| #include <stdbool.h> |
| |
| #include <Python.h> |
| |
| #include "tokenizer.h" |
| #include "pegen.h" |
| #include "string_parser.h" |
| |
| //// STRING HANDLING FUNCTIONS //// |
| |
| static int |
| warn_invalid_escape_sequence(Parser *p, unsigned char first_invalid_escape_char, Token *t) |
| { |
| PyObject *msg = |
| PyUnicode_FromFormat("invalid escape sequence \\%c", first_invalid_escape_char); |
| if (msg == NULL) { |
| return -1; |
| } |
| if (PyErr_WarnExplicitObject(PyExc_DeprecationWarning, msg, p->tok->filename, |
| t->lineno, NULL, NULL) < 0) { |
| if (PyErr_ExceptionMatches(PyExc_DeprecationWarning)) { |
| /* Replace the DeprecationWarning exception with a SyntaxError |
| to get a more accurate error report */ |
| PyErr_Clear(); |
| |
| /* This is needed, in order for the SyntaxError to point to the token t, |
| since _PyPegen_raise_error uses p->tokens[p->fill - 1] for the |
| error location, if p->known_err_token is not set. */ |
| p->known_err_token = t; |
| RAISE_SYNTAX_ERROR("invalid escape sequence \\%c", first_invalid_escape_char); |
| } |
| Py_DECREF(msg); |
| return -1; |
| } |
| Py_DECREF(msg); |
| return 0; |
| } |
| |
| static PyObject * |
| decode_utf8(const char **sPtr, const char *end) |
| { |
| const char *s; |
| const char *t; |
| t = s = *sPtr; |
| while (s < end && (*s & 0x80)) { |
| s++; |
| } |
| *sPtr = s; |
| return PyUnicode_DecodeUTF8(t, s - t, NULL); |
| } |
| |
| static PyObject * |
| decode_unicode_with_escapes(Parser *parser, const char *s, size_t len, Token *t) |
| { |
| PyObject *v; |
| PyObject *u; |
| char *buf; |
| char *p; |
| const char *end; |
| |
| /* check for integer overflow */ |
| if (len > SIZE_MAX / 6) { |
| return NULL; |
| } |
| /* "ä" (2 bytes) may become "\U000000E4" (10 bytes), or 1:5 |
| "\ä" (3 bytes) may become "\u005c\U000000E4" (16 bytes), or ~1:6 */ |
| u = PyBytes_FromStringAndSize((char *)NULL, len * 6); |
| if (u == NULL) { |
| return NULL; |
| } |
| p = buf = PyBytes_AsString(u); |
| if (p == NULL) { |
| return NULL; |
| } |
| end = s + len; |
| while (s < end) { |
| if (*s == '\\') { |
| *p++ = *s++; |
| if (s >= end || *s & 0x80) { |
| strcpy(p, "u005c"); |
| p += 5; |
| if (s >= end) { |
| break; |
| } |
| } |
| } |
| if (*s & 0x80) { |
| PyObject *w; |
| int kind; |
| void *data; |
| Py_ssize_t w_len; |
| Py_ssize_t i; |
| w = decode_utf8(&s, end); |
| if (w == NULL) { |
| Py_DECREF(u); |
| return NULL; |
| } |
| kind = PyUnicode_KIND(w); |
| data = PyUnicode_DATA(w); |
| w_len = PyUnicode_GET_LENGTH(w); |
| for (i = 0; i < w_len; i++) { |
| Py_UCS4 chr = PyUnicode_READ(kind, data, i); |
| sprintf(p, "\\U%08x", chr); |
| p += 10; |
| } |
| /* Should be impossible to overflow */ |
| assert(p - buf <= PyBytes_GET_SIZE(u)); |
| Py_DECREF(w); |
| } |
| else { |
| *p++ = *s++; |
| } |
| } |
| len = p - buf; |
| s = buf; |
| |
| const char *first_invalid_escape; |
| v = _PyUnicode_DecodeUnicodeEscape(s, len, NULL, &first_invalid_escape); |
| |
| if (v != NULL && first_invalid_escape != NULL) { |
| if (warn_invalid_escape_sequence(parser, *first_invalid_escape, t) < 0) { |
| /* We have not decref u before because first_invalid_escape points |
| inside u. */ |
| Py_XDECREF(u); |
| Py_DECREF(v); |
| return NULL; |
| } |
| } |
| Py_XDECREF(u); |
| return v; |
| } |
| |
| static PyObject * |
| decode_bytes_with_escapes(Parser *p, const char *s, Py_ssize_t len, Token *t) |
| { |
| const char *first_invalid_escape; |
| PyObject *result = _PyBytes_DecodeEscape(s, len, NULL, &first_invalid_escape); |
| if (result == NULL) { |
| return NULL; |
| } |
| |
| if (first_invalid_escape != NULL) { |
| if (warn_invalid_escape_sequence(p, *first_invalid_escape, t) < 0) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| } |
| return result; |
| } |
| |
| /* s must include the bracketing quote characters, and r, b, u, |
| &/or f prefixes (if any), and embedded escape sequences (if any). |
| _PyPegen_parsestr parses it, and sets *result to decoded Python string object. |
| If the string is an f-string, set *fstr and *fstrlen to the unparsed |
| string object. Return 0 if no errors occurred. */ |
| int |
| _PyPegen_parsestr(Parser *p, int *bytesmode, int *rawmode, PyObject **result, |
| const char **fstr, Py_ssize_t *fstrlen, Token *t) |
| { |
| const char *s = PyBytes_AsString(t->bytes); |
| if (s == NULL) { |
| return -1; |
| } |
| |
| size_t len; |
| int quote = Py_CHARMASK(*s); |
