| # Originally contributed by Sjoerd Mullender. | 
 | # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>. | 
 |  | 
 | """Fraction, infinite-precision, real numbers.""" | 
 |  | 
 | from decimal import Decimal | 
 | import math | 
 | import numbers | 
 | import operator | 
 | import re | 
 | import sys | 
 |  | 
 | __all__ = ['Fraction', 'gcd'] | 
 |  | 
 |  | 
 |  | 
 | def gcd(a, b): | 
 |     """Calculate the Greatest Common Divisor of a and b. | 
 |  | 
 |     Unless b==0, the result will have the same sign as b (so that when | 
 |     b is divided by it, the result comes out positive). | 
 |     """ | 
 |     import warnings | 
 |     warnings.warn('fractions.gcd() is deprecated. Use math.gcd() instead.', | 
 |                   DeprecationWarning, 2) | 
 |     if type(a) is int is type(b): | 
 |         if (b or a) < 0: | 
 |             return -math.gcd(a, b) | 
 |         return math.gcd(a, b) | 
 |     return _gcd(a, b) | 
 |  | 
 | def _gcd(a, b): | 
 |     # Supports non-integers for backward compatibility. | 
 |     while b: | 
 |         a, b = b, a%b | 
 |     return a | 
 |  | 
 | # Constants related to the hash implementation;  hash(x) is based | 
 | # on the reduction of x modulo the prime _PyHASH_MODULUS. | 
 | _PyHASH_MODULUS = sys.hash_info.modulus | 
 | # Value to be used for rationals that reduce to infinity modulo | 
 | # _PyHASH_MODULUS. | 
 | _PyHASH_INF = sys.hash_info.inf | 
 |  | 
 | _RATIONAL_FORMAT = re.compile(r""" | 
 |     \A\s*                      # optional whitespace at the start, then | 
 |     (?P<sign>[-+]?)            # an optional sign, then | 
 |     (?=\d|\.\d)                # lookahead for digit or .digit | 
 |     (?P<num>\d*)               # numerator (possibly empty) | 
 |     (?:                        # followed by | 
 |        (?:/(?P<denom>\d+))?    # an optional denominator | 
 |     |                          # or | 
 |        (?:\.(?P<decimal>\d*))? # an optional fractional part | 
 |        (?:E(?P<exp>[-+]?\d+))? # and optional exponent | 
 |     ) | 
 |     \s*\Z                      # and optional whitespace to finish | 
 | """, re.VERBOSE | re.IGNORECASE) | 
 |  | 
 |  | 
 | class Fraction(numbers.Rational): | 
 |     """This class implements rational numbers. | 
 |  | 
 |     In the two-argument form of the constructor, Fraction(8, 6) will | 
 |     produce a rational number equivalent to 4/3. Both arguments must | 
 |     be Rational. The numerator defaults to 0 and the denominator | 
 |     defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. | 
 |  | 
 |     Fractions can also be constructed from: | 
 |  | 
 |       - numeric strings similar to those accepted by the | 
 |         float constructor (for example, '-2.3' or '1e10') | 
 |  | 
 |       - strings of the form '123/456' | 
 |  | 
 |       - float and Decimal instances | 
 |  | 
 |       - other Rational instances (including integers) | 
 |  | 
 |     """ | 
 |  | 
 |     __slots__ = ('_numerator', '_denominator') | 
 |  | 
 |     # We're immutable, so use __new__ not __init__ | 
 |     def __new__(cls, numerator=0, denominator=None, _normalize=True): | 
 |         """Constructs a Rational. | 
 |  | 
 |         Takes a string like '3/2' or '1.5', another Rational instance, a | 
 |         numerator/denominator pair, or a float. | 
 |  | 
 |         Examples | 
 |         -------- | 
 |  | 
 |         >>> Fraction(10, -8) | 
 |         Fraction(-5, 4) | 
 |         >>> Fraction(Fraction(1, 7), 5) | 
 |         Fraction(1, 35) | 
 |         >>> Fraction(Fraction(1, 7), Fraction(2, 3)) | 
 |         Fraction(3, 14) | 
 |         >>> Fraction('314') | 
 |         Fraction(314, 1) | 
 |         >>> Fraction('-35/4') | 
 |         Fraction(-35, 4) | 
 |         >>> Fraction('3.1415') # conversion from numeric string | 
 |         Fraction(6283, 2000) | 
 |         >>> Fraction('-47e-2') # string may include a decimal exponent | 
 |         Fraction(-47, 100) | 
 |         >>> Fraction(1.47)  # direct construction from float (exact conversion) | 
 |         Fraction(6620291452234629, 4503599627370496) | 
 |         >>> Fraction(2.25) | 
 |         Fraction(9, 4) | 
 |         >>> Fraction(Decimal('1.47')) | 
 |         Fraction(147, 100) | 
 |  | 
 |         """ | 
 |         self = super(Fraction, cls).__new__(cls) | 
 |  | 
 |         if denominator is None: | 
 |             if type(numerator) is int: | 
 |                 self._numerator = numerator | 
 |                 self._denominator = 1 | 
 |                 return self | 
