| /* |
| ** Routines to represent binary data in ASCII and vice-versa |
| ** |
| ** This module currently supports the following encodings: |
| ** uuencode: |
| ** each line encodes 45 bytes (except possibly the last) |
| ** First char encodes (binary) length, rest data |
| ** each char encodes 6 bits, as follows: |
| ** binary: 01234567 abcdefgh ijklmnop |
| ** ascii: 012345 67abcd efghij klmnop |
| ** ASCII encoding method is "excess-space": 000000 is encoded as ' ', etc. |
| ** short binary data is zero-extended (so the bits are always in the |
| ** right place), this does *not* reflect in the length. |
| ** base64: |
| ** Line breaks are insignificant, but lines are at most 76 chars |
| ** each char encodes 6 bits, in similar order as uucode/hqx. Encoding |
| ** is done via a table. |
| ** Short binary data is filled (in ASCII) with '='. |
| ** hqx: |
| ** File starts with introductory text, real data starts and ends |
| ** with colons. |
| ** Data consists of three similar parts: info, datafork, resourcefork. |
| ** Each part is protected (at the end) with a 16-bit crc |
| ** The binary data is run-length encoded, and then ascii-fied: |
| ** binary: 01234567 abcdefgh ijklmnop |
| ** ascii: 012345 67abcd efghij klmnop |
| ** ASCII encoding is table-driven, see the code. |
| ** Short binary data results in the runt ascii-byte being output with |
| ** the bits in the right place. |
| ** |
| ** While I was reading dozens of programs that encode or decode the formats |
| ** here (documentation? hihi:-) I have formulated Jansen's Observation: |
| ** |
| ** Programs that encode binary data in ASCII are written in |
| ** such a style that they are as unreadable as possible. Devices used |
| ** include unnecessary global variables, burying important tables |
| ** in unrelated sourcefiles, putting functions in include files, |
| ** using seemingly-descriptive variable names for different purposes, |
| ** calls to empty subroutines and a host of others. |
| ** |
| ** I have attempted to break with this tradition, but I guess that that |
| ** does make the performance sub-optimal. Oh well, too bad... |
| ** |
| ** Jack Jansen, CWI, July 1995. |
| ** |
| ** Added support for quoted-printable encoding, based on rfc 1521 et al |
| ** quoted-printable encoding specifies that non printable characters (anything |
| ** below 32 and above 126) be encoded as =XX where XX is the hexadecimal value |
| ** of the character. It also specifies some other behavior to enable 8bit data |
| ** in a mail message with little difficulty (maximum line sizes, protecting |
| ** some cases of whitespace, etc). |
| ** |
| ** Brandon Long, September 2001. |
| */ |
| |
| #define PY_SSIZE_T_CLEAN |
| |
| #include "Python.h" |
| #include "pystrhex.h" |
| #ifdef USE_ZLIB_CRC32 |
| #include "zlib.h" |
| #endif |
| |
| static PyObject *Error; |
| static PyObject *Incomplete; |
| |
| /* |
| ** hqx lookup table, ascii->binary. |
| */ |
| |
| #define RUNCHAR 0x90 |
| |
| #define DONE 0x7F |
| #define SKIP 0x7E |
| #define FAIL 0x7D |
| |
| static const unsigned char table_a2b_hqx[256] = { |
| /* ^@ ^A ^B ^C ^D ^E ^F ^G */ |
| /* 0*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* \b \t \n ^K ^L \r ^N ^O */ |
| /* 1*/ FAIL, FAIL, SKIP, FAIL, FAIL, SKIP, FAIL, FAIL, |
| /* ^P ^Q ^R ^S ^T ^U ^V ^W */ |
| /* 2*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */ |
| /* 3*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* ! " # $ % & ' */ |
| /* 4*/ FAIL, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, |
| /* ( ) * + , - . / */ |
| /* 5*/ 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, FAIL, FAIL, |
| /* 0 1 2 3 4 5 6 7 */ |
| /* 6*/ 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, FAIL, |
| /* 8 9 : ; < = > ? */ |
| /* 7*/ 0x14, 0x15, DONE, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* @ A B C D E F G */ |
| /* 8*/ 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, |
| /* H I J K L M N O */ |
| /* 9*/ 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, FAIL, |
| /* P Q R S T U V W */ |
| /*10*/ 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, FAIL, |
| /* X Y Z [ \ ] ^ _ */ |
| /*11*/ 0x2C, 0x2D, 0x2E, 0x2F, FAIL, FAIL, FAIL, FAIL, |
| /* ` a b c d e f g */ |
| /*12*/ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, FAIL, |
| /* h i j k l m n o */ |
| /*13*/ 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, FAIL, FAIL, |
| /* p q r s t u v w */ |
| /*14*/ 0x3D, 0x3E, 0x3F, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /* x y z { | } ~ ^? */ |
| /*15*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| /*16*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, |
| }; |
| |
| static const unsigned char table_b2a_hqx[] = |
| "!\"#$%&'()*+,-012345689@ABCDEFGHIJKLMNPQRSTUVXYZ[`abcdefhijklmpqr"; |
| |
| static const char table_a2b_base64[] = { |
| -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, |
| -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, |
| -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,62, -1,-1,-1,63, |
| 52,53,54,55, 56,57,58,59, 60,61,-1,-1, -1, 0,-1,-1, /* Note PAD->0 */ |
| -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14, |
| 15,16,17,18, 19,20,21,22, 23,24,25,-1, -1,-1,-1,-1, |
| -1,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40, |
| 41,42,43,44, 45,46,47,48, 49,50,51,-1, -1,-1,-1,-1 |
| }; |
| |
| #define BASE64_PAD '=' |
| |
| /* Max binary chunk size; limited only by available memory */ |
| #define BASE64_MAXBIN ((PY_SSIZE_T_MAX - 3) / 2) |
| |
| static const unsigned char table_b2a_base64[] = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| |
| |
| |
| static const unsigned short crctab_hqx[256] = { |
| 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, |
| 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, |
| 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, |
| 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, |