| int fmode = 0; |
| *bytesmode = 0; |
| *rawmode = 0; |
| *result = NULL; |
| *fstr = NULL; |
| if (Py_ISALPHA(quote)) { |
| while (!*bytesmode || !*rawmode) { |
| if (quote == 'b' || quote == 'B') { |
| quote =(unsigned char)*++s; |
| *bytesmode = 1; |
| } |
| else if (quote == 'u' || quote == 'U') { |
| quote = (unsigned char)*++s; |
| } |
| else if (quote == 'r' || quote == 'R') { |
| quote = (unsigned char)*++s; |
| *rawmode = 1; |
| } |
| else if (quote == 'f' || quote == 'F') { |
| quote = (unsigned char)*++s; |
| fmode = 1; |
| } |
| else { |
| break; |
| } |
| } |
| } |
| |
| /* fstrings are only allowed in Python 3.6 and greater */ |
| if (fmode && p->feature_version < 6) { |
| p->error_indicator = 1; |
| RAISE_SYNTAX_ERROR("Format strings are only supported in Python 3.6 and greater"); |
| return -1; |
| } |
| |
| if (fmode && *bytesmode) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (quote != '\'' && quote != '\"') { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| /* Skip the leading quote char. */ |
| s++; |
| len = strlen(s); |
| if (len > INT_MAX) { |
| PyErr_SetString(PyExc_OverflowError, "string to parse is too long"); |
| return -1; |
| } |
| if (s[--len] != quote) { |
| /* Last quote char must match the first. */ |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (len >= 4 && s[0] == quote && s[1] == quote) { |
| /* A triple quoted string. We've already skipped one quote at |
| the start and one at the end of the string. Now skip the |
| two at the start. */ |
| s += 2; |
| len -= 2; |
| /* And check that the last two match. */ |
| if (s[--len] != quote || s[--len] != quote) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| } |
| |
| if (fmode) { |
| /* Just return the bytes. The caller will parse the resulting |
| string. */ |
| *fstr = s; |
| *fstrlen = len; |
| return 0; |
| } |
| |
| /* Not an f-string. */ |
| /* Avoid invoking escape decoding routines if possible. */ |
| *rawmode = *rawmode || strchr(s, '\\') == NULL; |
| if (*bytesmode) { |
| /* Disallow non-ASCII characters. */ |
| const char *ch; |
| for (ch = s; *ch; ch++) { |
| if (Py_CHARMASK(*ch) >= 0x80) { |
| RAISE_SYNTAX_ERROR( |
| "bytes can only contain ASCII " |
| "literal characters."); |
| return -1; |
| } |
| } |
| if (*rawmode) { |
| *result = PyBytes_FromStringAndSize(s, len); |
| } |
| else { |
| *result = decode_bytes_with_escapes(p, s, len, t); |
| } |
| } |
| else { |
| if (*rawmode) { |
| *result = PyUnicode_DecodeUTF8Stateful(s, len, NULL, NULL); |
| } |
| else { |
| *result = decode_unicode_with_escapes(p, s, len, t); |
| } |
| } |
| return *result == NULL ? -1 : 0; |
| } |
| |
| |
| |
| // FSTRING STUFF |
| |
| /* Fix locations for the given node and its children. |
| |
| `parent` is the enclosing node. |
| `n` is the node which locations are going to be fixed relative to parent. |
| `expr_str` is the child node's string representation, including braces. |
| */ |
| static bool |
| fstring_find_expr_location(Token *parent, char *expr_str, int *p_lines, int *p_cols) |
| { |
| *p_lines = 0; |
| *p_cols = 0; |
| if (parent && parent->bytes) { |
| char *parent_str = PyBytes_AsString(parent->bytes); |
| if (!parent_str) { |
| return false; |
| } |
| char *substr = strstr(parent_str, expr_str); |
| if (substr) { |
| // The following is needed, in order to correctly shift the column |
| // offset, in the case that (disregarding any whitespace) a newline |
| // immediately follows the opening curly brace of the fstring expression. |
| bool newline_after_brace = 1; |
| char *start = substr + 1; |
| while (start && *start != '}' && *start != '\n') { |
| if (*start != ' ' && *start != '\t' && *start != '\f') { |
| newline_after_brace = 0; |
| break; |
| } |
| start++; |
| } |
| |
| // Account for the characters from the last newline character to our |
| // left until the beginning of substr. |
| if (!newline_after_brace) { |
| start = substr; |
| while (start > parent_str && *start != '\n') { |
| start--; |
| } |
| *p_cols += (int)(substr - start); |
| } |
| /* adjust the start based on the number of newlines encountered |
| before the f-string expression */ |
| for (char* p = parent_str; p < substr; p++) { |
| if (*p == '\n') { |
| (*p_lines)++; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| |
| /* Compile this expression in to an expr_ty. Add parens around the |
| expression, in order to allow leading spaces in the expression. */ |
