| /* An object allocator for Python. |
| |
| Here is an introduction to the layers of the Python memory architecture, |
| showing where the object allocator is actually used (layer +2), It is |
| called for every object allocation and deallocation (PyObject_New/Del), |
| unless the object-specific allocators implement a proprietary allocation |
| scheme (ex.: ints use a simple free list). This is also the place where |
| the cyclic garbage collector operates selectively on container objects. |
| |
| |
| Object-specific allocators |
| _____ ______ ______ ________ |
| [ int ] [ dict ] [ list ] ... [ string ] Python core | |
| +3 | <----- Object-specific memory -----> | <-- Non-object memory --> | |
| _______________________________ | | |
| [ Python's object allocator ] | | |
| +2 | ####### Object memory ####### | <------ Internal buffers ------> | |
| ______________________________________________________________ | |
| [ Python's raw memory allocator (PyMem_ API) ] | |
| +1 | <----- Python memory (under PyMem manager's control) ------> | | |
| __________________________________________________________________ |
| [ Underlying general-purpose allocator (ex: C library malloc) ] |
| 0 | <------ Virtual memory allocated for the python process -------> | |
| |
| ========================================================================= |
| _______________________________________________________________________ |
| [ OS-specific Virtual Memory Manager (VMM) ] |
| -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> | |
| __________________________________ __________________________________ |
| [ ] [ ] |
| -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> | |
| |
| */ |
| /*==========================================================================*/ |
| |
| /* A fast, special-purpose memory allocator for small blocks, to be used |
| on top of a general-purpose malloc -- heavily based on previous art. */ |
| |
| /* Vladimir Marangozov -- August 2000 */ |
| |
| /* |
| * "Memory management is where the rubber meets the road -- if we do the wrong |
| * thing at any level, the results will not be good. And if we don't make the |
| * levels work well together, we are in serious trouble." (1) |
| * |
| * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, |
| * "Dynamic Storage Allocation: A Survey and Critical Review", |
| * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995. |
| */ |
| |
| /* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */ |
| #define WITH_MALLOC_HOOKS /* for profiling & debugging */ |
| |
| /*==========================================================================*/ |
| |
| /* |
| * Public functions exported by this allocator. |
| * |
| * -- Define and use these names in your code to obtain or release memory -- |
| */ |
| #define _THIS_MALLOC PyCore_OBJECT_MALLOC_FUNC |
| #define _THIS_CALLOC /* unused */ |
| #define _THIS_REALLOC PyCore_OBJECT_REALLOC_FUNC |
| #define _THIS_FREE PyCore_OBJECT_FREE_FUNC |
| |
| /* |
| * Underlying allocator's functions called by this allocator. |
| * The underlying allocator is usually the one which comes with libc. |
| * |
| * -- Don't use these functions in your code (to avoid mixing allocators) -- |
| * |
| * Redefine these __only__ if you are using a 3rd party general purpose |
| * allocator which exports functions with names _other_ than the standard |
| * malloc, calloc, realloc, free. |
| */ |
| #define _SYSTEM_MALLOC PyCore_MALLOC_FUNC |
| #define _SYSTEM_CALLOC /* unused */ |
| #define _SYSTEM_REALLOC PyCore_REALLOC_FUNC |
| #define _SYSTEM_FREE PyCore_FREE_FUNC |
| |
| /* |
| * If malloc hooks are needed, names of the hooks' set & fetch |
| * functions exported by this allocator. |
| */ |
| #ifdef WITH_MALLOC_HOOKS |
| #define _SET_HOOKS _PyCore_ObjectMalloc_SetHooks |
| #define _FETCH_HOOKS _PyCore_ObjectMalloc_FetchHooks |
| #endif |
| |
| /*==========================================================================*/ |
| |
| /* |
| * Allocation strategy abstract: |
| * |
| * For small requests, the allocator sub-allocates <Big> blocks of memory. |
| * Requests greater than 256 bytes are routed to the system's allocator. |
| * |
| * Small requests are grouped in size classes spaced 8 bytes apart, due |
| * to the required valid alignment of the returned address. Requests of |
| * a particular size are serviced from memory pools of 4K (one VMM page). |
| * Pools are fragmented on demand and contain free lists of blocks of one |
| * particular size class. In other words, there is a fixed-size allocator |
| * for each size class. Free pools are shared by the different allocators |
| * thus minimizing the space reserved for a particular size class. |
| * |
| * This allocation strategy is a variant of what is known as "simple |
| * segregated storage based on array of free lists". The main drawback of |
| * simple segregated storage is that we might end up with lot of reserved |
| * memory for the different free lists, which degenerate in time. To avoid |
| * this, we partition each free list in pools and we share dynamically the |
| * reserved space between all free lists. This technique is quite efficient |
| * for memory intensive programs which allocate mainly small-sized blocks. |
| * |