| 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, |
| 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, |
| 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, |
| 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, |
| 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, |
| 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, |
| 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, |
| 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, |
| 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, |
| 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, |
| 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, |
| 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, |
| 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, |
| 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, |
| 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, |
| 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, |
| 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, |
| 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, |
| 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, |
| 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, |
| 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, |
| 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, |
| 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, |
| 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, |
| 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, |
| 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, |
| 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, |
| 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0, |
| }; |
| |
| /*[clinic input] |
| module binascii |
| [clinic start generated code]*/ |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=de89fb46bcaf3fec]*/ |
| |
| /*[python input] |
| |
| class ascii_buffer_converter(CConverter): |
| type = 'Py_buffer' |
| converter = 'ascii_buffer_converter' |
| impl_by_reference = True |
| c_default = "{NULL, NULL}" |
| |
| def cleanup(self): |
| name = self.name |
| return "".join(["if (", name, ".obj)\n PyBuffer_Release(&", name, ");\n"]) |
| |
| [python start generated code]*/ |
| /*[python end generated code: output=da39a3ee5e6b4b0d input=3eb7b63610da92cd]*/ |
| |
| static int |
| ascii_buffer_converter(PyObject *arg, Py_buffer *buf) |
| { |
| if (arg == NULL) { |
| PyBuffer_Release(buf); |
| return 1; |
| } |
| if (PyUnicode_Check(arg)) { |
| if (PyUnicode_READY(arg) < 0) |
| return 0; |
| if (!PyUnicode_IS_ASCII(arg)) { |
| PyErr_SetString(PyExc_ValueError, |
| "string argument should contain only ASCII characters"); |
| return 0; |
| } |
| assert(PyUnicode_KIND(arg) == PyUnicode_1BYTE_KIND); |
| buf->buf = (void *) PyUnicode_1BYTE_DATA(arg); |
| buf->len = PyUnicode_GET_LENGTH(arg); |
| buf->obj = NULL; |
| return 1; |
| } |
| if (PyObject_GetBuffer(arg, buf, PyBUF_SIMPLE) != 0) { |
| PyErr_Format(PyExc_TypeError, |
| "argument should be bytes, buffer or ASCII string, " |
| "not '%.100s'", Py_TYPE(arg)->tp_name); |
| return 0; |
| } |
| if (!PyBuffer_IsContiguous(buf, 'C')) { |
| PyErr_Format(PyExc_TypeError, |
| "argument should be a contiguous buffer, " |
| "not '%.100s'", Py_TYPE(arg)->tp_name); |
| PyBuffer_Release(buf); |
| return 0; |
| } |
| return Py_CLEANUP_SUPPORTED; |
| } |
| |
| #include "clinic/binascii.c.h" |
| |
| /*[clinic input] |
| binascii.a2b_uu |
| |
| data: ascii_buffer |
| / |
| |
| Decode a line of uuencoded data. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_a2b_uu_impl(PyObject *module, Py_buffer *data) |
| /*[clinic end generated code: output=e027f8e0b0598742 input=7cafeaf73df63d1c]*/ |
| { |
| const unsigned char *ascii_data; |
| unsigned char *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| PyObject *rv; |
| Py_ssize_t ascii_len, bin_len; |
| |
| ascii_data = data->buf; |
| ascii_len = data->len; |
| |
| assert(ascii_len >= 0); |
| |
| /* First byte: binary data length (in bytes) */ |
| bin_len = (*ascii_data++ - ' ') & 077; |
| ascii_len--; |
| |
| /* Allocate the buffer */ |
| if ( (rv=PyBytes_FromStringAndSize(NULL, bin_len)) == NULL ) |
| return NULL; |
| bin_data = (unsigned char *)PyBytes_AS_STRING(rv); |
| |
| for( ; bin_len > 0 ; ascii_len--, ascii_data++ ) { |
| /* XXX is it really best to add NULs if there's no more data */ |
| this_ch = (ascii_len > 0) ? *ascii_data : 0; |
| if ( this_ch == '\n' || this_ch == '\r' || ascii_len <= 0) { |
| /* |
| ** Whitespace. Assume some spaces got eaten at |
| ** end-of-line. (We check this later) |
| */ |
| this_ch = 0; |
| } else { |
| /* Check the character for legality |
| ** The 64 in stead of the expected 63 is because |
| ** there are a few uuencodes out there that use |
| ** '`' as zero instead of space. |
| */ |
| if ( this_ch < ' ' || this_ch > (' ' + 64)) { |
| PyErr_SetString(Error, "Illegal char"); |
| Py_DECREF(rv); |
| return NULL; |
| } |
| this_ch = (this_ch - ' ') & 077; |
| } |
| /* |
| ** Shift it in on the low end, and see if there's |
| ** a byte ready for output. |
| */ |
| leftchar = (leftchar << 6) | (this_ch); |
| leftbits += 6; |
| if ( leftbits >= 8 ) { |
| leftbits -= 8; |
| *bin_data++ = (leftchar >> leftbits) & 0xff; |
| leftchar &= ((1 << leftbits) - 1); |
| bin_len--; |
| } |
| } |
| /* |
| ** Finally, check that if there's anything left on the line |
| ** that it's whitespace only. |
| */ |
| while( ascii_len-- > 0 ) { |
| this_ch = *ascii_data++; |
| /* Extra '`' may be written as padding in some cases */ |
| if ( this_ch != ' ' && this_ch != ' '+64 && |
| this_ch != '\n' && this_ch != '\r' ) { |
| PyErr_SetString(Error, "Trailing garbage"); |
| Py_DECREF(rv); |
| return NULL; |
| } |
| } |
| return rv; |
| } |
| |
| /*[clinic input] |
| binascii.b2a_uu |
| |
| data: Py_buffer |
| / |
| * |
| backtick: bool(accept={int}) = False |
| |
| Uuencode line of data. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_b2a_uu_impl(PyObject *module, Py_buffer *data, int backtick) |