| static expr_ty |
| fstring_compile_expr(Parser *p, const char *expr_start, const char *expr_end, |
| Token *t) |
| { |
| expr_ty expr = NULL; |
| char *str; |
| Py_ssize_t len; |
| const char *s; |
| expr_ty result = NULL; |
| |
| assert(expr_end >= expr_start); |
| assert(*(expr_start-1) == '{'); |
| assert(*expr_end == '}' || *expr_end == '!' || *expr_end == ':' || |
| *expr_end == '='); |
| |
| /* If the substring is all whitespace, it's an error. We need to catch this |
| here, and not when we call PyParser_SimpleParseStringFlagsFilename, |
| because turning the expression '' in to '()' would go from being invalid |
| to valid. */ |
| for (s = expr_start; s != expr_end; s++) { |
| char c = *s; |
| /* The Python parser ignores only the following whitespace |
| characters (\r already is converted to \n). */ |
| if (!(c == ' ' || c == '\t' || c == '\n' || c == '\f')) { |
| break; |
| } |
| } |
| if (s == expr_end) { |
| RAISE_SYNTAX_ERROR("f-string: empty expression not allowed"); |
| return NULL; |
| } |
| |
| len = expr_end - expr_start; |
| /* Allocate 3 extra bytes: open paren, close paren, null byte. */ |
| str = PyMem_Malloc(len + 3); |
| if (str == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| |
| // The call to fstring_find_expr_location is responsible for finding the column offset |
| // the generated AST nodes need to be shifted to the right, which is equal to the number |
| // of the f-string characters before the expression starts. In order to correctly compute |
| // this offset, strstr gets called in fstring_find_expr_location which only succeeds |
| // if curly braces appear before and after the f-string expression (exactly like they do |
| // in the f-string itself), hence the following lines. |
| str[0] = '{'; |
| memcpy(str+1, expr_start, len); |
| str[len+1] = '}'; |
| str[len+2] = 0; |
| |
| int lines, cols; |
| if (!fstring_find_expr_location(t, str, &lines, &cols)) { |
| PyMem_Free(str); |
| return NULL; |
| } |
| |
| // The parentheses are needed in order to allow for leading whitespace within |
| // the f-string expression. This consequently gets parsed as a group (see the |
| // group rule in python.gram). |
| str[0] = '('; |
| str[len+1] = ')'; |
| |
| struct tok_state* tok = PyTokenizer_FromString(str, 1); |
| if (tok == NULL) { |
| PyMem_Free(str); |
| return NULL; |
| } |
| Py_INCREF(p->tok->filename); |
| tok->filename = p->tok->filename; |
| |
| Parser *p2 = _PyPegen_Parser_New(tok, Py_fstring_input, p->flags, p->feature_version, |
| NULL, p->arena); |
| p2->starting_lineno = t->lineno + lines - 1; |
| p2->starting_col_offset = p->tok->first_lineno == p->tok->lineno ? t->col_offset + cols : cols; |
| |
| expr = _PyPegen_run_parser(p2); |
| |
| if (expr == NULL) { |
| goto exit; |
| } |
| result = expr; |
| |
| exit: |
| PyMem_Free(str); |
| _PyPegen_Parser_Free(p2); |
| PyTokenizer_Free(tok); |
| return result; |
| } |
| |
| /* Return -1 on error. |
| |
| Return 0 if we reached the end of the literal. |
| |
| Return 1 if we haven't reached the end of the literal, but we want |
| the caller to process the literal up to this point. Used for |
| doubled braces. |
| */ |
| static int |
| fstring_find_literal(Parser *p, const char **str, const char *end, int raw, |
| PyObject **literal, int recurse_lvl, Token *t) |
| { |
| /* Get any literal string. It ends when we hit an un-doubled left |
| brace (which isn't part of a unicode name escape such as |
| "\N{EULER CONSTANT}"), or the end of the string. */ |
| |
| const char *s = *str; |
| const char *literal_start = s; |
| int result = 0; |
| |
| assert(*literal == NULL); |
| while (s < end) { |
| char ch = *s++; |
| if (!raw && ch == '\\' && s < end) { |
| ch = *s++; |
| if (ch == 'N') { |
| if (s < end && *s++ == '{') { |
| while (s < end && *s++ != '}') { |
| } |
| continue; |
| } |
| break; |
| } |
| if (ch == '{' && warn_invalid_escape_sequence(p, ch, t) < 0) { |
| return -1; |
| } |
| } |
| if (ch == '{' || ch == '}') { |
| /* Check for doubled braces, but only at the top level. If |
| we checked at every level, then f'{0:{3}}' would fail |
| with the two closing braces. */ |
| if (recurse_lvl == 0) { |
| if (s < end && *s == ch) { |
| /* We're going to tell the caller that the literal ends |
| here, but that they should continue scanning. But also |
| skip over the second brace when we resume scanning. */ |
| *str = s + 1; |
| result = 1; |
| goto done; |
