blob: d1cae13d62e61fb7c9a20be9e54518747375f959 [file] [log] [blame]
:mod:`signal` --- Set handlers for asynchronous events
======================================================
.. module:: signal
:synopsis: Set handlers for asynchronous events.
This module provides mechanisms to use signal handlers in Python.
General rules
-------------
The :func:`signal.signal` function allows to define custom handlers to be
executed when a signal is received. A small number of default handlers are
installed: :const:`SIGPIPE` is ignored (so write errors on pipes and sockets
can be reported as ordinary Python exceptions) and :const:`SIGINT` is
translated into a :exc:`KeyboardInterrupt` exception.
A handler for a particular signal, once set, remains installed until it is
explicitly reset (Python emulates the BSD style interface regardless of the
underlying implementation), with the exception of the handler for
:const:`SIGCHLD`, which follows the underlying implementation.
There is no way to "block" signals temporarily from critical sections (since
this is not supported by all Unix flavors).
Execution of Python signal handlers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A Python signal handler does not get executed inside the low-level (C) signal
handler. Instead, the low-level signal handler sets a flag which tells the
:term:`virtual machine` to execute the corresponding Python signal handler
at a later point(for example at the next :term:`bytecode` instruction).
This has consequences:
* It makes little sense to catch synchronous errors like :const:`SIGFPE` or
:const:`SIGSEGV`.
* A long-running calculation implemented purely in C (such as regular
expression matching on a large body of text) may run uninterrupted for an
arbitrary amount of time, regardless of any signals received. The Python
signal handlers will be called when the calculation finishes.
Signals and threads
^^^^^^^^^^^^^^^^^^^
Python signal handlers are always executed in the main Python thread,
even if the signal was received in another thread. This means that signals
can't be used as a means of inter-thread communication. You can use
the synchronization primitives from the :mod:`threading` module instead.
Besides, only the main thread is allowed to set a new signal handler.
Module contents
---------------
The variables defined in the :mod:`signal` module are:
.. data:: SIG_DFL
This is one of two standard signal handling options; it will simply perform
the default function for the signal. For example, on most systems the
default action for :const:`SIGQUIT` is to dump core and exit, while the
default action for :const:`SIGCHLD` is to simply ignore it.
.. data:: SIG_IGN
This is another standard signal handler, which will simply ignore the given
signal.
.. data:: SIG*
All the signal numbers are defined symbolically. For example, the hangup signal
is defined as :const:`signal.SIGHUP`; the variable names are identical to the
names used in C programs, as found in ``<signal.h>``. The Unix man page for
':c:func:`signal`' lists the existing signals (on some systems this is
:manpage:`signal(2)`, on others the list is in :manpage:`signal(7)`). Note that
not all systems define the same set of signal names; only those names defined by
the system are defined by this module.
.. data:: CTRL_C_EVENT
The signal corresponding to the CTRL+C keystroke event. This signal can
only be used with :func:`os.kill`.
Availability: Windows.
.. versionadded:: 3.2
.. data:: CTRL_BREAK_EVENT
The signal corresponding to the CTRL+BREAK keystroke event. This signal can
only be used with :func:`os.kill`.
Availability: Windows.
.. versionadded:: 3.2
.. data:: NSIG
One more than the number of the highest signal number.
.. data:: ITIMER_REAL
Decrements interval timer in real time, and delivers :const:`SIGALRM` upon
expiration.
.. data:: ITIMER_VIRTUAL
Decrements interval timer only when the process is executing, and delivers
SIGVTALRM upon expiration.
.. data:: ITIMER_PROF
Decrements interval timer both when the process executes and when the
system is executing on behalf of the process. Coupled with ITIMER_VIRTUAL,
this timer is usually used to profile the time spent by the application
in user and kernel space. SIGPROF is delivered upon expiration.
The :mod:`signal` module defines one exception:
.. exception:: ItimerError
Raised to signal an error from the underlying :func:`setitimer` or
:func:`getitimer` implementation. Expect this error if an invalid
interval timer or a negative time is passed to :func:`setitimer`.
This error is a subtype of :exc:`IOError`.
The :mod:`signal` module defines the following functions:
.. function:: alarm(time)
If *time* is non-zero, this function requests that a :const:`SIGALRM` signal be
sent to the process in *time* seconds. Any previously scheduled alarm is
canceled (only one alarm can be scheduled at any time). The returned value is
then the number of seconds before any previously set alarm was to have been
delivered. If *time* is zero, no alarm is scheduled, and any scheduled alarm is
canceled. If the return value is zero, no alarm is currently scheduled. (See
the Unix man page :manpage:`alarm(2)`.) Availability: Unix.