 |  | 
 |             elif isinstance(numerator, numbers.Rational): | 
 |                 self._numerator = numerator.numerator | 
 |                 self._denominator = numerator.denominator | 
 |                 return self | 
 |  | 
 |             elif isinstance(numerator, (float, Decimal)): | 
 |                 # Exact conversion | 
 |                 self._numerator, self._denominator = numerator.as_integer_ratio() | 
 |                 return self | 
 |  | 
 |             elif isinstance(numerator, str): | 
 |                 # Handle construction from strings. | 
 |                 m = _RATIONAL_FORMAT.match(numerator) | 
 |                 if m is None: | 
 |                     raise ValueError('Invalid literal for Fraction: %r' % | 
 |                                      numerator) | 
 |                 numerator = int(m.group('num') or '0') | 
 |                 denom = m.group('denom') | 
 |                 if denom: | 
 |                     denominator = int(denom) | 
 |                 else: | 
 |                     denominator = 1 | 
 |                     decimal = m.group('decimal') | 
 |                     if decimal: | 
 |                         scale = 10**len(decimal) | 
 |                         numerator = numerator * scale + int(decimal) | 
 |                         denominator *= scale | 
 |                     exp = m.group('exp') | 
 |                     if exp: | 
 |                         exp = int(exp) | 
 |                         if exp >= 0: | 
 |                             numerator *= 10**exp | 
 |                         else: | 
 |                             denominator *= 10**-exp | 
 |                 if m.group('sign') == '-': | 
 |                     numerator = -numerator | 
 |  | 
 |             else: | 
 |                 raise TypeError("argument should be a string " | 
 |                                 "or a Rational instance") | 
 |  | 
 |         elif type(numerator) is int is type(denominator): | 
 |             pass # *very* normal case | 
 |  | 
 |         elif (isinstance(numerator, numbers.Rational) and | 
 |             isinstance(denominator, numbers.Rational)): | 
 |             numerator, denominator = ( | 
 |                 numerator.numerator * denominator.denominator, | 
 |                 denominator.numerator * numerator.denominator | 
 |                 ) | 
 |         else: | 
 |             raise TypeError("both arguments should be " | 
 |                             "Rational instances") | 
 |  | 
 |         if denominator == 0: | 
 |             raise ZeroDivisionError('Fraction(%s, 0)' % numerator) | 
 |         if _normalize: | 
 |             if type(numerator) is int is type(denominator): | 
 |                 # *very* normal case | 
 |                 g = math.gcd(numerator, denominator) | 
 |                 if denominator < 0: | 
 |                     g = -g | 
 |             else: | 
 |                 g = _gcd(numerator, denominator) | 
 |             numerator //= g | 
 |             denominator //= g | 
 |         self._numerator = numerator | 
 |         self._denominator = denominator | 
 |         return self | 
 |  | 
 |     @classmethod | 
 |     def from_float(cls, f): | 
 |         """Converts a finite float to a rational number, exactly. | 
 |  | 
 |         Beware that Fraction.from_float(0.3) != Fraction(3, 10). | 
 |  | 
 |         """ | 
 |         if isinstance(f, numbers.Integral): | 
 |             return cls(f) | 
 |         elif not isinstance(f, float): | 
 |             raise TypeError("%s.from_float() only takes floats, not %r (%s)" % | 
 |                             (cls.__name__, f, type(f).__name__)) | 
 |         return cls(*f.as_integer_ratio()) | 
 |  | 
 |     @classmethod | 
 |     def from_decimal(cls, dec): | 
 |         """Converts a finite Decimal instance to a rational number, exactly.""" | 
 |         from decimal import Decimal | 
 |         if isinstance(dec, numbers.Integral): | 
 |             dec = Decimal(int(dec)) | 
 |         elif not isinstance(dec, Decimal): | 
 |             raise TypeError( | 
 |                 "%s.from_decimal() only takes Decimals, not %r (%s)" % | 
 |                 (cls.__name__, dec, type(dec).__name__)) | 
 |         return cls(*dec.as_integer_ratio()) | 
 |  | 
 |     def limit_denominator(self, max_denominator=1000000): | 
 |         """Closest Fraction to self with denominator at most max_denominator. | 
 |  | 
 |         >>> Fraction('3.141592653589793').limit_denominator(10) | 