| } |
| |
| /* Where a single '{' is the start of a new expression, a |
| single '}' is not allowed. */ |
| if (ch == '}') { |
| *str = s - 1; |
| RAISE_SYNTAX_ERROR("f-string: single '}' is not allowed"); |
| return -1; |
| } |
| } |
| /* We're either at a '{', which means we're starting another |
| expression; or a '}', which means we're at the end of this |
| f-string (for a nested format_spec). */ |
| s--; |
| break; |
| } |
| } |
| *str = s; |
| assert(s <= end); |
| assert(s == end || *s == '{' || *s == '}'); |
| done: |
| if (literal_start != s) { |
| if (raw) { |
| *literal = PyUnicode_DecodeUTF8Stateful(literal_start, |
| s - literal_start, |
| NULL, NULL); |
| } else { |
| *literal = decode_unicode_with_escapes(p, literal_start, |
| s - literal_start, t); |
| } |
| if (!*literal) { |
| return -1; |
| } |
| } |
| return result; |
| } |
| |
| /* Forward declaration because parsing is recursive. */ |
| static expr_ty |
| fstring_parse(Parser *p, const char **str, const char *end, int raw, int recurse_lvl, |
| Token *first_token, Token* t, Token *last_token); |
| |
| /* Parse the f-string at *str, ending at end. We know *str starts an |
| expression (so it must be a '{'). Returns the FormattedValue node, which |
| includes the expression, conversion character, format_spec expression, and |
| optionally the text of the expression (if = is used). |
| |
| Note that I don't do a perfect job here: I don't make sure that a |
| closing brace doesn't match an opening paren, for example. It |
| doesn't need to error on all invalid expressions, just correctly |
| find the end of all valid ones. Any errors inside the expression |
| will be caught when we parse it later. |
| |
| *expression is set to the expression. For an '=' "debug" expression, |
| *expr_text is set to the debug text (the original text of the expression, |
| including the '=' and any whitespace around it, as a string object). If |
| not a debug expression, *expr_text set to NULL. */ |
| static int |
| fstring_find_expr(Parser *p, const char **str, const char *end, int raw, int recurse_lvl, |
| PyObject **expr_text, expr_ty *expression, Token *first_token, |
| Token *t, Token *last_token) |
| { |
| /* Return -1 on error, else 0. */ |
| |
| const char *expr_start; |
| const char *expr_end; |
| expr_ty simple_expression; |
| expr_ty format_spec = NULL; /* Optional format specifier. */ |
| int conversion = -1; /* The conversion char. Use default if not |
| specified, or !r if using = and no format |
| spec. */ |
| |
| /* 0 if we're not in a string, else the quote char we're trying to |
| match (single or double quote). */ |
| char quote_char = 0; |
| |
| /* If we're inside a string, 1=normal, 3=triple-quoted. */ |
| int string_type = 0; |
| |
| /* Keep track of nesting level for braces/parens/brackets in |
| expressions. */ |
| Py_ssize_t nested_depth = 0; |
| char parenstack[MAXLEVEL]; |
| |
| *expr_text = NULL; |
| |
| /* Can only nest one level deep. */ |
| if (recurse_lvl >= 2) { |
| RAISE_SYNTAX_ERROR("f-string: expressions nested too deeply"); |
| goto error; |
| } |
| |
| /* The first char must be a left brace, or we wouldn't have gotten |
| here. Skip over it. */ |
| assert(**str == '{'); |
| *str += 1; |
| |
| expr_start = *str; |
| for (; *str < end; (*str)++) { |
| char ch; |
| |
| /* Loop invariants. */ |
| assert(nested_depth >= 0); |
| assert(*str >= expr_start && *str < end); |
| if (quote_char) { |
| assert(string_type == 1 || string_type == 3); |
| } else { |
| assert(string_type == 0); |
| } |
| |
| ch = **str; |
| /* Nowhere inside an expression is a backslash allowed. */ |
| if (ch == '\\') { |
| /* Error: can't include a backslash character, inside |
| parens or strings or not. */ |
| RAISE_SYNTAX_ERROR( |
| "f-string expression part " |
| "cannot include a backslash"); |
| goto error; |
| } |
| if (quote_char) { |
| /* We're inside a string. See if we're at the end. */ |
| /* This code needs to implement the same non-error logic |
| as tok_get from tokenizer.c, at the letter_quote |
| label. To actually share that code would be a |
| nightmare. But, it's unlikely to change and is small, |
| so duplicate it here. Note we don't need to catch all |
| of the errors, since they'll be caught when parsing the |
| expression. We just need to match the non-error |
| cases. Thus we can ignore \n in single-quoted strings, |
| for example. Or non-terminated strings. */ |
