 |  | 
 |         self.assertEqual(0.0j ** 0, 1) | 
 |  | 
 |         b = 5.1+2.3j | 
 |         self.assertRaises(ValueError, pow, a, b, 0) | 
 |  | 
 |     def test_boolcontext(self): | 
 |         for i in range(100): | 
 |             self.assertTrue(complex(random() + 1e-6, random() + 1e-6)) | 
 |         self.assertTrue(not complex(0.0, 0.0)) | 
 |  | 
 |     def test_conjugate(self): | 
 |         self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j) | 
 |  | 
 |     def test_constructor(self): | 
 |         class OS: | 
 |             def __init__(self, value): self.value = value | 
 |             def __complex__(self): return self.value | 
 |         class NS(object): | 
 |             def __init__(self, value): self.value = value | 
 |             def __complex__(self): return self.value | 
 |         self.assertEqual(complex(OS(1+10j)), 1+10j) | 
 |         self.assertEqual(complex(NS(1+10j)), 1+10j) | 
 |         self.assertRaises(TypeError, complex, OS(None)) | 
 |         self.assertRaises(TypeError, complex, NS(None)) | 
 |         self.assertRaises(TypeError, complex, {}) | 
 |         self.assertRaises(TypeError, complex, NS(1.5)) | 
 |         self.assertRaises(TypeError, complex, NS(1)) | 
 |  | 
 |         self.assertAlmostEqual(complex("1+10j"), 1+10j) | 
 |         self.assertAlmostEqual(complex(10), 10+0j) | 
 |         self.assertAlmostEqual(complex(10.0), 10+0j) | 
 |         self.assertAlmostEqual(complex(10), 10+0j) | 
 |         self.assertAlmostEqual(complex(10+0j), 10+0j) | 
 |         self.assertAlmostEqual(complex(1,10), 1+10j) | 
 |         self.assertAlmostEqual(complex(1,10), 1+10j) | 
 |         self.assertAlmostEqual(complex(1,10.0), 1+10j) | 
 |         self.assertAlmostEqual(complex(1,10), 1+10j) | 
 |         self.assertAlmostEqual(complex(1,10), 1+10j) | 
 |         self.assertAlmostEqual(complex(1,10.0), 1+10j) | 
 |         self.assertAlmostEqual(complex(1.0,10), 1+10j) | 
 |         self.assertAlmostEqual(complex(1.0,10), 1+10j) | 
 |         self.assertAlmostEqual(complex(1.0,10.0), 1+10j) | 
 |         self.assertAlmostEqual(complex(3.14+0j), 3.14+0j) | 
 |         self.assertAlmostEqual(complex(3.14), 3.14+0j) | 
 |         self.assertAlmostEqual(complex(314), 314.0+0j) | 
 |         self.assertAlmostEqual(complex(314), 314.0+0j) | 
 |         self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j) | 
 |         self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j) | 
 |         self.assertAlmostEqual(complex(314, 0), 314.0+0j) | 
 |         self.assertAlmostEqual(complex(314, 0), 314.0+0j) | 
 |         self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j) | 
 |         self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j) | 
 |         self.assertAlmostEqual(complex(0j, 3.14), 3.14j) | 
 |         self.assertAlmostEqual(complex(0.0, 3.14), 3.14j) | 
 |         self.assertAlmostEqual(complex("1"), 1+0j) | 
 |         self.assertAlmostEqual(complex("1j"), 1j) | 
 |         self.assertAlmostEqual(complex(),  0) | 
 |         self.assertAlmostEqual(complex("-1"), -1) | 
 |         self.assertAlmostEqual(complex("+1"), +1) | 
 |         self.assertAlmostEqual(complex("(1+2j)"), 1+2j) | 
 |         self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j) | 
 |         self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j) | 
 |         self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j) | 
 |         self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j) | 
 |         self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j) | 
 |         self.assertAlmostEqual(complex("J"), 1j) | 
 |         self.assertAlmostEqual(complex("( j )"), 1j) | 
 |         self.assertAlmostEqual(complex("+J"), 1j) | 
 |         self.assertAlmostEqual(complex("( -j)"), -1j) | 
 |         self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j) | 