| /*[clinic end generated code: output=b1b99de62d9bbeb8 input=b26bc8d32b6ed2f6]*/ |
| { |
| unsigned char *ascii_data; |
| const unsigned char *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| Py_ssize_t bin_len, out_len; |
| _PyBytesWriter writer; |
| |
| _PyBytesWriter_Init(&writer); |
| bin_data = data->buf; |
| bin_len = data->len; |
| if ( bin_len > 45 ) { |
| /* The 45 is a limit that appears in all uuencode's */ |
| PyErr_SetString(Error, "At most 45 bytes at once"); |
| return NULL; |
| } |
| |
| /* We're lazy and allocate to much (fixed up later) */ |
| out_len = 2 + (bin_len + 2) / 3 * 4; |
| ascii_data = _PyBytesWriter_Alloc(&writer, out_len); |
| if (ascii_data == NULL) |
| return NULL; |
| |
| /* Store the length */ |
| if (backtick && !bin_len) |
| *ascii_data++ = '`'; |
| else |
| *ascii_data++ = ' ' + (unsigned char)bin_len; |
| |
| for( ; bin_len > 0 || leftbits != 0 ; bin_len--, bin_data++ ) { |
| /* Shift the data (or padding) into our buffer */ |
| if ( bin_len > 0 ) /* Data */ |
| leftchar = (leftchar << 8) | *bin_data; |
| else /* Padding */ |
| leftchar <<= 8; |
| leftbits += 8; |
| |
| /* See if there are 6-bit groups ready */ |
| while ( leftbits >= 6 ) { |
| this_ch = (leftchar >> (leftbits-6)) & 0x3f; |
| leftbits -= 6; |
| if (backtick && !this_ch) |
| *ascii_data++ = '`'; |
| else |
| *ascii_data++ = this_ch + ' '; |
| } |
| } |
| *ascii_data++ = '\n'; /* Append a courtesy newline */ |
| |
| return _PyBytesWriter_Finish(&writer, ascii_data); |
| } |
| |
| |
| static int |
| binascii_find_valid(const unsigned char *s, Py_ssize_t slen, int num) |
| { |
| /* Finds & returns the (num+1)th |
| ** valid character for base64, or -1 if none. |
| */ |
| |
| int ret = -1; |
| unsigned char c, b64val; |
| |
| while ((slen > 0) && (ret == -1)) { |
| c = *s; |
| b64val = table_a2b_base64[c & 0x7f]; |
| if ( ((c <= 0x7f) && (b64val != (unsigned char)-1)) ) { |
| if (num == 0) |
| ret = *s; |
| num--; |
| } |
| |
| s++; |
| slen--; |
| } |
| return ret; |
| } |
| |
| /*[clinic input] |
| binascii.a2b_base64 |
| |
| data: ascii_buffer |
| / |
| |
| Decode a line of base64 data. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_a2b_base64_impl(PyObject *module, Py_buffer *data) |
| /*[clinic end generated code: output=0628223f19fd3f9b input=5872acf6e1cac243]*/ |
| { |
| const unsigned char *ascii_data; |
| unsigned char *bin_data; |
| unsigned char *bin_data_start; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| Py_ssize_t ascii_len, bin_len; |
| int quad_pos = 0; |
| _PyBytesWriter writer; |
| |
| ascii_data = data->buf; |
| ascii_len = data->len; |
| |
| assert(ascii_len >= 0); |
| |
| if (ascii_len > PY_SSIZE_T_MAX - 3) |
| return PyErr_NoMemory(); |
| |
| bin_len = ((ascii_len+3)/4)*3; /* Upper bound, corrected later */ |
| |
| _PyBytesWriter_Init(&writer); |
| |
| /* Allocate the buffer */ |
| bin_data = _PyBytesWriter_Alloc(&writer, bin_len); |
| if (bin_data == NULL) |
| return NULL; |
| bin_data_start = bin_data; |
| |
| for( ; ascii_len > 0; ascii_len--, ascii_data++) { |
| this_ch = *ascii_data; |
| |
| if (this_ch > 0x7f || |
| this_ch == '\r' || this_ch == '\n' || this_ch == ' ') |
| continue; |
| |
| /* Check for pad sequences and ignore |
| ** the invalid ones. |
| */ |
| if (this_ch == BASE64_PAD) { |
| if ( (quad_pos < 2) || |
| ((quad_pos == 2) && |
| (binascii_find_valid(ascii_data, ascii_len, 1) |
| != BASE64_PAD)) ) |
| { |
| continue; |
| } |
| else { |
| /* A pad sequence means no more input. |
| ** We've already interpreted the data |
| ** from the quad at this point. |
| */ |
| leftbits = 0; |
| break; |
| } |
| } |
| |
| this_ch = table_a2b_base64[*ascii_data]; |
| if ( this_ch == (unsigned char) -1 ) |
| continue; |
| |
| /* |
| ** Shift it in on the low end, and see if there's |
| ** a byte ready for output. |
| */ |
| quad_pos = (quad_pos + 1) & 0x03; |
| leftchar = (leftchar << 6) | (this_ch); |
| leftbits += 6; |
| |
| if ( leftbits >= 8 ) { |
| leftbits -= 8; |
| *bin_data++ = (leftchar >> leftbits) & 0xff; |
| leftchar &= ((1 << leftbits) - 1); |
| } |
| } |
| |
| if (leftbits != 0) { |
| if (leftbits == 6) { |
| /* |
| ** There is exactly one extra valid, non-padding, base64 character. |
| ** This is an invalid length, as there is no possible input that |
| ** could encoded into such a base64 string. |
| */ |
| PyErr_Format(Error, |
| "Invalid base64-encoded string: " |
| "number of data characters (%d) cannot be 1 more " |
| "than a multiple of 4", |
| (bin_data - bin_data_start) / 3 * 4 + 1); |
| } else { |
| PyErr_SetString(Error, "Incorrect padding"); |
| } |
| _PyBytesWriter_Dealloc(&writer); |
| return NULL; |
| } |
| |
| return _PyBytesWriter_Finish(&writer, bin_data); |
| } |
| |
| |
| /*[clinic input] |
| binascii.b2a_base64 |
| |
| data: Py_buffer |
| / |
| * |
| newline: bool(accept={int}) = True |
| |
| Base64-code line of data. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_b2a_base64_impl(PyObject *module, Py_buffer *data, int newline) |
| /*[clinic end generated code: output=4ad62c8e8485d3b3 input=6083dac5777fa45d]*/ |
| { |
| unsigned char *ascii_data; |
| const unsigned char *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| Py_ssize_t bin_len, out_len; |
| _PyBytesWriter writer; |
| |
| bin_data = data->buf; |
| bin_len = data->len; |
| _PyBytesWriter_Init(&writer); |
| |
| assert(bin_len >= 0); |
| |
| if ( bin_len > BASE64_MAXBIN ) { |
| PyErr_SetString(Error, "Too much data for base64 line"); |
| return NULL; |
| } |
| |
| /* We're lazy and allocate too much (fixed up later). |
| "+2" leaves room for up to two pad characters. |
| Note that 'b' gets encoded as 'Yg==\n' (1 in, 5 out). */ |
| out_len = bin_len*2 + 2; |
| if (newline) |
| out_len++; |
| ascii_data = _PyBytesWriter_Alloc(&writer, out_len); |
| if (ascii_data == NULL) |
| return NULL; |
| |
| for( ; bin_len > 0 ; bin_len--, bin_data++ ) { |
| /* Shift the data into our buffer */ |