 |         Fraction(22, 7) | 
 |         >>> Fraction('3.141592653589793').limit_denominator(100) | 
 |         Fraction(311, 99) | 
 |         >>> Fraction(4321, 8765).limit_denominator(10000) | 
 |         Fraction(4321, 8765) | 
 |  | 
 |         """ | 
 |         # Algorithm notes: For any real number x, define a *best upper | 
 |         # approximation* to x to be a rational number p/q such that: | 
 |         # | 
 |         #   (1) p/q >= x, and | 
 |         #   (2) if p/q > r/s >= x then s > q, for any rational r/s. | 
 |         # | 
 |         # Define *best lower approximation* similarly.  Then it can be | 
 |         # proved that a rational number is a best upper or lower | 
 |         # approximation to x if, and only if, it is a convergent or | 
 |         # semiconvergent of the (unique shortest) continued fraction | 
 |         # associated to x. | 
 |         # | 
 |         # To find a best rational approximation with denominator <= M, | 
 |         # we find the best upper and lower approximations with | 
 |         # denominator <= M and take whichever of these is closer to x. | 
 |         # In the event of a tie, the bound with smaller denominator is | 
 |         # chosen.  If both denominators are equal (which can happen | 
 |         # only when max_denominator == 1 and self is midway between | 
 |         # two integers) the lower bound---i.e., the floor of self, is | 
 |         # taken. | 
 |  | 
 |         if max_denominator < 1: | 
 |             raise ValueError("max_denominator should be at least 1") | 
 |         if self._denominator <= max_denominator: | 
 |             return Fraction(self) | 
 |  | 
 |         p0, q0, p1, q1 = 0, 1, 1, 0 | 
 |         n, d = self._numerator, self._denominator | 
 |         while True: | 
 |             a = n//d | 
 |             q2 = q0+a*q1 | 
 |             if q2 > max_denominator: | 
 |                 break | 
 |             p0, q0, p1, q1 = p1, q1, p0+a*p1, q2 | 
 |             n, d = d, n-a*d | 
 |  | 
 |         k = (max_denominator-q0)//q1 | 
 |         bound1 = Fraction(p0+k*p1, q0+k*q1) | 
 |         bound2 = Fraction(p1, q1) | 
 |         if abs(bound2 - self) <= abs(bound1-self): | 
 |             return bound2 | 
 |         else: | 
 |             return bound1 | 
 |  | 
 |     @property | 
 |     def numerator(a): | 
 |         return a._numerator | 
 |  | 
 |     @property | 
 |     def denominator(a): | 
 |         return a._denominator | 
 |  | 
 |     def __repr__(self): | 
 |         """repr(self)""" | 
 |         return '%s(%s, %s)' % (self.__class__.__name__, | 
 |                                self._numerator, self._denominator) | 
 |  | 
 |     def __str__(self): | 
 |         """str(self)""" | 
 |         if self._denominator == 1: | 
 |             return str(self._numerator) | 
 |         else: | 
 |             return '%s/%s' % (self._numerator, self._denominator) | 
 |  | 
 |     def _operator_fallbacks(monomorphic_operator, fallback_operator): | 
 |         """Generates forward and reverse operators given a purely-rational | 
 |         operator and a function from the operator module. | 
 |  | 
 |         Use this like: | 
 |         __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) | 
 |  | 
 |         In general, we want to implement the arithmetic operations so | 
 |         that mixed-mode operations either call an implementation whose | 
 |         author knew about the types of both arguments, or convert both | 
 |         to the nearest built in type and do the operation there. In | 
 |         Fraction, that means that we define __add__ and __radd__ as: | 
 |  | 
 |             def __add__(self, other): | 
 |                 # Both types have numerators/denominator attributes, | 
 |                 # so do the operation directly | 
 |                 if isinstance(other, (int, Fraction)): | 
 |                     return Fraction(self.numerator * other.denominator + | 
 |                                     other.numerator * self.denominator, | 
 |                                     self.denominator * other.denominator) | 
 |                 # float and complex don't have those operations, but we | 
 |                 # know about those types, so special case them. | 
 |                 elif isinstance(other, float): | 
 |                     return float(self) + other | 
 |                 elif isinstance(other, complex): | 
 |                     return complex(self) + other | 
 |                 # Let the other type take over. | 