 |         self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j) | 
 |         self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j) | 
 |  | 
 |         class complex2(complex): pass | 
 |         self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j) | 
 |         self.assertAlmostEqual(complex(real=17, imag=23), 17+23j) | 
 |         self.assertAlmostEqual(complex(real=17+23j), 17+23j) | 
 |         self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j) | 
 |         self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j) | 
 |  | 
 |         # check that the sign of a zero in the real or imaginary part | 
 |         # is preserved when constructing from two floats.  (These checks | 
 |         # are harmless on systems without support for signed zeros.) | 
 |         def split_zeros(x): | 
 |             """Function that produces different results for 0. and -0.""" | 
 |             return atan2(x, -1.) | 
 |  | 
 |         self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.)) | 
 |         self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.)) | 
 |         self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.)) | 
 |         self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.)) | 
 |  | 
 |         c = 3.14 + 1j | 
 |         self.assertTrue(complex(c) is c) | 
 |         del c | 
 |  | 
 |         self.assertRaises(TypeError, complex, "1", "1") | 
 |         self.assertRaises(TypeError, complex, 1, "1") | 
 |  | 
 |         # SF bug 543840:  complex(string) accepts strings with \0 | 
 |         # Fixed in 2.3. | 
 |         self.assertRaises(ValueError, complex, '1+1j\0j') | 
 |  | 
 |         self.assertRaises(TypeError, int, 5+3j) | 
 |         self.assertRaises(TypeError, int, 5+3j) | 
 |         self.assertRaises(TypeError, float, 5+3j) | 
 |         self.assertRaises(ValueError, complex, "") | 
 |         self.assertRaises(TypeError, complex, None) | 
 |         self.assertRaisesRegex(TypeError, "not 'NoneType'", complex, None) | 
 |         self.assertRaises(ValueError, complex, "\0") | 
 |         self.assertRaises(ValueError, complex, "3\09") | 
 |         self.assertRaises(TypeError, complex, "1", "2") | 
 |         self.assertRaises(TypeError, complex, "1", 42) | 
 |         self.assertRaises(TypeError, complex, 1, "2") | 
 |         self.assertRaises(ValueError, complex, "1+") | 
 |         self.assertRaises(ValueError, complex, "1+1j+1j") | 
 |         self.assertRaises(ValueError, complex, "--") | 
 |         self.assertRaises(ValueError, complex, "(1+2j") | 
 |         self.assertRaises(ValueError, complex, "1+2j)") | 
 |         self.assertRaises(ValueError, complex, "1+(2j)") | 
 |         self.assertRaises(ValueError, complex, "(1+2j)123") | 
 |         self.assertRaises(ValueError, complex, "x") | 
 |         self.assertRaises(ValueError, complex, "1j+2") | 
 |         self.assertRaises(ValueError, complex, "1e1ej") | 
 |         self.assertRaises(ValueError, complex, "1e++1ej") | 
 |         self.assertRaises(ValueError, complex, ")1+2j(") | 
 |         self.assertRaisesRegex( | 
 |             TypeError, | 
 |             "first argument must be a string or a number, not 'dict'", | 
 |             complex, {1:2}, 1) | 
 |         self.assertRaisesRegex( | 
 |             TypeError, | 
 |             "second argument must be a number, not 'dict'", | 
 |             complex, 1, {1:2}) | 
 |         # the following three are accepted by Python 2.6 | 
 |         self.assertRaises(ValueError, complex, "1..1j") | 
 |         self.assertRaises(ValueError, complex, "1.11.1j") | 
 |         self.assertRaises(ValueError, complex, "1e1.1j") | 
 |  | 
 |         # check that complex accepts long unicode strings | 
 |         self.assertEqual(type(complex("1"*500)), complex) | 
 |         # check whitespace processing | 