| if (ch == quote_char) { |
| /* Does this match the string_type (single or triple |
| quoted)? */ |
| if (string_type == 3) { |
| if (*str+2 < end && *(*str+1) == ch && *(*str+2) == ch) { |
| /* We're at the end of a triple quoted string. */ |
| *str += 2; |
| string_type = 0; |
| quote_char = 0; |
| continue; |
| } |
| } else { |
| /* We're at the end of a normal string. */ |
| quote_char = 0; |
| string_type = 0; |
| continue; |
| } |
| } |
| } else if (ch == '\'' || ch == '"') { |
| /* Is this a triple quoted string? */ |
| if (*str+2 < end && *(*str+1) == ch && *(*str+2) == ch) { |
| string_type = 3; |
| *str += 2; |
| } else { |
| /* Start of a normal string. */ |
| string_type = 1; |
| } |
| /* Start looking for the end of the string. */ |
| quote_char = ch; |
| } else if (ch == '[' || ch == '{' || ch == '(') { |
| if (nested_depth >= MAXLEVEL) { |
| RAISE_SYNTAX_ERROR("f-string: too many nested parenthesis"); |
| goto error; |
| } |
| parenstack[nested_depth] = ch; |
| nested_depth++; |
| } else if (ch == '#') { |
| /* Error: can't include a comment character, inside parens |
| or not. */ |
| RAISE_SYNTAX_ERROR("f-string expression part cannot include '#'"); |
| goto error; |
| } else if (nested_depth == 0 && |
| (ch == '!' || ch == ':' || ch == '}' || |
| ch == '=' || ch == '>' || ch == '<')) { |
| /* See if there's a next character. */ |
| if (*str+1 < end) { |
| char next = *(*str+1); |
| |
| /* For "!=". since '=' is not an allowed conversion character, |
| nothing is lost in this test. */ |
| if ((ch == '!' && next == '=') || /* != */ |
| (ch == '=' && next == '=') || /* == */ |
| (ch == '<' && next == '=') || /* <= */ |
| (ch == '>' && next == '=') /* >= */ |
| ) { |
| *str += 1; |
| continue; |
| } |
| /* Don't get out of the loop for these, if they're single |
| chars (not part of 2-char tokens). If by themselves, they |
| don't end an expression (unlike say '!'). */ |
| if (ch == '>' || ch == '<') { |
| continue; |
| } |
| } |
| |
| /* Normal way out of this loop. */ |
| break; |
| } else if (ch == ']' || ch == '}' || ch == ')') { |
| if (!nested_depth) { |
| RAISE_SYNTAX_ERROR("f-string: unmatched '%c'", ch); |
| goto error; |
| } |
| nested_depth--; |
| int opening = (unsigned char)parenstack[nested_depth]; |
| if (!((opening == '(' && ch == ')') || |
| (opening == '[' && ch == ']') || |
| (opening == '{' && ch == '}'))) |
| { |
| RAISE_SYNTAX_ERROR( |
| "f-string: closing parenthesis '%c' " |
| "does not match opening parenthesis '%c'", |
| ch, opening); |
| goto error; |
| } |
| } else { |
| /* Just consume this char and loop around. */ |
| } |
| } |
| expr_end = *str; |
| /* If we leave this loop in a string or with mismatched parens, we |
| don't care. We'll get a syntax error when compiling the |
| expression. But, we can produce a better error message, so |
| let's just do that.*/ |
| if (quote_char) { |
| RAISE_SYNTAX_ERROR("f-string: unterminated string"); |
| goto error; |
| } |
| if (nested_depth) { |
| int opening = (unsigned char)parenstack[nested_depth - 1]; |
| RAISE_SYNTAX_ERROR("f-string: unmatched '%c'", opening); |
| goto error; |
| } |
| |
| if (*str >= end) { |
| goto unexpected_end_of_string; |
| } |
| |
| /* Compile the expression as soon as possible, so we show errors |
| related to the expression before errors related to the |
| conversion or format_spec. */ |
| simple_expression = fstring_compile_expr(p, expr_start, expr_end, t); |
| if (!simple_expression) { |
| goto error; |
| } |
| |
| /* Check for =, which puts the text value of the expression in |
| expr_text. */ |
| if (**str == '=') { |
| if (p->feature_version < 8) { |
| RAISE_SYNTAX_ERROR("f-string: self documenting expressions are " |
| "only supported in Python 3.8 and greater"); |
| goto error; |
| } |
| *str += 1; |
| |
| /* Skip over ASCII whitespace. No need to test for end of string |
| here, since we know there's at least a trailing quote somewhere |
| ahead. */ |
| while (Py_ISSPACE(**str)) { |
| *str += 1; |
| } |
| |
| /* Set *expr_text to the text of the expression. */ |
| *expr_text = PyUnicode_FromStringAndSize(expr_start, *str-expr_start); |
| if (!*expr_text) { |
| goto error; |
| } |
| } |
| |
| /* Check for a conversion char, if present. */ |
| if (**str == '!') { |
| *str += 1; |
| if (*str >= end) { |
| goto unexpected_end_of_string; |
| } |
| |
| conversion = (unsigned char)**str; |
| *str += 1; |
| |