 |                 return NotImplemented | 
 |  | 
 |             def __radd__(self, other): | 
 |                 # radd handles more types than add because there's | 
 |                 # nothing left to fall back to. | 
 |                 if isinstance(other, numbers.Rational): | 
 |                     return Fraction(self.numerator * other.denominator + | 
 |                                     other.numerator * self.denominator, | 
 |                                     self.denominator * other.denominator) | 
 |                 elif isinstance(other, Real): | 
 |                     return float(other) + float(self) | 
 |                 elif isinstance(other, Complex): | 
 |                     return complex(other) + complex(self) | 
 |                 return NotImplemented | 
 |  | 
 |  | 
 |         There are 5 different cases for a mixed-type addition on | 
 |         Fraction. I'll refer to all of the above code that doesn't | 
 |         refer to Fraction, float, or complex as "boilerplate". 'r' | 
 |         will be an instance of Fraction, which is a subtype of | 
 |         Rational (r : Fraction <: Rational), and b : B <: | 
 |         Complex. The first three involve 'r + b': | 
 |  | 
 |             1. If B <: Fraction, int, float, or complex, we handle | 
 |                that specially, and all is well. | 
 |             2. If Fraction falls back to the boilerplate code, and it | 
 |                were to return a value from __add__, we'd miss the | 
 |                possibility that B defines a more intelligent __radd__, | 
 |                so the boilerplate should return NotImplemented from | 
 |                __add__. In particular, we don't handle Rational | 
 |                here, even though we could get an exact answer, in case | 
 |                the other type wants to do something special. | 
 |             3. If B <: Fraction, Python tries B.__radd__ before | 
 |                Fraction.__add__. This is ok, because it was | 
 |                implemented with knowledge of Fraction, so it can | 
 |                handle those instances before delegating to Real or | 
 |                Complex. | 
 |  | 
 |         The next two situations describe 'b + r'. We assume that b | 
 |         didn't know about Fraction in its implementation, and that it | 
 |         uses similar boilerplate code: | 
 |  | 
 |             4. If B <: Rational, then __radd_ converts both to the | 
 |                builtin rational type (hey look, that's us) and | 
 |                proceeds. | 
 |             5. Otherwise, __radd__ tries to find the nearest common | 
 |                base ABC, and fall back to its builtin type. Since this | 
 |                class doesn't subclass a concrete type, there's no | 
 |                implementation to fall back to, so we need to try as | 
 |                hard as possible to return an actual value, or the user | 
 |                will get a TypeError. | 
 |  | 
 |         """ | 
 |         def forward(a, b): | 
 |             if isinstance(b, (int, Fraction)): | 
 |                 return monomorphic_operator(a, b) | 
 |             elif isinstance(b, float): | 
 |                 return fallback_operator(float(a), b) | 
 |             elif isinstance(b, complex): | 
 |                 return fallback_operator(complex(a), b) | 
 |             else: | 
 |                 return NotImplemented | 
 |         forward.__name__ = '__' + fallback_operator.__name__ + '__' | 
 |         forward.__doc__ = monomorphic_operator.__doc__ | 
 |  | 
 |         def reverse(b, a): | 
 |             if isinstance(a, numbers.Rational): | 
 |                 # Includes ints. | 
 |                 return monomorphic_operator(a, b) | 
 |             elif isinstance(a, numbers.Real): | 
 |                 return fallback_operator(float(a), float(b)) | 
 |             elif isinstance(a, numbers.Complex): | 
 |                 return fallback_operator(complex(a), complex(b)) | 
 |             else: | 
 |                 return NotImplemented | 
 |         reverse.__name__ = '__r' + fallback_operator.__name__ + '__' | 
 |         reverse.__doc__ = monomorphic_operator.__doc__ | 
 |  | 
 |         return forward, reverse | 
 |  | 
 |     def _add(a, b): | 
 |         """a + b""" | 
 |         da, db = a.denominator, b.denominator | 
 |         return Fraction(a.numerator * db + b.numerator * da, | 
 |                         da * db) | 
 |  | 
 |     __add__, __radd__ = _operator_fallbacks(_add, operator.add) | 
