| \section{\module{mpz} --- |
| GNU arbitrary magnitude integers} |
| |
| \declaremodule{builtin}{mpz} |
| \modulesynopsis{Interface to the GNU MP library for arbitrary |
| precision arithmetic.} |
| |
| |
| \deprecated{2.2}{See the references at the end of this section for |
| information about packages which provide similar |
| functionality. This module will be removed in Python |
| 2.3.} |
| |
| |
| This is an optional module. It is only available when Python is |
| configured to include it, which requires that the GNU MP software is |
| installed. |
| \index{MP, GNU library} |
| \index{arbitrary precision integers} |
| \index{integer!arbitrary precision} |
| |
| This module implements the interface to part of the GNU MP library, |
| which defines arbitrary precision integer and rational number |
| arithmetic routines. Only the interfaces to the \emph{integer} |
| (\function{mpz_*()}) routines are provided. If not stated |
| otherwise, the description in the GNU MP documentation can be applied. |
| |
| Support for rational numbers\index{rational numbers} can be |
| implemented in Python. For an example, see the |
| \module{Rat}\withsubitem{(demo module)}{\ttindex{Rat}} module, provided as |
| \file{Demos/classes/Rat.py} in the Python source distribution. |
| |
| In general, \dfn{mpz}-numbers can be used just like other standard |
| Python numbers, e.g., you can use the built-in operators like \code{+}, |
| \code{*}, etc., as well as the standard built-in functions like |
| \function{abs()}, \function{int()}, \ldots, \function{divmod()}, |
| \function{pow()}. \strong{Please note:} the \emph{bitwise-xor} |
| operation has been implemented as a bunch of \emph{and}s, |
| \emph{invert}s and \emph{or}s, because the library lacks an |
| \cfunction{mpz_xor()} function, and I didn't need one. |
| |
| You create an mpz-number by calling the function \function{mpz()} (see |
| below for an exact description). An mpz-number is printed like this: |
| \code{mpz(\var{value})}. |
| |
| |
| \begin{funcdesc}{mpz}{value} |
| Create a new mpz-number. \var{value} can be an integer, a long, |
| another mpz-number, or even a string. If it is a string, it is |
| interpreted as an array of radix-256 digits, least significant digit |
| first, resulting in a positive number. See also the \method{binary()} |
| method, described below. |
| \end{funcdesc} |
| |
| \begin{datadesc}{MPZType} |
| The type of the objects returned by \function{mpz()} and most other |
| functions in this module. |
| \end{datadesc} |
| |
| |
| A number of \emph{extra} functions are defined in this module. Non |
| mpz-arguments are converted to mpz-values first, and the functions |
| return mpz-numbers. |
| |
| \begin{funcdesc}{powm}{base, exponent, modulus} |
| Return \code{pow(\var{base}, \var{exponent}) \%{} \var{modulus}}. If |
| \code{\var{exponent} == 0}, return \code{mpz(1)}. In contrast to the |
| \C{} library function, this version can handle negative exponents. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{gcd}{op1, op2} |
| Return the greatest common divisor of \var{op1} and \var{op2}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{gcdext}{a, b} |
| Return a tuple \code{(\var{g}, \var{s}, \var{t})}, such that |
| \code{\var{a}*\var{s} + \var{b}*\var{t} == \var{g} == gcd(\var{a}, \var{b})}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{sqrt}{op} |
| Return the square root of \var{op}. The result is rounded towards zero. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{sqrtrem}{op} |
| Return a tuple \code{(\var{root}, \var{remainder})}, such that |
| \code{\var{root}*\var{root} + \var{remainder} == \var{op}}. |
| \end{funcdesc} |
| |
| \begin{funcdesc}{divm}{numerator, denominator, modulus} |
| Returns a number \var{q} such that |
| \code{\var{q} * \var{denominator} \%{} \var{modulus} == |
| \var{numerator}}. One could also implement this function in Python, |
| using \function{gcdext()}. |
| \end{funcdesc} |
| |
| An mpz-number has one method: |
| |
| \begin{methoddesc}[mpz]{binary}{} |
| Convert this mpz-number to a binary string, where the number has been |
| stored as an array of radix-256 digits, least significant digit first. |
| |
| The mpz-number must have a value greater than or equal to zero, |
| otherwise \exception{ValueError} will be raised. |
| \end{methoddesc} |
| |
| |
| \begin{seealso} |
| \seetitle[http://gmpy.sourceforge.net/]{General Multiprecision Python}{ |
| This project is building new numeric types to allow |
| arbitrary-precision arithmetic in Python. Their first |
| efforts are also based on the GNU MP library.} |
| |
| \seetitle[http://www.egenix.com/files/python/mxNumber.html]{mxNumber |
| --- Extended Numeric Types for Python}{Another wrapper |
| around the GNU MP library, including a port of that |
| library to Windows.} |
| \end{seealso} |