| /* Validate the conversion. */ |
| if (!(conversion == 's' || conversion == 'r' || conversion == 'a')) { |
| RAISE_SYNTAX_ERROR( |
| "f-string: invalid conversion character: " |
| "expected 's', 'r', or 'a'"); |
| goto error; |
| } |
| |
| } |
| |
| /* Check for the format spec, if present. */ |
| if (*str >= end) { |
| goto unexpected_end_of_string; |
| } |
| if (**str == ':') { |
| *str += 1; |
| if (*str >= end) { |
| goto unexpected_end_of_string; |
| } |
| |
| /* Parse the format spec. */ |
| format_spec = fstring_parse(p, str, end, raw, recurse_lvl+1, |
| first_token, t, last_token); |
| if (!format_spec) { |
| goto error; |
| } |
| } |
| |
| if (*str >= end || **str != '}') { |
| goto unexpected_end_of_string; |
| } |
| |
| /* We're at a right brace. Consume it. */ |
| assert(*str < end); |
| assert(**str == '}'); |
| *str += 1; |
| |
| /* If we're in = mode (detected by non-NULL expr_text), and have no format |
| spec and no explicit conversion, set the conversion to 'r'. */ |
| if (*expr_text && format_spec == NULL && conversion == -1) { |
| conversion = 'r'; |
| } |
| |
| /* And now create the FormattedValue node that represents this |
| entire expression with the conversion and format spec. */ |
| //TODO: Fix this |
| *expression = FormattedValue(simple_expression, conversion, |
| format_spec, first_token->lineno, |
| first_token->col_offset, last_token->end_lineno, |
| last_token->end_col_offset, p->arena); |
| if (!*expression) { |
| goto error; |
| } |
| |
| return 0; |
| |
| unexpected_end_of_string: |
| RAISE_SYNTAX_ERROR("f-string: expecting '}'"); |
| /* Falls through to error. */ |
| |
| error: |
| Py_XDECREF(*expr_text); |
| return -1; |
| |
| } |
| |
| /* Return -1 on error. |
| |
| Return 0 if we have a literal (possible zero length) and an |
| expression (zero length if at the end of the string. |
| |
| Return 1 if we have a literal, but no expression, and we want the |
| caller to call us again. This is used to deal with doubled |
| braces. |
| |
| When called multiple times on the string 'a{{b{0}c', this function |
| will return: |
| |
| 1. the literal 'a{' with no expression, and a return value |
| of 1. Despite the fact that there's no expression, the return |
| value of 1 means we're not finished yet. |
| |
| 2. the literal 'b' and the expression '0', with a return value of |
| 0. The fact that there's an expression means we're not finished. |
| |
| 3. literal 'c' with no expression and a return value of 0. The |
| combination of the return value of 0 with no expression means |
| we're finished. |
| */ |
| static int |
| fstring_find_literal_and_expr(Parser *p, const char **str, const char *end, int raw, |
| int recurse_lvl, PyObject **literal, |
| PyObject **expr_text, expr_ty *expression, |
| Token *first_token, Token *t, Token *last_token) |
| { |
| int result; |
| |
| assert(*literal == NULL && *expression == NULL); |
| |
| /* Get any literal string. */ |
| result = fstring_find_literal(p, str, end, raw, literal, recurse_lvl, t); |
| if (result < 0) { |
| goto error; |
| } |
| |
| assert(result == 0 || result == 1); |
| |
| if (result == 1) { |
| /* We have a literal, but don't look at the expression. */ |
| return 1; |
| } |
| |
| if (*str >= end || **str == '}') { |
| /* We're at the end of the string or the end of a nested |
| f-string: no expression. The top-level error case where we |
| expect to be at the end of the string but we're at a '}' is |
| handled later. */ |
| return 0; |
| } |
| |
| /* We must now be the start of an expression, on a '{'. */ |
| assert(**str == '{'); |
| |
| if (fstring_find_expr(p, str, end, raw, recurse_lvl, expr_text, |
| expression, first_token, t, last_token) < 0) { |
| goto error; |
| } |
| |
| return 0; |
| |
| error: |
| Py_CLEAR(*literal); |
| return -1; |
| } |
| |
| #ifdef NDEBUG |
| #define ExprList_check_invariants(l) |
| #else |
| static void |
| ExprList_check_invariants(ExprList *l) |
| { |
| /* Check our invariants. Make sure this object is "live", and |
| hasn't been deallocated. */ |
| assert(l->size >= 0); |
| assert(l->p != NULL); |
| if (l->size <= EXPRLIST_N_CACHED) { |
| assert(l->data == l->p); |
| } |
| } |
| #endif |
| |
| static void |
| ExprList_Init(ExprList *l) |
| { |
| l->allocated = EXPRLIST_N_CACHED; |
| l->size = 0; |
| |
| /* Until we start allocating dynamically, p points to data. */ |
| l->p = l->data; |
| |
| ExprList_check_invariants(l); |
| } |
| |