 |  | 
 |     def _sub(a, b): | 
 |         """a - b""" | 
 |         da, db = a.denominator, b.denominator | 
 |         return Fraction(a.numerator * db - b.numerator * da, | 
 |                         da * db) | 
 |  | 
 |     __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) | 
 |  | 
 |     def _mul(a, b): | 
 |         """a * b""" | 
 |         return Fraction(a.numerator * b.numerator, a.denominator * b.denominator) | 
 |  | 
 |     __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) | 
 |  | 
 |     def _div(a, b): | 
 |         """a / b""" | 
 |         return Fraction(a.numerator * b.denominator, | 
 |                         a.denominator * b.numerator) | 
 |  | 
 |     __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) | 
 |  | 
 |     def __floordiv__(a, b): | 
 |         """a // b""" | 
 |         return math.floor(a / b) | 
 |  | 
 |     def __rfloordiv__(b, a): | 
 |         """a // b""" | 
 |         return math.floor(a / b) | 
 |  | 
 |     def __mod__(a, b): | 
 |         """a % b""" | 
 |         div = a // b | 
 |         return a - b * div | 
 |  | 
 |     def __rmod__(b, a): | 
 |         """a % b""" | 
 |         div = a // b | 
 |         return a - b * div | 
 |  | 
 |     def __pow__(a, b): | 
 |         """a ** b | 
 |  | 
 |         If b is not an integer, the result will be a float or complex | 
 |         since roots are generally irrational. If b is an integer, the | 
 |         result will be rational. | 
 |  | 
 |         """ | 
 |         if isinstance(b, numbers.Rational): | 
 |             if b.denominator == 1: | 
 |                 power = b.numerator | 
 |                 if power >= 0: | 
 |                     return Fraction(a._numerator ** power, | 
 |                                     a._denominator ** power, | 
 |                                     _normalize=False) | 
 |                 else: | 
 |                     return Fraction(a._denominator ** -power, | 
 |                                     a._numerator ** -power, | 
 |                                     _normalize=False) | 
 |             else: | 
 |                 # A fractional power will generally produce an | 
 |                 # irrational number. | 
 |                 return float(a) ** float(b) | 
 |         else: | 
 |             return float(a) ** b | 
 |  | 
 |     def __rpow__(b, a): | 
 |         """a ** b""" | 
 |         if b._denominator == 1 and b._numerator >= 0: | 
 |             # If a is an int, keep it that way if possible. | 
 |             return a ** b._numerator | 
 |  | 
 |         if isinstance(a, numbers.Rational): | 
 |             return Fraction(a.numerator, a.denominator) ** b | 
 |  | 
 |         if b._denominator == 1: | 
 |             return a ** b._numerator | 
 |  | 
 |         return a ** float(b) | 
 |  | 
 |     def __pos__(a): | 
 |         """+a: Coerces a subclass instance to Fraction""" | 
 |         return Fraction(a._numerator, a._denominator, _normalize=False) | 
 |  | 
 |     def __neg__(a): | 
 |         """-a""" | 
 |         return Fraction(-a._numerator, a._denominator, _normalize=False) | 
 |  | 
 |     def __abs__(a): | 
 |         """abs(a)""" | 
 |         return Fraction(abs(a._numerator), a._denominator, _normalize=False) | 
 |  | 
 |     def __trunc__(a): | 
 |         """trunc(a)""" | 
 |         if a._numerator < 0: | 
 |             return -(-a._numerator // a._denominator) | 
 |         else: | 
 |             return a._numerator // a._denominator | 
 |  | 
 |     def __floor__(a): | 
 |         """Will be math.floor(a) in 3.0.""" | 
 |         return a.numerator // a.denominator | 
 |  | 
 |     def __ceil__(a): | 
 |         """Will be math.ceil(a) in 3.0.""" | 
 |         # The negations cleverly convince floordiv to return the ceiling. | 
 |         return -(-a.numerator // a.denominator) | 
 |  | 
 |     def __round__(self, ndigits=None): | 
 |         """Will be round(self, ndigits) in 3.0. | 
 |  | 
 |         Rounds half toward even. | 
 |         """ | 
 |         if ndigits is None: | 
 |             floor, remainder = divmod(self.numerator, self.denominator) | 
 |             if remainder * 2 < self.denominator: | 
 |                 return floor | 
 |             elif remainder * 2 > self.denominator: | 
 |                 return floor + 1 | 
 |             # Deal with the half case: | 
 |             elif floor % 2 == 0: | 
 |                 return floor | 
 |             else: | 
 |                 return floor + 1 | 