| leftchar = (leftchar << 8) | *bin_data; |
| leftbits += 8; |
| |
| /* See if there are 6-bit groups ready */ |
| while ( leftbits >= 6 ) { |
| this_ch = (leftchar >> (leftbits-6)) & 0x3f; |
| leftbits -= 6; |
| *ascii_data++ = table_b2a_base64[this_ch]; |
| } |
| } |
| if ( leftbits == 2 ) { |
| *ascii_data++ = table_b2a_base64[(leftchar&3) << 4]; |
| *ascii_data++ = BASE64_PAD; |
| *ascii_data++ = BASE64_PAD; |
| } else if ( leftbits == 4 ) { |
| *ascii_data++ = table_b2a_base64[(leftchar&0xf) << 2]; |
| *ascii_data++ = BASE64_PAD; |
| } |
| if (newline) |
| *ascii_data++ = '\n'; /* Append a courtesy newline */ |
| |
| return _PyBytesWriter_Finish(&writer, ascii_data); |
| } |
| |
| /*[clinic input] |
| binascii.a2b_hqx |
| |
| data: ascii_buffer |
| / |
| |
| Decode .hqx coding. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_a2b_hqx_impl(PyObject *module, Py_buffer *data) |
| /*[clinic end generated code: output=4d6d8c54d54ea1c1 input=0d914c680e0eed55]*/ |
| { |
| const unsigned char *ascii_data; |
| unsigned char *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| PyObject *res; |
| Py_ssize_t len; |
| int done = 0; |
| _PyBytesWriter writer; |
| |
| ascii_data = data->buf; |
| len = data->len; |
| _PyBytesWriter_Init(&writer); |
| |
| assert(len >= 0); |
| |
| if (len > PY_SSIZE_T_MAX - 2) |
| return PyErr_NoMemory(); |
| |
| /* Allocate a string that is too big (fixed later) |
| Add two to the initial length to prevent interning which |
| would preclude subsequent resizing. */ |
| bin_data = _PyBytesWriter_Alloc(&writer, len + 2); |
| if (bin_data == NULL) |
| return NULL; |
| |
| for( ; len > 0 ; len--, ascii_data++ ) { |
| /* Get the byte and look it up */ |
| this_ch = table_a2b_hqx[*ascii_data]; |
| if ( this_ch == SKIP ) |
| continue; |
| if ( this_ch == FAIL ) { |
| PyErr_SetString(Error, "Illegal char"); |
| _PyBytesWriter_Dealloc(&writer); |
| return NULL; |
| } |
| if ( this_ch == DONE ) { |
| /* The terminating colon */ |
| done = 1; |
| break; |
| } |
| |
| /* Shift it into the buffer and see if any bytes are ready */ |
| leftchar = (leftchar << 6) | (this_ch); |
| leftbits += 6; |
| if ( leftbits >= 8 ) { |
| leftbits -= 8; |
| *bin_data++ = (leftchar >> leftbits) & 0xff; |
| leftchar &= ((1 << leftbits) - 1); |
| } |
| } |
| |
| if ( leftbits && !done ) { |
| PyErr_SetString(Incomplete, |
| "String has incomplete number of bytes"); |
| _PyBytesWriter_Dealloc(&writer); |
| return NULL; |
| } |
| |
| res = _PyBytesWriter_Finish(&writer, bin_data); |
| if (res == NULL) |
| return NULL; |
| return Py_BuildValue("Ni", res, done); |
| } |
| |
| |
| /*[clinic input] |
| binascii.rlecode_hqx |
| |
| data: Py_buffer |
| / |
| |
| Binhex RLE-code binary data. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_rlecode_hqx_impl(PyObject *module, Py_buffer *data) |
| /*[clinic end generated code: output=393d79338f5f5629 input=e1f1712447a82b09]*/ |
| { |
| const unsigned char *in_data; |
| unsigned char *out_data; |
| unsigned char ch; |
| Py_ssize_t in, inend, len; |
| _PyBytesWriter writer; |
| |
| _PyBytesWriter_Init(&writer); |
| in_data = data->buf; |
| len = data->len; |
| |
| assert(len >= 0); |
| |
| if (len > PY_SSIZE_T_MAX / 2 - 2) |
| return PyErr_NoMemory(); |
| |
| /* Worst case: output is twice as big as input (fixed later) */ |
| out_data = _PyBytesWriter_Alloc(&writer, len * 2 + 2); |
| if (out_data == NULL) |
| return NULL; |
| |
| for( in=0; in<len; in++) { |
| ch = in_data[in]; |
| if ( ch == RUNCHAR ) { |
| /* RUNCHAR. Escape it. */ |
| *out_data++ = RUNCHAR; |
| *out_data++ = 0; |
| } else { |
| /* Check how many following are the same */ |
| for(inend=in+1; |
| inend<len && in_data[inend] == ch && |
| inend < in+255; |
| inend++) ; |
| if ( inend - in > 3 ) { |
| /* More than 3 in a row. Output RLE. */ |
| *out_data++ = ch; |
| *out_data++ = RUNCHAR; |
| *out_data++ = (unsigned char) (inend-in); |
| in = inend-1; |
| } else { |
| /* Less than 3. Output the byte itself */ |
| *out_data++ = ch; |
| } |
| } |
| } |
| |
| return _PyBytesWriter_Finish(&writer, out_data); |
| } |
| |
| |
| /*[clinic input] |
| binascii.b2a_hqx |
| |
| data: Py_buffer |
| / |
| |
| Encode .hqx data. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_b2a_hqx_impl(PyObject *module, Py_buffer *data) |
| /*[clinic end generated code: output=d0aa5a704bc9f7de input=9596ebe019fe12ba]*/ |
| { |
| unsigned char *ascii_data; |
| const unsigned char *bin_data; |
| int leftbits = 0; |
| unsigned char this_ch; |
| unsigned int leftchar = 0; |
| Py_ssize_t len; |
| _PyBytesWriter writer; |
| |
| bin_data = data->buf; |
| len = data->len; |
| _PyBytesWriter_Init(&writer); |
| |
| assert(len >= 0); |
| |
| if (len > PY_SSIZE_T_MAX / 2 - 2) |
| return PyErr_NoMemory(); |
| |
| /* Allocate a buffer that is at least large enough */ |
| ascii_data = _PyBytesWriter_Alloc(&writer, len * 2 + 2); |
| if (ascii_data == NULL) |
| return NULL; |
| |
| for( ; len > 0 ; len--, bin_data++ ) { |
| /* Shift into our buffer, and output any 6bits ready */ |
| leftchar = (leftchar << 8) | *bin_data; |
| leftbits += 8; |
| while ( leftbits >= 6 ) { |
| this_ch = (leftchar >> (leftbits-6)) & 0x3f; |
| leftbits -= 6; |
| *ascii_data++ = table_b2a_hqx[this_ch]; |
| } |
| } |
| /* Output a possible runt byte */ |
| if ( leftbits ) { |
| leftchar <<= (6-leftbits); |
| *ascii_data++ = table_b2a_hqx[leftchar & 0x3f]; |
| } |
| |
| return _PyBytesWriter_Finish(&writer, ascii_data); |
| } |
| |
| |
| /*[clinic input] |
| binascii.rledecode_hqx |
| |
| data: Py_buffer |
| / |
| |
| Decode hexbin RLE-coded string. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_rledecode_hqx_impl(PyObject *module, Py_buffer *data) |
| /*[clinic end generated code: output=9826619565de1c6c input=54cdd49fc014402c]*/ |
| { |
| const unsigned char *in_data; |
| unsigned char *out_data; |
| unsigned char in_byte, in_repeat; |
| Py_ssize_t in_len; |
| _PyBytesWriter writer; |
| |
| in_data = data->buf; |