 |         self.assertEqual(complex('\N{EM SPACE}(\N{EN SPACE}1+1j ) '), 1+1j) | 
 |  | 
 |         class EvilExc(Exception): | 
 |             pass | 
 |  | 
 |         class evilcomplex: | 
 |             def __complex__(self): | 
 |                 raise EvilExc | 
 |  | 
 |         self.assertRaises(EvilExc, complex, evilcomplex()) | 
 |  | 
 |         class float2: | 
 |             def __init__(self, value): | 
 |                 self.value = value | 
 |             def __float__(self): | 
 |                 return self.value | 
 |  | 
 |         self.assertAlmostEqual(complex(float2(42.)), 42) | 
 |         self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j) | 
 |         self.assertRaises(TypeError, complex, float2(None)) | 
 |  | 
 |         class complex0(complex): | 
 |             """Test usage of __complex__() when inheriting from 'complex'""" | 
 |             def __complex__(self): | 
 |                 return 42j | 
 |  | 
 |         class complex1(complex): | 
 |             """Test usage of __complex__() with a __new__() method""" | 
 |             def __new__(self, value=0j): | 
 |                 return complex.__new__(self, 2*value) | 
 |             def __complex__(self): | 
 |                 return self | 
 |  | 
 |         class complex2(complex): | 
 |             """Make sure that __complex__() calls fail if anything other than a | 
 |             complex is returned""" | 
 |             def __complex__(self): | 
 |                 return None | 
 |  | 
 |         self.assertAlmostEqual(complex(complex0(1j)), 42j) | 
 |         self.assertAlmostEqual(complex(complex1(1j)), 2j) | 
 |         self.assertRaises(TypeError, complex, complex2(1j)) | 
 |  | 
 |     def test_hash(self): | 
 |         for x in range(-30, 30): | 
 |             self.assertEqual(hash(x), hash(complex(x, 0))) | 
 |             x /= 3.0    # now check against floating point | 
 |             self.assertEqual(hash(x), hash(complex(x, 0.))) | 
 |  | 
 |     def test_abs(self): | 
 |         nums = [complex(x/3., y/7.) for x in range(-9,9) for y in range(-9,9)] | 
 |         for num in nums: | 
 |             self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num)) | 
 |  | 
 |     def test_repr_str(self): | 
 |         def test(v, expected, test_fn=self.assertEqual): | 
 |             test_fn(repr(v), expected) | 
 |             test_fn(str(v), expected) | 
 |  | 
 |         test(1+6j, '(1+6j)') | 
 |         test(1-6j, '(1-6j)') | 
 |  | 
 |         test(-(1+0j), '(-1+-0j)', test_fn=self.assertNotEqual) | 
 |  | 
 |         test(complex(1., INF), "(1+infj)") | 
 |         test(complex(1., -INF), "(1-infj)") | 
 |         test(complex(INF, 1), "(inf+1j)") | 
 |         test(complex(-INF, INF), "(-inf+infj)") | 
 |         test(complex(NAN, 1), "(nan+1j)") | 
 |         test(complex(1, NAN), "(1+nanj)") | 
 |         test(complex(NAN, NAN), "(nan+nanj)") | 
 |  | 
 |         test(complex(0, INF), "infj") | 
 |         test(complex(0, -INF), "-infj") | 
 |         test(complex(0, NAN), "nanj") | 
 |  | 
 |         self.assertEqual(1-6j,complex(repr(1-6j))) | 
 |         self.assertEqual(1+6j,complex(repr(1+6j))) | 
 |         self.assertEqual(-6j,complex(repr(-6j))) | 
 |         self.assertEqual(6j,complex(repr(6j))) | 
 |  | 
 |     @support.requires_IEEE_754 | 
 |     def test_negative_zero_repr_str(self): | 
 |         def test(v, expected, test_fn=self.assertEqual): | 
 |             test_fn(repr(v), expected) | 
 |             test_fn(str(v), expected) | 
 |  | 
 |         test(complex(0., 1.),   "1j") | 
 |         test(complex(-0., 1.),  "(-0+1j)") | 
 |         test(complex(0., -1.),  "-1j") | 
 |         test(complex(-0., -1.), "(-0-1j)") | 
 |  | 
 |         test(complex(0., 0.),   "0j") | 
 |         test(complex(0., -0.),  "-0j") | 