| static int |
| ExprList_Append(ExprList *l, expr_ty exp) |
| { |
| ExprList_check_invariants(l); |
| if (l->size >= l->allocated) { |
| /* We need to alloc (or realloc) the memory. */ |
| Py_ssize_t new_size = l->allocated * 2; |
| |
| /* See if we've ever allocated anything dynamically. */ |
| if (l->p == l->data) { |
| Py_ssize_t i; |
| /* We're still using the cached data. Switch to |
| alloc-ing. */ |
| l->p = PyMem_Malloc(sizeof(expr_ty) * new_size); |
| if (!l->p) { |
| return -1; |
| } |
| /* Copy the cached data into the new buffer. */ |
| for (i = 0; i < l->size; i++) { |
| l->p[i] = l->data[i]; |
| } |
| } else { |
| /* Just realloc. */ |
| expr_ty *tmp = PyMem_Realloc(l->p, sizeof(expr_ty) * new_size); |
| if (!tmp) { |
| PyMem_Free(l->p); |
| l->p = NULL; |
| return -1; |
| } |
| l->p = tmp; |
| } |
| |
| l->allocated = new_size; |
| assert(l->allocated == 2 * l->size); |
| } |
| |
| l->p[l->size++] = exp; |
| |
| ExprList_check_invariants(l); |
| return 0; |
| } |
| |
| static void |
| ExprList_Dealloc(ExprList *l) |
| { |
| ExprList_check_invariants(l); |
| |
| /* If there's been an error, or we've never dynamically allocated, |
| do nothing. */ |
| if (!l->p || l->p == l->data) { |
| /* Do nothing. */ |
| } else { |
| /* We have dynamically allocated. Free the memory. */ |
| PyMem_Free(l->p); |
| } |
| l->p = NULL; |
| l->size = -1; |
| } |
| |
| static asdl_expr_seq * |
| ExprList_Finish(ExprList *l, PyArena *arena) |
| { |
| asdl_expr_seq *seq; |
| |
| ExprList_check_invariants(l); |
| |
| /* Allocate the asdl_seq and copy the expressions in to it. */ |
| seq = _Py_asdl_expr_seq_new(l->size, arena); |
| if (seq) { |
| Py_ssize_t i; |
| for (i = 0; i < l->size; i++) { |
| asdl_seq_SET(seq, i, l->p[i]); |
| } |
| } |
| ExprList_Dealloc(l); |
| return seq; |
| } |
| |
| #ifdef NDEBUG |
| #define FstringParser_check_invariants(state) |
| #else |
| static void |
| FstringParser_check_invariants(FstringParser *state) |
| { |
| if (state->last_str) { |
| assert(PyUnicode_CheckExact(state->last_str)); |
| } |
| ExprList_check_invariants(&state->expr_list); |
| } |
| #endif |
| |
| void |
| _PyPegen_FstringParser_Init(FstringParser *state) |
| { |
| state->last_str = NULL; |
| state->fmode = 0; |
| ExprList_Init(&state->expr_list); |
| FstringParser_check_invariants(state); |
| } |
| |
| void |
| _PyPegen_FstringParser_Dealloc(FstringParser *state) |
| { |
| FstringParser_check_invariants(state); |
| |
| Py_XDECREF(state->last_str); |
| ExprList_Dealloc(&state->expr_list); |
| } |
| |
| /* Make a Constant node, but decref the PyUnicode object being added. */ |
| static expr_ty |
| make_str_node_and_del(Parser *p, PyObject **str, Token* first_token, Token *last_token) |
| { |
| PyObject *s = *str; |
| PyObject *kind = NULL; |
| *str = NULL; |
| assert(PyUnicode_CheckExact(s)); |
| if (PyArena_AddPyObject(p->arena, s) < 0) { |
| Py_DECREF(s); |
| return NULL; |
| } |
| const char* the_str = PyBytes_AsString(first_token->bytes); |
| if (the_str && the_str[0] == 'u') { |
| kind = _PyPegen_new_identifier(p, "u"); |
| } |
| |
| if (kind == NULL && PyErr_Occurred()) { |
| return NULL; |
| } |
| |
| return Constant(s, kind, first_token->lineno, first_token->col_offset, |
| last_token->end_lineno, last_token->end_col_offset, p->arena); |
| |
| } |
| |
| |
| /* Add a non-f-string (that is, a regular literal string). str is |
| decref'd. */ |
| int |
| _PyPegen_FstringParser_ConcatAndDel(FstringParser *state, PyObject *str) |
| { |
| FstringParser_check_invariants(state); |
| |
| assert(PyUnicode_CheckExact(str)); |
| |
| if (PyUnicode_GET_LENGTH(str) == 0) { |
| Py_DECREF(str); |
| return 0; |
| } |
| |
| if (!state->last_str) { |
| /* We didn't have a string before, so just remember this one. */ |
| state->last_str = str; |
| } else { |
| /* Concatenate this with the previous string. */ |
| PyUnicode_AppendAndDel(&state->last_str, str); |
| if (!state->last_str) { |
| return -1; |
| } |
| } |
| FstringParser_check_invariants(state); |
| return 0; |
| } |
| |
| /* Parse an f-string. The f-string is in *str to end, with no |
| 'f' or quotes. */ |
| int |
| _PyPegen_FstringParser_ConcatFstring(Parser *p, FstringParser *state, const char **str, |
| const char *end, int raw, int recurse_lvl, |
| Token *first_token, Token* t, Token *last_token) |
| { |
| FstringParser_check_invariants(state); |
| state->fmode = 1; |
| |
| /* Parse the f-string. */ |