| in_len = data->len; |
| _PyBytesWriter_Init(&writer); |
| |
| assert(in_len >= 0); |
| |
| /* Empty string is a special case */ |
| if ( in_len == 0 ) |
| return PyBytes_FromStringAndSize("", 0); |
| else if (in_len > PY_SSIZE_T_MAX / 2) |
| return PyErr_NoMemory(); |
| |
| /* Allocate a buffer of reasonable size. Resized when needed */ |
| out_data = _PyBytesWriter_Alloc(&writer, in_len); |
| if (out_data == NULL) |
| return NULL; |
| |
| /* Use overallocation */ |
| writer.overallocate = 1; |
| |
| /* |
| ** We need two macros here to get/put bytes and handle |
| ** end-of-buffer for input and output strings. |
| */ |
| #define INBYTE(b) \ |
| do { \ |
| if ( --in_len < 0 ) { \ |
| PyErr_SetString(Incomplete, ""); \ |
| goto error; \ |
| } \ |
| b = *in_data++; \ |
| } while(0) |
| |
| /* |
| ** Handle first byte separately (since we have to get angry |
| ** in case of an orphaned RLE code). |
| */ |
| INBYTE(in_byte); |
| |
| if (in_byte == RUNCHAR) { |
| INBYTE(in_repeat); |
| /* only 1 byte will be written, but 2 bytes were preallocated: |
| subtract 1 byte to prevent overallocation */ |
| writer.min_size--; |
| |
| if (in_repeat != 0) { |
| /* Note Error, not Incomplete (which is at the end |
| ** of the string only). This is a programmer error. |
| */ |
| PyErr_SetString(Error, "Orphaned RLE code at start"); |
| goto error; |
| } |
| *out_data++ = RUNCHAR; |
| } else { |
| *out_data++ = in_byte; |
| } |
| |
| while( in_len > 0 ) { |
| INBYTE(in_byte); |
| |
| if (in_byte == RUNCHAR) { |
| INBYTE(in_repeat); |
| /* only 1 byte will be written, but 2 bytes were preallocated: |
| subtract 1 byte to prevent overallocation */ |
| writer.min_size--; |
| |
| if ( in_repeat == 0 ) { |
| /* Just an escaped RUNCHAR value */ |
| *out_data++ = RUNCHAR; |
| } else { |
| /* Pick up value and output a sequence of it */ |
| in_byte = out_data[-1]; |
| |
| /* enlarge the buffer if needed */ |
| if (in_repeat > 1) { |
| /* -1 because we already preallocated 1 byte */ |
| out_data = _PyBytesWriter_Prepare(&writer, out_data, |
| in_repeat - 1); |
| if (out_data == NULL) |
| goto error; |
| } |
| |
| while ( --in_repeat > 0 ) |
| *out_data++ = in_byte; |
| } |
| } else { |
| /* Normal byte */ |
| *out_data++ = in_byte; |
| } |
| } |
| return _PyBytesWriter_Finish(&writer, out_data); |
| |
| error: |
| _PyBytesWriter_Dealloc(&writer); |
| return NULL; |
| } |
| |
| |
| /*[clinic input] |
| binascii.crc_hqx -> unsigned_int |
| |
| data: Py_buffer |
| crc: unsigned_int(bitwise=True) |
| / |
| |
| Compute CRC-CCITT incrementally. |
| [clinic start generated code]*/ |
| |
| static unsigned int |
| binascii_crc_hqx_impl(PyObject *module, Py_buffer *data, unsigned int crc) |
| /*[clinic end generated code: output=8ec2a78590d19170 input=f18240ff8c705b79]*/ |
| { |
| const unsigned char *bin_data; |
| Py_ssize_t len; |
| |
| crc &= 0xffff; |
| bin_data = data->buf; |
| len = data->len; |
| |
| while(len-- > 0) { |
| crc = ((crc<<8)&0xff00) ^ crctab_hqx[(crc>>8)^*bin_data++]; |
| } |
| |
| return crc; |
| } |
| |
| #ifndef USE_ZLIB_CRC32 |
| /* Crc - 32 BIT ANSI X3.66 CRC checksum files |
| Also known as: ISO 3307 |
| **********************************************************************| |
| * *| |
| * Demonstration program to compute the 32-bit CRC used as the frame *| |
| * check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71 *| |
| * and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level *| |
| * protocol). The 32-bit FCS was added via the Federal Register, *| |
| * 1 June 1982, p.23798. I presume but don't know for certain that *| |
| * this polynomial is or will be included in CCITT V.41, which *| |
| * defines the 16-bit CRC (often called CRC-CCITT) polynomial. FIPS *| |
| * PUB 78 says that the 32-bit FCS reduces otherwise undetected *| |
| * errors by a factor of 10^-5 over 16-bit FCS. *| |
| * *| |
| **********************************************************************| |
| |
| Copyright (C) 1986 Gary S. Brown. You may use this program, or |
| code or tables extracted from it, as desired without restriction. |
| |
| First, the polynomial itself and its table of feedback terms. The |
| polynomial is |
| X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0 |
| Note that we take it "backwards" and put the highest-order term in |
| the lowest-order bit. The X^32 term is "implied"; the LSB is the |
| X^31 term, etc. The X^0 term (usually shown as "+1") results in |
| the MSB being 1. |
| |
| Note that the usual hardware shift register implementation, which |
| is what we're using (we're merely optimizing it by doing eight-bit |
| chunks at a time) shifts bits into the lowest-order term. In our |
| implementation, that means shifting towards the right. Why do we |
| do it this way? Because the calculated CRC must be transmitted in |
| order from highest-order term to lowest-order term. UARTs transmit |
| characters in order from LSB to MSB. By storing the CRC this way, |
| we hand it to the UART in the order low-byte to high-byte; the UART |
| sends each low-bit to hight-bit; and the result is transmission bit |
| by bit from highest- to lowest-order term without requiring any bit |
| shuffling on our part. Reception works similarly. |
| |
| The feedback terms table consists of 256, 32-bit entries. Notes: |
| |
| 1. The table can be generated at runtime if desired; code to do so |
| is shown later. It might not be obvious, but the feedback |
| terms simply represent the results of eight shift/xor opera- |
| tions for all combinations of data and CRC register values. |
| |
| 2. The CRC accumulation logic is the same for all CRC polynomials, |
| be they sixteen or thirty-two bits wide. You simply choose the |
| appropriate table. Alternatively, because the table can be |
| generated at runtime, you can start by generating the table for |
| the polynomial in question and use exactly the same "updcrc", |
| if your application needn't simultaneously handle two CRC |