 |         test(complex(-0., 0.),  "(-0+0j)") | 
 |         test(complex(-0., -0.), "(-0-0j)") | 
 |  | 
 |     def test_neg(self): | 
 |         self.assertEqual(-(1+6j), -1-6j) | 
 |  | 
 |     def test_file(self): | 
 |         a = 3.33+4.43j | 
 |         b = 5.1+2.3j | 
 |  | 
 |         fo = None | 
 |         try: | 
 |             fo = open(support.TESTFN, "w") | 
 |             print(a, b, file=fo) | 
 |             fo.close() | 
 |             fo = open(support.TESTFN, "r") | 
 |             self.assertEqual(fo.read(), ("%s %s\n" % (a, b))) | 
 |         finally: | 
 |             if (fo is not None) and (not fo.closed): | 
 |                 fo.close() | 
 |             support.unlink(support.TESTFN) | 
 |  | 
 |     def test_getnewargs(self): | 
 |         self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0)) | 
 |         self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0)) | 
 |         self.assertEqual((2j).__getnewargs__(), (0.0, 2.0)) | 
 |         self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0)) | 
 |         self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF)) | 
 |         self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0)) | 
 |  | 
 |     @support.requires_IEEE_754 | 
 |     def test_plus_minus_0j(self): | 
 |         # test that -0j and 0j literals are not identified | 
 |         z1, z2 = 0j, -0j | 
 |         self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.)) | 
 |         self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.)) | 
 |  | 
 |     @support.requires_IEEE_754 | 
 |     def test_negated_imaginary_literal(self): | 
 |         z0 = -0j | 
 |         z1 = -7j | 
 |         z2 = -1e1000j | 
 |         # Note: In versions of Python < 3.2, a negated imaginary literal | 
 |         # accidentally ended up with real part 0.0 instead of -0.0, thanks to a | 
 |         # modification during CST -> AST translation (see issue #9011).  That's | 
 |         # fixed in Python 3.2. | 
 |         self.assertFloatsAreIdentical(z0.real, -0.0) | 
 |         self.assertFloatsAreIdentical(z0.imag, -0.0) | 
 |         self.assertFloatsAreIdentical(z1.real, -0.0) | 
 |         self.assertFloatsAreIdentical(z1.imag, -7.0) | 
 |         self.assertFloatsAreIdentical(z2.real, -0.0) | 
 |         self.assertFloatsAreIdentical(z2.imag, -INF) | 
 |  | 
 |     @support.requires_IEEE_754 | 
 |     def test_overflow(self): | 
 |         self.assertEqual(complex("1e500"), complex(INF, 0.0)) | 
 |         self.assertEqual(complex("-1e500j"), complex(0.0, -INF)) | 
 |         self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF)) | 
 |  | 
 |     @support.requires_IEEE_754 | 
 |     def test_repr_roundtrip(self): | 
 |         vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN] | 
 |         vals += [-v for v in vals] | 
 |  | 
 |         # complex(repr(z)) should recover z exactly, even for complex | 
 |         # numbers involving an infinity, nan, or negative zero | 
 |         for x in vals: | 
 |             for y in vals: | 
 |                 z = complex(x, y) | 
 |                 roundtrip = complex(repr(z)) | 
 |                 self.assertFloatsAreIdentical(z.real, roundtrip.real) | 
 |                 self.assertFloatsAreIdentical(z.imag, roundtrip.imag) | 
 |  | 
 |         # if we predefine some constants, then eval(repr(z)) should | 
 |         # also work, except that it might change the sign of zeros | 
 |         inf, nan = float('inf'), float('nan') | 
 |         infj, nanj = complex(0.0, inf), complex(0.0, nan) | 
 |         for x in vals: | 
 |             for y in vals: | 
 |                 z = complex(x, y) | 
 |                 roundtrip = eval(repr(z)) | 
 |                 # adding 0.0 has no effect beside changing -0.0 to 0.0 | 
 |                 self.assertFloatsAreIdentical(0.0 + z.real, | 