| * For small requests we have the following table: |
| * |
| * Request in bytes Size of allocated block Size class idx |
| * ---------------------------------------------------------------- |
| * 1-8 8 0 |
| * 9-16 16 1 |
| * 17-24 24 2 |
| * 25-32 32 3 |
| * 33-40 40 4 |
| * 41-48 48 5 |
| * 49-56 56 6 |
| * 57-64 64 7 |
| * 65-72 72 8 |
| * ... ... ... |
| * 241-248 248 30 |
| * 249-256 256 31 |
| * |
| * 0, 257 and up: routed to the underlying allocator. |
| */ |
| |
| /*==========================================================================*/ |
| |
| /* |
| * -- Main tunable settings section -- |
| */ |
| |
| /* |
| * Alignment of addresses returned to the user. 8-bytes alignment works |
| * on most current architectures (with 32-bit or 64-bit address busses). |
| * The alignment value is also used for grouping small requests in size |
| * classes spaced ALIGNMENT bytes apart. |
| * |
| * You shouldn't change this unless you know what you are doing. |
| */ |
| |
| #define ALIGNMENT 8 /* must be 2^N */ |
| #define ALIGNMENT_SHIFT 3 |
| #define ALIGNMENT_MASK (ALIGNMENT - 1) |
| |
| /* |
| * Max size threshold below which malloc requests are considered to be |
| * small enough in order to use preallocated memory pools. You can tune |
| * this value according to your application behaviour and memory needs. |
| * |
| * The following invariants must hold: |
| * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256 |
| * 2) SMALL_REQUEST_THRESHOLD == N * ALIGNMENT |
| * |
| * Although not required, for better performance and space efficiency, |
| * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2. |
| */ |
| |
| /* |
| * For Python compiled on systems with 32 bit pointers and integers, |
| * a value of 64 (= 8 * 8) is a reasonable speed/space tradeoff for |
| * the object allocator. To adjust automatically this threshold for |
| * systems with 64 bit pointers, we make this setting depend on a |
| * Python-specific slot size unit = sizeof(long) + sizeof(void *), |
| * which is expected to be 8, 12 or 16 bytes. |
| */ |
| |
| #define _PYOBJECT_THRESHOLD ((SIZEOF_LONG + SIZEOF_VOID_P) * ALIGNMENT) |
| |
| #define SMALL_REQUEST_THRESHOLD _PYOBJECT_THRESHOLD /* must be N * ALIGNMENT */ |
| |
| #define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT) |
| |
| /* |
| * The system's VMM page size can be obtained on most unices with a |
| * getpagesize() call or deduced from various header files. To make |
| * things simpler, we assume that it is 4K, which is OK for most systems. |
| * It is probably better if this is the native page size, but it doesn't |
| * have to be. |
| */ |
| |
| #define SYSTEM_PAGE_SIZE (4 * 1024) |
| #define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1) |
| |
| /* |
| * Maximum amount of memory managed by the allocator for small requests. |
| */ |
| |
| #ifdef WITH_MEMORY_LIMITS |
| #ifndef SMALL_MEMORY_LIMIT |
| #define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */ |
| #endif |
| #endif |
| |
| /* |
| * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned |
| * on a page boundary. This is a reserved virtual address space for the |
| * current process (obtained through a malloc call). In no way this means |
| * that the memory arenas will be used entirely. A malloc(<Big>) is usually |
| * an address range reservation for <Big> bytes, unless all pages within this |
| * space are referenced subsequently. So malloc'ing big blocks and not using |
| * them does not mean "wasting memory". It's an addressable range wastage... |
| * |
| * Therefore, allocating arenas with malloc is not optimal, because there is |
| * some address space wastage, but this is the most portable way to request |
| * memory from the system accross various platforms. |
| */ |
| |
| #define ARENA_SIZE (256 * 1024 - SYSTEM_PAGE_SIZE) /* 256k - 1p */ |
| |
| #ifdef WITH_MEMORY_LIMITS |
| #define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE) |
| #endif |
| |
| /* |
| * Size of the pools used for small blocks. Should be a power of 2, |
| * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k, eventually 8k. |
| */ |
| |
| #define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */ |
| #define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK |
| #define POOL_MAGIC 0x74D3A651 /* authentication id */ |
| |
| #define ARENA_NB_POOLS (ARENA_SIZE / POOL_SIZE) |
| #define ARENA_NB_PAGES (ARENA_SIZE / SYSTEM_PAGE_SIZE) |
| |
| /* |
| * -- End of tunable settings section -- |
| */ |
| |
| /*==========================================================================*/ |
| |
| /* |
| * Locking |
| * |
| * To reduce lock contention, it would probably be better to refine the |
| * crude function locking with per size class locking. I'm not positive |
| * however, whether it's worth switching to such locking policy because |
| * of the performance penalty it might introduce. |
| * |
| * The following macros describe the simplest (should also be the fastest) |
| * lock object on a particular platform and the init/fini/lock/unlock |
| * operations on it. The locks defined here are not expected to be recursive |
| * because it is assumed that they will always be called in the order: |
| * INIT, [LOCK, UNLOCK]*, FINI. |
| */ |
| |
| /* |