| polynomials. (Note, however, that XMODEM is strange.) |
| |
| 3. For 16-bit CRCs, the table entries need be only 16 bits wide; |
| of course, 32-bit entries work OK if the high 16 bits are zero. |
| |
| 4. The values must be right-shifted by eight bits by the "updcrc" |
| logic; the shift must be unsigned (bring in zeroes). On some |
| hardware you could probably optimize the shift in assembler by |
| using byte-swap instructions. |
| ********************************************************************/ |
| |
| static const unsigned int crc_32_tab[256] = { |
| 0x00000000U, 0x77073096U, 0xee0e612cU, 0x990951baU, 0x076dc419U, |
| 0x706af48fU, 0xe963a535U, 0x9e6495a3U, 0x0edb8832U, 0x79dcb8a4U, |
| 0xe0d5e91eU, 0x97d2d988U, 0x09b64c2bU, 0x7eb17cbdU, 0xe7b82d07U, |
| 0x90bf1d91U, 0x1db71064U, 0x6ab020f2U, 0xf3b97148U, 0x84be41deU, |
| 0x1adad47dU, 0x6ddde4ebU, 0xf4d4b551U, 0x83d385c7U, 0x136c9856U, |
| 0x646ba8c0U, 0xfd62f97aU, 0x8a65c9ecU, 0x14015c4fU, 0x63066cd9U, |
| 0xfa0f3d63U, 0x8d080df5U, 0x3b6e20c8U, 0x4c69105eU, 0xd56041e4U, |
| 0xa2677172U, 0x3c03e4d1U, 0x4b04d447U, 0xd20d85fdU, 0xa50ab56bU, |
| 0x35b5a8faU, 0x42b2986cU, 0xdbbbc9d6U, 0xacbcf940U, 0x32d86ce3U, |
| 0x45df5c75U, 0xdcd60dcfU, 0xabd13d59U, 0x26d930acU, 0x51de003aU, |
| 0xc8d75180U, 0xbfd06116U, 0x21b4f4b5U, 0x56b3c423U, 0xcfba9599U, |
| 0xb8bda50fU, 0x2802b89eU, 0x5f058808U, 0xc60cd9b2U, 0xb10be924U, |
| 0x2f6f7c87U, 0x58684c11U, 0xc1611dabU, 0xb6662d3dU, 0x76dc4190U, |
| 0x01db7106U, 0x98d220bcU, 0xefd5102aU, 0x71b18589U, 0x06b6b51fU, |
| 0x9fbfe4a5U, 0xe8b8d433U, 0x7807c9a2U, 0x0f00f934U, 0x9609a88eU, |
| 0xe10e9818U, 0x7f6a0dbbU, 0x086d3d2dU, 0x91646c97U, 0xe6635c01U, |
| 0x6b6b51f4U, 0x1c6c6162U, 0x856530d8U, 0xf262004eU, 0x6c0695edU, |
| 0x1b01a57bU, 0x8208f4c1U, 0xf50fc457U, 0x65b0d9c6U, 0x12b7e950U, |
| 0x8bbeb8eaU, 0xfcb9887cU, 0x62dd1ddfU, 0x15da2d49U, 0x8cd37cf3U, |
| 0xfbd44c65U, 0x4db26158U, 0x3ab551ceU, 0xa3bc0074U, 0xd4bb30e2U, |
| 0x4adfa541U, 0x3dd895d7U, 0xa4d1c46dU, 0xd3d6f4fbU, 0x4369e96aU, |
| 0x346ed9fcU, 0xad678846U, 0xda60b8d0U, 0x44042d73U, 0x33031de5U, |
| 0xaa0a4c5fU, 0xdd0d7cc9U, 0x5005713cU, 0x270241aaU, 0xbe0b1010U, |
| 0xc90c2086U, 0x5768b525U, 0x206f85b3U, 0xb966d409U, 0xce61e49fU, |
| 0x5edef90eU, 0x29d9c998U, 0xb0d09822U, 0xc7d7a8b4U, 0x59b33d17U, |
| 0x2eb40d81U, 0xb7bd5c3bU, 0xc0ba6cadU, 0xedb88320U, 0x9abfb3b6U, |
| 0x03b6e20cU, 0x74b1d29aU, 0xead54739U, 0x9dd277afU, 0x04db2615U, |
| 0x73dc1683U, 0xe3630b12U, 0x94643b84U, 0x0d6d6a3eU, 0x7a6a5aa8U, |
| 0xe40ecf0bU, 0x9309ff9dU, 0x0a00ae27U, 0x7d079eb1U, 0xf00f9344U, |
| 0x8708a3d2U, 0x1e01f268U, 0x6906c2feU, 0xf762575dU, 0x806567cbU, |
| 0x196c3671U, 0x6e6b06e7U, 0xfed41b76U, 0x89d32be0U, 0x10da7a5aU, |
| 0x67dd4accU, 0xf9b9df6fU, 0x8ebeeff9U, 0x17b7be43U, 0x60b08ed5U, |
| 0xd6d6a3e8U, 0xa1d1937eU, 0x38d8c2c4U, 0x4fdff252U, 0xd1bb67f1U, |
| 0xa6bc5767U, 0x3fb506ddU, 0x48b2364bU, 0xd80d2bdaU, 0xaf0a1b4cU, |
| 0x36034af6U, 0x41047a60U, 0xdf60efc3U, 0xa867df55U, 0x316e8eefU, |
| 0x4669be79U, 0xcb61b38cU, 0xbc66831aU, 0x256fd2a0U, 0x5268e236U, |
| 0xcc0c7795U, 0xbb0b4703U, 0x220216b9U, 0x5505262fU, 0xc5ba3bbeU, |
| 0xb2bd0b28U, 0x2bb45a92U, 0x5cb36a04U, 0xc2d7ffa7U, 0xb5d0cf31U, |
| 0x2cd99e8bU, 0x5bdeae1dU, 0x9b64c2b0U, 0xec63f226U, 0x756aa39cU, |
| 0x026d930aU, 0x9c0906a9U, 0xeb0e363fU, 0x72076785U, 0x05005713U, |
| 0x95bf4a82U, 0xe2b87a14U, 0x7bb12baeU, 0x0cb61b38U, 0x92d28e9bU, |
| 0xe5d5be0dU, 0x7cdcefb7U, 0x0bdbdf21U, 0x86d3d2d4U, 0xf1d4e242U, |
| 0x68ddb3f8U, 0x1fda836eU, 0x81be16cdU, 0xf6b9265bU, 0x6fb077e1U, |
| 0x18b74777U, 0x88085ae6U, 0xff0f6a70U, 0x66063bcaU, 0x11010b5cU, |
| 0x8f659effU, 0xf862ae69U, 0x616bffd3U, 0x166ccf45U, 0xa00ae278U, |
| 0xd70dd2eeU, 0x4e048354U, 0x3903b3c2U, 0xa7672661U, 0xd06016f7U, |
| 0x4969474dU, 0x3e6e77dbU, 0xaed16a4aU, 0xd9d65adcU, 0x40df0b66U, |
| 0x37d83bf0U, 0xa9bcae53U, 0xdebb9ec5U, 0x47b2cf7fU, 0x30b5ffe9U, |
| 0xbdbdf21cU, 0xcabac28aU, 0x53b39330U, 0x24b4a3a6U, 0xbad03605U, |
| 0xcdd70693U, 0x54de5729U, 0x23d967bfU, 0xb3667a2eU, 0xc4614ab8U, |
| 0x5d681b02U, 0x2a6f2b94U, 0xb40bbe37U, 0xc30c8ea1U, 0x5a05df1bU, |
| 0x2d02ef8dU |
| }; |
| #endif /* USE_ZLIB_CRC32 */ |
| |
| /*[clinic input] |
| binascii.crc32 -> unsigned_int |
| |
| data: Py_buffer |
| crc: unsigned_int(bitwise=True) = 0 |
| / |
| |
| Compute CRC-32 incrementally. |
| [clinic start generated code]*/ |
| |
| static unsigned int |
| binascii_crc32_impl(PyObject *module, Py_buffer *data, unsigned int crc) |
| /*[clinic end generated code: output=52cf59056a78593b input=bbe340bc99d25aa8]*/ |
| |
| #ifdef USE_ZLIB_CRC32 |
| /* This was taken from zlibmodule.c PyZlib_crc32 (but is PY_SSIZE_T_CLEAN) */ |
| { |
| const Byte *buf; |
| Py_ssize_t len; |
| int signed_val; |
| |
| buf = (Byte*)data->buf; |
| len = data->len; |
| signed_val = crc32(crc, buf, len); |
| return (unsigned int)signed_val & 0xffffffffU; |
| } |
| #else /* USE_ZLIB_CRC32 */ |
| { /* By Jim Ahlstrom; All rights transferred to CNRI */ |
| const unsigned char *bin_data; |
| Py_ssize_t len; |
| unsigned int result; |
| |
| bin_data = data->buf; |
| len = data->len; |
| |
| crc = ~ crc; |
| while (len-- > 0) { |
| crc = crc_32_tab[(crc ^ *bin_data++) & 0xff] ^ (crc >> 8); |
| /* Note: (crc >> 8) MUST zero fill on left */ |
| } |
| |
| result = (crc ^ 0xFFFFFFFF); |
| return result & 0xffffffff; |
| } |
| #endif /* USE_ZLIB_CRC32 */ |
| |
| /*[clinic input] |
| binascii.b2a_hex |
| |
| data: Py_buffer |
| / |
| |
| Hexadecimal representation of binary data. |
| |
| The return value is a bytes object. This function is also |
| available as "hexlify()". |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_b2a_hex_impl(PyObject *module, Py_buffer *data) |
| /*[clinic end generated code: output=92fec1a95c9897a0 input=96423cfa299ff3b1]*/ |
| { |
| return _Py_strhex_bytes((const char *)data->buf, data->len); |
| } |
| |
| /*[clinic input] |
| binascii.hexlify = binascii.b2a_hex |
| |
| Hexadecimal representation of binary data. |