 |                                               0.0 + roundtrip.real) | 
 |                 self.assertFloatsAreIdentical(0.0 + z.imag, | 
 |                                               0.0 + roundtrip.imag) | 
 |  | 
 |     def test_format(self): | 
 |         # empty format string is same as str() | 
 |         self.assertEqual(format(1+3j, ''), str(1+3j)) | 
 |         self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j)) | 
 |         self.assertEqual(format(3j, ''), str(3j)) | 
 |         self.assertEqual(format(3.2j, ''), str(3.2j)) | 
 |         self.assertEqual(format(3+0j, ''), str(3+0j)) | 
 |         self.assertEqual(format(3.2+0j, ''), str(3.2+0j)) | 
 |  | 
 |         # empty presentation type should still be analogous to str, | 
 |         # even when format string is nonempty (issue #5920). | 
 |         self.assertEqual(format(3.2+0j, '-'), str(3.2+0j)) | 
 |         self.assertEqual(format(3.2+0j, '<'), str(3.2+0j)) | 
 |         z = 4/7. - 100j/7. | 
 |         self.assertEqual(format(z, ''), str(z)) | 
 |         self.assertEqual(format(z, '-'), str(z)) | 
 |         self.assertEqual(format(z, '<'), str(z)) | 
 |         self.assertEqual(format(z, '10'), str(z)) | 
 |         z = complex(0.0, 3.0) | 
 |         self.assertEqual(format(z, ''), str(z)) | 
 |         self.assertEqual(format(z, '-'), str(z)) | 
 |         self.assertEqual(format(z, '<'), str(z)) | 
 |         self.assertEqual(format(z, '2'), str(z)) | 
 |         z = complex(-0.0, 2.0) | 
 |         self.assertEqual(format(z, ''), str(z)) | 
 |         self.assertEqual(format(z, '-'), str(z)) | 
 |         self.assertEqual(format(z, '<'), str(z)) | 
 |         self.assertEqual(format(z, '3'), str(z)) | 
 |  | 
 |         self.assertEqual(format(1+3j, 'g'), '1+3j') | 
 |         self.assertEqual(format(3j, 'g'), '0+3j') | 
 |         self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j') | 
 |  | 
 |         self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j') | 
 |         self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j') | 
 |         self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j') | 
 |         self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j') | 
 |         self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j') | 
 |         self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j') | 
 |         self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j') | 
 |  | 
 |         self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j') | 
 |         self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j') | 
 |         self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j') | 
 |         self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j') | 
 |         self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j') | 
 |         self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j') | 
 |         self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j') | 
 |  | 
 |         self.assertEqual(format(1.5+3j, '<20g'),  '1.5+3j              ') | 
 |         self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************') | 
 |         self.assertEqual(format(1.5+3j, '>20g'),  '              1.5+3j') | 
 |         self.assertEqual(format(1.5+3j, '^20g'),  '       1.5+3j       ') | 
 |         self.assertEqual(format(1.5+3j, '<20'),   '(1.5+3j)            ') | 
 |         self.assertEqual(format(1.5+3j, '>20'),   '            (1.5+3j)') | 
 |         self.assertEqual(format(1.5+3j, '^20'),   '      (1.5+3j)      ') | 
 |         self.assertEqual(format(1.123-3.123j, '^20.2'), '     (1.1-3.1j)     ') | 
 |  | 
 |         self.assertEqual(format(1.5+3j, '20.2f'), '          1.50+3.00j') | 
 |         self.assertEqual(format(1.5+3j, '>20.2f'), '          1.50+3.00j') | 
 |         self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j          ') | 