.. function:: getsignal(signalnum)
Return the current signal handler for the signal *signalnum*. The returned value
may be a callable Python object, or one of the special values
:const:`signal.SIG_IGN`, :const:`signal.SIG_DFL` or :const:`None`. Here,
:const:`signal.SIG_IGN` means that the signal was previously ignored,
:const:`signal.SIG_DFL` means that the default way of handling the signal was
previously in use, and ``None`` means that the previous signal handler was not
installed from Python.
.. function:: pause()
Cause the process to sleep until a signal is received; the appropriate handler
will then be called. Returns nothing. Not on Windows. (See the Unix man page
:manpage:`signal(2)`.)
.. function:: setitimer(which, seconds[, interval])
Sets given interval timer (one of :const:`signal.ITIMER_REAL`,
:const:`signal.ITIMER_VIRTUAL` or :const:`signal.ITIMER_PROF`) specified
by *which* to fire after *seconds* (float is accepted, different from
:func:`alarm`) and after that every *interval* seconds. The interval
timer specified by *which* can be cleared by setting seconds to zero.
When an interval timer fires, a signal is sent to the process.
The signal sent is dependent on the timer being used;
:const:`signal.ITIMER_REAL` will deliver :const:`SIGALRM`,
:const:`signal.ITIMER_VIRTUAL` sends :const:`SIGVTALRM`,
and :const:`signal.ITIMER_PROF` will deliver :const:`SIGPROF`.
The old values are returned as a tuple: (delay, interval).
Attempting to pass an invalid interval timer will cause an
:exc:`ItimerError`. Availability: Unix.
.. function:: getitimer(which)
Returns current value of a given interval timer specified by *which*.
Availability: Unix.
.. function:: set_wakeup_fd(fd)
Set the wakeup fd to *fd*. When a signal is received, a ``'\0'`` byte is
written to the fd. This can be used by a library to wakeup a poll or select
call, allowing the signal to be fully processed.
The old wakeup fd is returned. *fd* must be non-blocking. It is up to the
library to remove any bytes before calling poll or select again.
When threads are enabled, this function can only be called from the main thread;
attempting to call it from other threads will cause a :exc:`ValueError`
exception to be raised.
.. function:: siginterrupt(signalnum, flag)
Change system call restart behaviour: if *flag* is :const:`False`, system
calls will be restarted when interrupted by signal *signalnum*, otherwise
system calls will be interrupted. Returns nothing. Availability: Unix (see
the man page :manpage:`siginterrupt(3)` for further information).
Note that installing a signal handler with :func:`signal` will reset the
restart behaviour to interruptible by implicitly calling
:c:func:`siginterrupt` with a true *flag* value for the given signal.
.. function:: signal(signalnum, handler)
Set the handler for signal *signalnum* to the function *handler*. *handler* can
be a callable Python object taking two arguments (see below), or one of the
special values :const:`signal.SIG_IGN` or :const:`signal.SIG_DFL`. The previous
signal handler will be returned (see the description of :func:`getsignal`
above). (See the Unix man page :manpage:`signal(2)`.)
When threads are enabled, this function can only be called from the main thread;
attempting to call it from other threads will cause a :exc:`ValueError`
exception to be raised.
The *handler* is called with two arguments: the signal number and the current
stack frame (``None`` or a frame object; for a description of frame objects,
see the :ref:`description in the type hierarchy <frame-objects>` or see the
attribute descriptions in the :mod:`inspect` module).
On Windows, :func:`signal` can only be called with :const:`SIGABRT`,
:const:`SIGFPE`, :const:`SIGILL`, :const:`SIGINT`, :const:`SIGSEGV`, or
:const:`SIGTERM`. A :exc:`ValueError` will be raised in any other case.
.. _signal-example:
Example
-------
Here is a minimal example program. It uses the :func:`alarm` function to limit
the time spent waiting to open a file; this is useful if the file is for a
serial device that may not be turned on, which would normally cause the
:func:`os.open` to hang indefinitely. The solution is to set a 5-second alarm
before opening the file; if the operation takes too long, the alarm signal will
be sent, and the handler raises an exception. ::
import signal, os
def handler(signum, frame):
print('Signal handler called with signal', signum)
raise IOError("Couldn't open device!")
# Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)
# This open() may hang indefinitely
fd = os.open('/dev/ttyS0', os.O_RDWR)
signal.alarm(0) # Disable the alarm