| |
| The return value is a bytes object. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_hexlify_impl(PyObject *module, Py_buffer *data) |
| /*[clinic end generated code: output=749e95e53c14880c input=2e3afae7f083f061]*/ |
| { |
| return _Py_strhex_bytes((const char *)data->buf, data->len); |
| } |
| |
| /*[clinic input] |
| binascii.a2b_hex |
| |
| hexstr: ascii_buffer |
| / |
| |
| Binary data of hexadecimal representation. |
| |
| hexstr must contain an even number of hex digits (upper or lower case). |
| This function is also available as "unhexlify()". |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_a2b_hex_impl(PyObject *module, Py_buffer *hexstr) |
| /*[clinic end generated code: output=0cc1a139af0eeecb input=9e1e7f2f94db24fd]*/ |
| { |
| const char* argbuf; |
| Py_ssize_t arglen; |
| PyObject *retval; |
| char* retbuf; |
| Py_ssize_t i, j; |
| |
| argbuf = hexstr->buf; |
| arglen = hexstr->len; |
| |
| assert(arglen >= 0); |
| |
| /* XXX What should we do about strings with an odd length? Should |
| * we add an implicit leading zero, or a trailing zero? For now, |
| * raise an exception. |
| */ |
| if (arglen % 2) { |
| PyErr_SetString(Error, "Odd-length string"); |
| return NULL; |
| } |
| |
| retval = PyBytes_FromStringAndSize(NULL, (arglen/2)); |
| if (!retval) |
| return NULL; |
| retbuf = PyBytes_AS_STRING(retval); |
| |
| for (i=j=0; i < arglen; i += 2) { |
| unsigned int top = _PyLong_DigitValue[Py_CHARMASK(argbuf[i])]; |
| unsigned int bot = _PyLong_DigitValue[Py_CHARMASK(argbuf[i+1])]; |
| if (top >= 16 || bot >= 16) { |
| PyErr_SetString(Error, |
| "Non-hexadecimal digit found"); |
| goto finally; |
| } |
| retbuf[j++] = (top << 4) + bot; |
| } |
| return retval; |
| |
| finally: |
| Py_DECREF(retval); |
| return NULL; |
| } |
| |
| /*[clinic input] |
| binascii.unhexlify = binascii.a2b_hex |
| |
| Binary data of hexadecimal representation. |
| |
| hexstr must contain an even number of hex digits (upper or lower case). |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_unhexlify_impl(PyObject *module, Py_buffer *hexstr) |
| /*[clinic end generated code: output=51a64c06c79629e3 input=dd8c012725f462da]*/ |
| { |
| return binascii_a2b_hex_impl(module, hexstr); |
| } |
| |
| #define MAXLINESIZE 76 |
| |
| |
| /*[clinic input] |
| binascii.a2b_qp |
| |
| data: ascii_buffer |
| header: bool(accept={int}) = False |
| |
| Decode a string of qp-encoded data. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_a2b_qp_impl(PyObject *module, Py_buffer *data, int header) |
| /*[clinic end generated code: output=e99f7846cfb9bc53 input=bf6766fea76cce8f]*/ |
| { |
| Py_ssize_t in, out; |
| char ch; |
| const unsigned char *ascii_data; |
| unsigned char *odata; |
| Py_ssize_t datalen = 0; |
| PyObject *rv; |
| |
| ascii_data = data->buf; |
| datalen = data->len; |
| |
| /* We allocate the output same size as input, this is overkill. |
| * The previous implementation used calloc() so we'll zero out the |
| * memory here too, since PyMem_Malloc() does not guarantee that. |
| */ |
| odata = (unsigned char *) PyMem_Malloc(datalen); |
| if (odata == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| memset(odata, 0, datalen); |
| |
| in = out = 0; |
| while (in < datalen) { |
| if (ascii_data[in] == '=') { |
| in++; |
| if (in >= datalen) break; |
| /* Soft line breaks */ |
| if ((ascii_data[in] == '\n') || (ascii_data[in] == '\r')) { |
| if (ascii_data[in] != '\n') { |
| while (in < datalen && ascii_data[in] != '\n') in++; |
| } |
| if (in < datalen) in++; |
| } |
| else if (ascii_data[in] == '=') { |
| /* broken case from broken python qp */ |
| odata[out++] = '='; |
| in++; |
| } |
| else if ((in + 1 < datalen) && |
| ((ascii_data[in] >= 'A' && ascii_data[in] <= 'F') || |
| (ascii_data[in] >= 'a' && ascii_data[in] <= 'f') || |
| (ascii_data[in] >= '0' && ascii_data[in] <= '9')) && |
| ((ascii_data[in+1] >= 'A' && ascii_data[in+1] <= 'F') || |
| (ascii_data[in+1] >= 'a' && ascii_data[in+1] <= 'f') || |
| (ascii_data[in+1] >= '0' && ascii_data[in+1] <= '9'))) { |
| /* hexval */ |
| ch = _PyLong_DigitValue[ascii_data[in]] << 4; |
| in++; |
| ch |= _PyLong_DigitValue[ascii_data[in]]; |
| in++; |
| odata[out++] = ch; |
| } |
| else { |
| odata[out++] = '='; |
| } |
| } |
| else if (header && ascii_data[in] == '_') { |
| odata[out++] = ' '; |
| in++; |
| } |
| else { |
| odata[out] = ascii_data[in]; |
| in++; |
| out++; |
| } |
| } |
| if ((rv = PyBytes_FromStringAndSize((char *)odata, out)) == NULL) { |
| PyMem_Free(odata); |
| return NULL; |
| } |
| PyMem_Free(odata); |
| return rv; |
| } |
| |
| static int |
| to_hex (unsigned char ch, unsigned char *s) |
| { |
| unsigned int uvalue = ch; |
| |
| s[1] = "0123456789ABCDEF"[uvalue % 16]; |
| uvalue = (uvalue / 16); |
| s[0] = "0123456789ABCDEF"[uvalue % 16]; |
| return 0; |
| } |
| |
| /* XXX: This is ridiculously complicated to be backward compatible |
| * (mostly) with the quopri module. It doesn't re-create the quopri |
| * module bug where text ending in CRLF has the CR encoded */ |
| |
| /*[clinic input] |
| binascii.b2a_qp |
| |
| data: Py_buffer |
| quotetabs: bool(accept={int}) = False |
| istext: bool(accept={int}) = True |
| header: bool(accept={int}) = False |
| |
| Encode a string using quoted-printable encoding. |
| |
| On encoding, when istext is set, newlines are not encoded, and white |
| space at end of lines is. When istext is not set, \r and \n (CR/LF) |
| are both encoded. When quotetabs is set, space and tabs are encoded. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| binascii_b2a_qp_impl(PyObject *module, Py_buffer *data, int quotetabs, |
| int istext, int header) |
| /*[clinic end generated code: output=e9884472ebb1a94c input=21fb7eea4a184ba6]*/ |
| { |
| Py_ssize_t in, out; |
| const unsigned char *databuf; |
| unsigned char *odata; |
| Py_ssize_t datalen = 0, odatalen = 0; |
| PyObject *rv; |
| unsigned int linelen = 0; |
| unsigned char ch; |