 |         shift = 10**abs(ndigits) | 
 |         # See _operator_fallbacks.forward to check that the results of | 
 |         # these operations will always be Fraction and therefore have | 
 |         # round(). | 
 |         if ndigits > 0: | 
 |             return Fraction(round(self * shift), shift) | 
 |         else: | 
 |             return Fraction(round(self / shift) * shift) | 
 |  | 
 |     def __hash__(self): | 
 |         """hash(self)""" | 
 |  | 
 |         # XXX since this method is expensive, consider caching the result | 
 |  | 
 |         # In order to make sure that the hash of a Fraction agrees | 
 |         # with the hash of a numerically equal integer, float or | 
 |         # Decimal instance, we follow the rules for numeric hashes | 
 |         # outlined in the documentation.  (See library docs, 'Built-in | 
 |         # Types'). | 
 |  | 
 |         # dinv is the inverse of self._denominator modulo the prime | 
 |         # _PyHASH_MODULUS, or 0 if self._denominator is divisible by | 
 |         # _PyHASH_MODULUS. | 
 |         dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) | 
 |         if not dinv: | 
 |             hash_ = _PyHASH_INF | 
 |         else: | 
 |             hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS | 
 |         result = hash_ if self >= 0 else -hash_ | 
 |         return -2 if result == -1 else result | 
 |  | 
 |     def __eq__(a, b): | 
 |         """a == b""" | 
 |         if type(b) is int: | 
 |             return a._numerator == b and a._denominator == 1 | 
 |         if isinstance(b, numbers.Rational): | 
 |             return (a._numerator == b.numerator and | 
 |                     a._denominator == b.denominator) | 
 |         if isinstance(b, numbers.Complex) and b.imag == 0: | 
 |             b = b.real | 
 |         if isinstance(b, float): | 
 |             if math.isnan(b) or math.isinf(b): | 
 |                 # comparisons with an infinity or nan should behave in | 
 |                 # the same way for any finite a, so treat a as zero. | 
 |                 return 0.0 == b | 
 |             else: | 
 |                 return a == a.from_float(b) | 
 |         else: | 
 |             # Since a doesn't know how to compare with b, let's give b | 
 |             # a chance to compare itself with a. | 
 |             return NotImplemented | 
 |  | 
 |     def _richcmp(self, other, op): | 
 |         """Helper for comparison operators, for internal use only. | 
 |  | 
 |         Implement comparison between a Rational instance `self`, and | 
 |         either another Rational instance or a float `other`.  If | 
 |         `other` is not a Rational instance or a float, return | 
 |         NotImplemented. `op` should be one of the six standard | 
 |         comparison operators. | 
 |  | 
 |         """ | 
 |         # convert other to a Rational instance where reasonable. | 
 |         if isinstance(other, numbers.Rational): | 
 |             return op(self._numerator * other.denominator, | 
 |                       self._denominator * other.numerator) | 
 |         if isinstance(other, float): | 
 |             if math.isnan(other) or math.isinf(other): | 
 |                 return op(0.0, other) | 
 |             else: | 
 |                 return op(self, self.from_float(other)) | 
 |         else: | 
 |             return NotImplemented | 
 |  | 
 |     def __lt__(a, b): | 
 |         """a < b""" | 
 |         return a._richcmp(b, operator.lt) | 
 |  | 
 |     def __gt__(a, b): | 
 |         """a > b""" | 
 |         return a._richcmp(b, operator.gt) | 
 |  | 
 |     def __le__(a, b): | 
 |         """a <= b""" | 
 |         return a._richcmp(b, operator.le) | 
 |  | 
 |     def __ge__(a, b): | 
 |         """a >= b""" | 
 |         return a._richcmp(b, operator.ge) | 
 |  | 
 |     def __bool__(a): | 
 |         """a != 0""" | 
 |         return a._numerator != 0 | 
 |  | 
 |     # support for pickling, copy, and deepcopy | 
 |  | 
 |     def __reduce__(self): | 
 |         return (self.__class__, (str(self),)) | 
 |  | 
 |     def __copy__(self): | 
 |         if type(self) == Fraction: | 
 |             return self     # I'm immutable; therefore I am my own clone | 
 |         return self.__class__(self._numerator, self._denominator) | 
 |  | 
 |     def __deepcopy__(self, memo): | 
 |         if type(self) == Fraction: | 
 |             return self     # My components are also immutable | 
 |         return self.__class__(self._numerator, self._denominator) |