| /* statistics accelerator C extension: _statistics module. */ |
| |
| #include "Python.h" |
| #include "structmember.h" |
| #include "clinic/_statisticsmodule.c.h" |
| |
| /*[clinic input] |
| module _statistics |
| |
| [clinic start generated code]*/ |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/ |
| |
| /* |
| * There is no closed-form solution to the inverse CDF for the normal |
| * distribution, so we use a rational approximation instead: |
| * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the |
| * Normal Distribution". Applied Statistics. Blackwell Publishing. 37 |
| * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. |
| */ |
| |
| /*[clinic input] |
| _statistics._normal_dist_inv_cdf -> double |
| p: double |
| mu: double |
| sigma: double |
| / |
| [clinic start generated code]*/ |
| |
| static double |
| _statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, |
| double sigma) |
| /*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/ |
| { |
| double q, num, den, r, x; |
| q = p - 0.5; |
| // Algorithm AS 241: The Percentage Points of the Normal Distribution |
| if(fabs(q) <= 0.425) { |
| r = 0.180625 - q * q; |
| // Hash sum-55.8831928806149014439 |
| num = (((((((2.5090809287301226727e+3 * r + |
| 3.3430575583588128105e+4) * r + |
| 6.7265770927008700853e+4) * r + |
| 4.5921953931549871457e+4) * r + |
| 1.3731693765509461125e+4) * r + |
| 1.9715909503065514427e+3) * r + |
| 1.3314166789178437745e+2) * r + |
| 3.3871328727963666080e+0) * q; |
| den = (((((((5.2264952788528545610e+3 * r + |
| 2.8729085735721942674e+4) * r + |
| 3.9307895800092710610e+4) * r + |
| 2.1213794301586595867e+4) * r + |
| 5.3941960214247511077e+3) * r + |
| 6.8718700749205790830e+2) * r + |
| 4.2313330701600911252e+1) * r + |
| 1.0); |
| x = num / den; |
| return mu + (x * sigma); |
| } |
| r = (q <= 0.0) ? p : (1.0 - p); |
| r = sqrt(-log(r)); |
| if (r <= 5.0) { |
| r = r - 1.6; |
| // Hash sum-49.33206503301610289036 |
| num = (((((((7.74545014278341407640e-4 * r + |
| 2.27238449892691845833e-2) * r + |
| 2.41780725177450611770e-1) * r + |
| 1.27045825245236838258e+0) * r + |
| 3.64784832476320460504e+0) * r + |
| 5.76949722146069140550e+0) * r + |
| 4.63033784615654529590e+0) * r + |
| 1.42343711074968357734e+0); |
| den = (((((((1.05075007164441684324e-9 * r + |
| 5.47593808499534494600e-4) * r + |
| 1.51986665636164571966e-2) * r + |
| 1.48103976427480074590e-1) * r + |
| 6.89767334985100004550e-1) * r + |
| 1.67638483018380384940e+0) * r + |
| 2.05319162663775882187e+0) * r + |
| 1.0); |
| } else { |
| r -= 5.0; |
| // Hash sum-47.52583317549289671629 |
| num = (((((((2.01033439929228813265e-7 * r + |
| 2.71155556874348757815e-5) * r + |
| 1.24266094738807843860e-3) * r + |
| 2.65321895265761230930e-2) * r + |
| 2.96560571828504891230e-1) * r + |
| 1.78482653991729133580e+0) * r + |
| 5.46378491116411436990e+0) * r + |
| 6.65790464350110377720e+0); |
| den = (((((((2.04426310338993978564e-15 * r + |
| 1.42151175831644588870e-7) * r + |
| 1.84631831751005468180e-5) * r + |
| 7.86869131145613259100e-4) * r + |
| 1.48753612908506148525e-2) * r + |
| 1.36929880922735805310e-1) * r + |
| 5.99832206555887937690e-1) * r + |
| 1.0); |
| } |
| x = num / den; |
| if (q < 0.0) { |
| x = -x; |
| } |
| return mu + (x * sigma); |
| } |
| |
| |
| static PyMethodDef statistics_methods[] = { |
| _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF |
| {NULL, NULL, 0, NULL} |
| }; |
| |
| static struct PyModuleDef statisticsmodule = { |
| PyModuleDef_HEAD_INIT, |
| "_statistics", |
| _statistics__normal_dist_inv_cdf__doc__, |
| -1, |
| statistics_methods, |
| NULL, |
| NULL, |
| NULL, |
| NULL |
| }; |
| |
| PyMODINIT_FUNC |
| PyInit__statistics(void) |
| { |
| PyObject *m = PyModule_Create(&statisticsmodule); |
| if (!m) return NULL; |
| return m; |
| } |