| int crlf = 0; |
| const unsigned char *p; |
| |
| databuf = data->buf; |
| datalen = data->len; |
| |
| /* See if this string is using CRLF line ends */ |
| /* XXX: this function has the side effect of converting all of |
| * the end of lines to be the same depending on this detection |
| * here */ |
| p = (const unsigned char *) memchr(databuf, '\n', datalen); |
| if ((p != NULL) && (p > databuf) && (*(p-1) == '\r')) |
| crlf = 1; |
| |
| /* First, scan to see how many characters need to be encoded */ |
| in = 0; |
| while (in < datalen) { |
| Py_ssize_t delta = 0; |
| if ((databuf[in] > 126) || |
| (databuf[in] == '=') || |
| (header && databuf[in] == '_') || |
| ((databuf[in] == '.') && (linelen == 0) && |
| (in + 1 == datalen || databuf[in+1] == '\n' || |
| databuf[in+1] == '\r' || databuf[in+1] == 0)) || |
| (!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) || |
| ((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) || |
| ((databuf[in] < 33) && |
| (databuf[in] != '\r') && (databuf[in] != '\n') && |
| (quotetabs || ((databuf[in] != '\t') && (databuf[in] != ' '))))) |
| { |
| if ((linelen + 3) >= MAXLINESIZE) { |
| linelen = 0; |
| if (crlf) |
| delta += 3; |
| else |
| delta += 2; |
| } |
| linelen += 3; |
| delta += 3; |
| in++; |
| } |
| else { |
| if (istext && |
| ((databuf[in] == '\n') || |
| ((in+1 < datalen) && (databuf[in] == '\r') && |
| (databuf[in+1] == '\n')))) |
| { |
| linelen = 0; |
| /* Protect against whitespace on end of line */ |
| if (in && ((databuf[in-1] == ' ') || (databuf[in-1] == '\t'))) |
| delta += 2; |
| if (crlf) |
| delta += 2; |
| else |
| delta += 1; |
| if (databuf[in] == '\r') |
| in += 2; |
| else |
| in++; |
| } |
| else { |
| if ((in + 1 != datalen) && |
| (databuf[in+1] != '\n') && |
| (linelen + 1) >= MAXLINESIZE) { |
| linelen = 0; |
| if (crlf) |
| delta += 3; |
| else |
| delta += 2; |
| } |
| linelen++; |
| delta++; |
| in++; |
| } |
| } |
| if (PY_SSIZE_T_MAX - delta < odatalen) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| odatalen += delta; |
| } |
| |
| /* We allocate the output same size as input, this is overkill. |
| * The previous implementation used calloc() so we'll zero out the |
| * memory here too, since PyMem_Malloc() does not guarantee that. |
| */ |
| odata = (unsigned char *) PyMem_Malloc(odatalen); |
| if (odata == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| memset(odata, 0, odatalen); |
| |
| in = out = linelen = 0; |
| while (in < datalen) { |
| if ((databuf[in] > 126) || |
| (databuf[in] == '=') || |
| (header && databuf[in] == '_') || |
| ((databuf[in] == '.') && (linelen == 0) && |
| (in + 1 == datalen || databuf[in+1] == '\n' || |
| databuf[in+1] == '\r' || databuf[in+1] == 0)) || |
| (!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) || |
| ((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) || |
| ((databuf[in] < 33) && |
| (databuf[in] != '\r') && (databuf[in] != '\n') && |
| (quotetabs || ((databuf[in] != '\t') && (databuf[in] != ' '))))) |
| { |
| if ((linelen + 3 )>= MAXLINESIZE) { |
| odata[out++] = '='; |
| if (crlf) odata[out++] = '\r'; |
| odata[out++] = '\n'; |
| linelen = 0; |
| } |
| odata[out++] = '='; |
| to_hex(databuf[in], &odata[out]); |
| out += 2; |
| in++; |
| linelen += 3; |
| } |
| else { |
| if (istext && |
| ((databuf[in] == '\n') || |
| ((in+1 < datalen) && (databuf[in] == '\r') && |
| (databuf[in+1] == '\n')))) |
| { |
| linelen = 0; |
| /* Protect against whitespace on end of line */ |
| if (out && ((odata[out-1] == ' ') || (odata[out-1] == '\t'))) { |
| ch = odata[out-1]; |
| odata[out-1] = '='; |
| to_hex(ch, &odata[out]); |
| out += 2; |
| } |
| |
| if (crlf) odata[out++] = '\r'; |
| odata[out++] = '\n'; |
| if (databuf[in] == '\r') |
| in += 2; |
| else |
| in++; |
| } |
| else { |
| if ((in + 1 != datalen) && |
| (databuf[in+1] != '\n') && |
| (linelen + 1) >= MAXLINESIZE) { |
| odata[out++] = '='; |
| if (crlf) odata[out++] = '\r'; |
| odata[out++] = '\n'; |
| linelen = 0; |
| } |
| linelen++; |
| if (header && databuf[in] == ' ') { |
| odata[out++] = '_'; |
| in++; |
| } |
| else { |
| odata[out++] = databuf[in++]; |
| } |
| } |
| } |
| } |
| if ((rv = PyBytes_FromStringAndSize((char *)odata, out)) == NULL) { |
| PyMem_Free(odata); |
| return NULL; |
| } |
| PyMem_Free(odata); |
| return rv; |
| } |
| |
| /* List of functions defined in the module */ |
| |
| static struct PyMethodDef binascii_module_methods[] = { |
| BINASCII_A2B_UU_METHODDEF |
| BINASCII_B2A_UU_METHODDEF |
| BINASCII_A2B_BASE64_METHODDEF |
| BINASCII_B2A_BASE64_METHODDEF |
| BINASCII_A2B_HQX_METHODDEF |
| BINASCII_B2A_HQX_METHODDEF |
| BINASCII_A2B_HEX_METHODDEF |
| BINASCII_B2A_HEX_METHODDEF |
| BINASCII_HEXLIFY_METHODDEF |
| BINASCII_UNHEXLIFY_METHODDEF |
| BINASCII_RLECODE_HQX_METHODDEF |
| BINASCII_RLEDECODE_HQX_METHODDEF |
| BINASCII_CRC_HQX_METHODDEF |
| BINASCII_CRC32_METHODDEF |
| BINASCII_A2B_QP_METHODDEF |
| BINASCII_B2A_QP_METHODDEF |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| |
| /* Initialization function for the module (*must* be called PyInit_binascii) */ |
| PyDoc_STRVAR(doc_binascii, "Conversion between binary data and ASCII"); |
| |
| |
| static struct PyModuleDef binasciimodule = { |
| PyModuleDef_HEAD_INIT, |
| "binascii", |
| doc_binascii, |
| -1, |
| binascii_module_methods, |
| NULL, |
| NULL, |
| NULL, |
| NULL |
| }; |
| |
| PyMODINIT_FUNC |
| PyInit_binascii(void) |
| { |
| PyObject *m, *d; |
| |
| /* Create the module and add the functions */ |
| m = PyModule_Create(&binasciimodule); |
| if (m == NULL) |
| return NULL; |
| |
| d = PyModule_GetDict(m); |
| |
| Error = PyErr_NewException("binascii.Error", PyExc_ValueError, NULL); |
| PyDict_SetItemString(d, "Error", Error); |
| Incomplete = PyErr_NewException("binascii.Incomplete", NULL, NULL); |
| PyDict_SetItemString(d, "Incomplete", Incomplete); |
| if (PyErr_Occurred()) { |
| Py_DECREF(m); |
| m = NULL; |
| } |
| return m; |
| } |