 |         self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j') | 
 |         self.assertEqual(format(1.5e20+3j, '>40.2f'), '          150000000000000000000.00+3.00j') | 
 |         self.assertEqual(format(1.5e20+3j, '^40,.2f'), '  150,000,000,000,000,000,000.00+3.00j  ') | 
 |         self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ') | 
 |         self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j') | 
 |  | 
 |         # Issue 7094: Alternate formatting (specified by #) | 
 |         self.assertEqual(format(1+1j, '.0e'), '1e+00+1e+00j') | 
 |         self.assertEqual(format(1+1j, '#.0e'), '1.e+00+1.e+00j') | 
 |         self.assertEqual(format(1+1j, '.0f'), '1+1j') | 
 |         self.assertEqual(format(1+1j, '#.0f'), '1.+1.j') | 
 |         self.assertEqual(format(1.1+1.1j, 'g'), '1.1+1.1j') | 
 |         self.assertEqual(format(1.1+1.1j, '#g'), '1.10000+1.10000j') | 
 |  | 
 |         # Alternate doesn't make a difference for these, they format the same with or without it | 
 |         self.assertEqual(format(1+1j, '.1e'),  '1.0e+00+1.0e+00j') | 
 |         self.assertEqual(format(1+1j, '#.1e'), '1.0e+00+1.0e+00j') | 
 |         self.assertEqual(format(1+1j, '.1f'),  '1.0+1.0j') | 
 |         self.assertEqual(format(1+1j, '#.1f'), '1.0+1.0j') | 
 |  | 
 |         # Misc. other alternate tests | 
 |         self.assertEqual(format((-1.5+0.5j), '#f'), '-1.500000+0.500000j') | 
 |         self.assertEqual(format((-1.5+0.5j), '#.0f'), '-2.+0.j') | 
 |         self.assertEqual(format((-1.5+0.5j), '#e'), '-1.500000e+00+5.000000e-01j') | 
 |         self.assertEqual(format((-1.5+0.5j), '#.0e'), '-2.e+00+5.e-01j') | 
 |         self.assertEqual(format((-1.5+0.5j), '#g'), '-1.50000+0.500000j') | 
 |         self.assertEqual(format((-1.5+0.5j), '.0g'), '-2+0.5j') | 
 |         self.assertEqual(format((-1.5+0.5j), '#.0g'), '-2.+0.5j') | 
 |  | 
 |         # zero padding is invalid | 
 |         self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f') | 
 |  | 
 |         # '=' alignment is invalid | 
 |         self.assertRaises(ValueError, (1.5+3j).__format__, '=20') | 
 |  | 
 |         # integer presentation types are an error | 
 |         for t in 'bcdoxX': | 
 |             self.assertRaises(ValueError, (1.5+0.5j).__format__, t) | 
 |  | 
 |         # make sure everything works in ''.format() | 
 |         self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*') | 
 |  | 
 |         # issue 3382 | 
 |         self.assertEqual(format(complex(NAN, NAN), 'f'), 'nan+nanj') | 
 |         self.assertEqual(format(complex(1, NAN), 'f'), '1.000000+nanj') | 
 |         self.assertEqual(format(complex(NAN, 1), 'f'), 'nan+1.000000j') | 
 |         self.assertEqual(format(complex(NAN, -1), 'f'), 'nan-1.000000j') | 
 |         self.assertEqual(format(complex(NAN, NAN), 'F'), 'NAN+NANj') | 
 |         self.assertEqual(format(complex(1, NAN), 'F'), '1.000000+NANj') | 
 |         self.assertEqual(format(complex(NAN, 1), 'F'), 'NAN+1.000000j') | 
 |         self.assertEqual(format(complex(NAN, -1), 'F'), 'NAN-1.000000j') | 
 |         self.assertEqual(format(complex(INF, INF), 'f'), 'inf+infj') | 
 |         self.assertEqual(format(complex(1, INF), 'f'), '1.000000+infj') | 
 |         self.assertEqual(format(complex(INF, 1), 'f'), 'inf+1.000000j') | 
 |         self.assertEqual(format(complex(INF, -1), 'f'), 'inf-1.000000j') | 
 |         self.assertEqual(format(complex(INF, INF), 'F'), 'INF+INFj') | 
 |         self.assertEqual(format(complex(1, INF), 'F'), '1.000000+INFj') | 
 |         self.assertEqual(format(complex(INF, 1), 'F'), 'INF+1.000000j') | 
 |         self.assertEqual(format(complex(INF, -1), 'F'), 'INF-1.000000j') | 
 |  | 
 | def test_main(): | 
 |     support.run_unittest(ComplexTest) | 
 |  | 
 | if __name__ == "__main__": | 
 |     test_main() |