| while (1) { |
| PyObject *literal = NULL; |
| PyObject *expr_text = NULL; |
| expr_ty expression = NULL; |
| |
| /* If there's a zero length literal in front of the |
| expression, literal will be NULL. If we're at the end of |
| the f-string, expression will be NULL (unless result == 1, |
| see below). */ |
| int result = fstring_find_literal_and_expr(p, str, end, raw, recurse_lvl, |
| &literal, &expr_text, |
| &expression, first_token, t, last_token); |
| if (result < 0) { |
| return -1; |
| } |
| |
| /* Add the literal, if any. */ |
| if (literal && _PyPegen_FstringParser_ConcatAndDel(state, literal) < 0) { |
| Py_XDECREF(expr_text); |
| return -1; |
| } |
| /* Add the expr_text, if any. */ |
| if (expr_text && _PyPegen_FstringParser_ConcatAndDel(state, expr_text) < 0) { |
| return -1; |
| } |
| |
| /* We've dealt with the literal and expr_text, their ownership has |
| been transferred to the state object. Don't look at them again. */ |
| |
| /* See if we should just loop around to get the next literal |
| and expression, while ignoring the expression this |
| time. This is used for un-doubling braces, as an |
| optimization. */ |
| if (result == 1) { |
| continue; |
| } |
| |
| if (!expression) { |
| /* We're done with this f-string. */ |
| break; |
| } |
| |
| /* We know we have an expression. Convert any existing string |
| to a Constant node. */ |
| if (!state->last_str) { |
| /* Do nothing. No previous literal. */ |
| } else { |
| /* Convert the existing last_str literal to a Constant node. */ |
| expr_ty last_str = make_str_node_and_del(p, &state->last_str, first_token, last_token); |
| if (!last_str || ExprList_Append(&state->expr_list, last_str) < 0) { |
| return -1; |
| } |
| } |
| |
| if (ExprList_Append(&state->expr_list, expression) < 0) { |
| return -1; |
| } |
| } |
| |
| /* If recurse_lvl is zero, then we must be at the end of the |
| string. Otherwise, we must be at a right brace. */ |
| |
| if (recurse_lvl == 0 && *str < end-1) { |
| RAISE_SYNTAX_ERROR("f-string: unexpected end of string"); |
| return -1; |
| } |
| if (recurse_lvl != 0 && **str != '}') { |
| RAISE_SYNTAX_ERROR("f-string: expecting '}'"); |
| return -1; |
| } |
| |
| FstringParser_check_invariants(state); |
| return 0; |
| } |
| |
| /* Convert the partial state reflected in last_str and expr_list to an |
| expr_ty. The expr_ty can be a Constant, or a JoinedStr. */ |
| expr_ty |
| _PyPegen_FstringParser_Finish(Parser *p, FstringParser *state, Token* first_token, |
| Token *last_token) |
| { |
| asdl_expr_seq *seq; |
| |
| FstringParser_check_invariants(state); |
| |
| /* If we're just a constant string with no expressions, return |
| that. */ |
| if (!state->fmode) { |
| assert(!state->expr_list.size); |
| if (!state->last_str) { |
| /* Create a zero length string. */ |
| state->last_str = PyUnicode_FromStringAndSize(NULL, 0); |
| if (!state->last_str) { |
| goto error; |
| } |
| } |
| return make_str_node_and_del(p, &state->last_str, first_token, last_token); |
| } |
| |
| /* Create a Constant node out of last_str, if needed. It will be the |
| last node in our expression list. */ |
| if (state->last_str) { |
| expr_ty str = make_str_node_and_del(p, &state->last_str, first_token, last_token); |
| if (!str || ExprList_Append(&state->expr_list, str) < 0) { |
| goto error; |
| } |
| } |
| /* This has already been freed. */ |
| assert(state->last_str == NULL); |
| |
| seq = ExprList_Finish(&state->expr_list, p->arena); |
| if (!seq) { |
| goto error; |
| } |
| |
| return _Py_JoinedStr(seq, first_token->lineno, first_token->col_offset, |
| last_token->end_lineno, last_token->end_col_offset, p->arena); |
| |
| error: |
| _PyPegen_FstringParser_Dealloc(state); |
| return NULL; |
| } |
| |
| /* Given an f-string (with no 'f' or quotes) that's in *str and ends |
| at end, parse it into an expr_ty. Return NULL on error. Adjust |
| str to point past the parsed portion. */ |
| static expr_ty |
| fstring_parse(Parser *p, const char **str, const char *end, int raw, |
| int recurse_lvl, Token *first_token, Token* t, Token *last_token) |
| { |
| FstringParser state; |
| |
| _PyPegen_FstringParser_Init(&state); |
| if (_PyPegen_FstringParser_ConcatFstring(p, &state, str, end, raw, recurse_lvl, |
| first_token, t, last_token) < 0) { |
| _PyPegen_FstringParser_Dealloc(&state); |
| return NULL; |
| } |
| |
| return _PyPegen_FstringParser_Finish(p, &state, t, t); |
| } |