| * Python's threads are serialized, so object malloc locking is disabled. |
| */ |
| #define SIMPLELOCK_DECL(lock) /* simple lock declaration */ |
| #define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */ |
| #define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */ |
| #define SIMPLELOCK_LOCK(lock) /* acquire released lock */ |
| #define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */ |
| |
| /* |
| * Basic types |
| * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom. |
| */ |
| |
| #undef uchar |
| #define uchar unsigned char /* assuming == 8 bits */ |
| |
| #undef ushort |
| #define ushort unsigned short /* assuming >= 16 bits */ |
| |
| #undef uint |
| #define uint unsigned int /* assuming >= 16 bits */ |
| |
| #undef ulong |
| #define ulong unsigned long /* assuming >= 32 bits */ |
| |
| #undef off_t |
| #define off_t uint /* 16 bits <= off_t <= 64 bits */ |
| |
| /* When you say memory, my mind reasons in terms of (pointers to) blocks */ |
| typedef uchar block; |
| |
| /* Pool for small blocks */ |
| struct pool_header { |
| union { block *_padding; |
| uint count; } ref; /* number of allocated blocks */ |
| block *freeblock; /* pool's free list head */ |
| struct pool_header *nextpool; /* next pool of this size class */ |
| struct pool_header *prevpool; /* previous pool "" */ |
| struct pool_header *pooladdr; /* pool address (always aligned) */ |
| uint magic; /* pool magic number */ |
| uint szidx; /* block size class index */ |
| uint capacity; /* pool capacity in # of blocks */ |
| }; |
| |
| typedef struct pool_header *poolp; |
| |
| #undef ROUNDUP |
| #define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK) |
| #define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header)) |
| |
| #define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */ |
| |
| /*==========================================================================*/ |
| |
| /* |
| * This malloc lock |
| */ |
| SIMPLELOCK_DECL(_malloc_lock); |
| #define LOCK() SIMPLELOCK_LOCK(_malloc_lock) |
| #define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock) |
| #define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock) |
| #define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock) |
| |
| /* |
| * Pool table -- doubly linked lists of partially used pools |
| */ |
| #define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *))) |
| #define PT(x) PTA(x), PTA(x) |
| |
| static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { |
| PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7) |
| #if NB_SMALL_SIZE_CLASSES > 8 |
| , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15) |
| #if NB_SMALL_SIZE_CLASSES > 16 |
| , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23) |
| #if NB_SMALL_SIZE_CLASSES > 24 |
| , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31) |
| #if NB_SMALL_SIZE_CLASSES > 32 |
| , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39) |
| #if NB_SMALL_SIZE_CLASSES > 40 |
| , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47) |
| #if NB_SMALL_SIZE_CLASSES > 48 |
| , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55) |
| #if NB_SMALL_SIZE_CLASSES > 56 |
| , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63) |
| #endif /* NB_SMALL_SIZE_CLASSES > 56 */ |
| #endif /* NB_SMALL_SIZE_CLASSES > 48 */ |
| #endif /* NB_SMALL_SIZE_CLASSES > 40 */ |
| #endif /* NB_SMALL_SIZE_CLASSES > 32 */ |
| #endif /* NB_SMALL_SIZE_CLASSES > 24 */ |
| #endif /* NB_SMALL_SIZE_CLASSES > 16 */ |
| #endif /* NB_SMALL_SIZE_CLASSES > 8 */ |
| }; |
| |
| /* |
| * Free (cached) pools |
| */ |
| static poolp freepools = NULL; /* free list for cached pools */ |
| |
| /* |
| * Arenas |
| */ |
| static uint arenacnt = 0; /* number of allocated arenas */ |
| static uint watermark = ARENA_NB_POOLS; /* number of pools allocated from |
| the current arena */ |
| static block *arenalist = NULL; /* list of allocated arenas */ |
| static block *arenabase = NULL; /* free space start address in |
| current arena */ |
| |
| /* |
| * Hooks |
| */ |
| #ifdef WITH_MALLOC_HOOKS |
| static void *(*malloc_hook)(size_t) = NULL; |
| static void *(*calloc_hook)(size_t, size_t) = NULL; |
| static void *(*realloc_hook)(void *, size_t) = NULL; |
| static void (*free_hook)(void *) = NULL; |
| #endif /* !WITH_MALLOC_HOOKS */ |
| |
| /*==========================================================================*/ |
| |
| /* malloc */ |
| |
| /* |
| * The basic blocks are ordered by decreasing execution frequency, |
| * which minimizes the number of jumps in the most common cases, |
| * improves branching prediction and instruction scheduling (small |
| * block allocations typically result in a couple of instructions). |
| * Unless the optimizer reorders everything, being too smart... |
| */ |
| |
| void * |
| _THIS_MALLOC(size_t nbytes) |
| { |
| block *bp; |
| poolp pool; |
| poolp next; |
| uint size; |
| |
| #ifdef WITH_MALLOC_HOOKS |
| if (malloc_hook != NULL) |
| return (*malloc_hook)(nbytes); |
| #endif |
| |
| /* |
| * This implicitly redirects malloc(0) |
| */ |
| if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) { |
| LOCK(); |
| /* |
| * Most frequent paths first |
| */ |
| size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT; |
| pool = usedpools[size + size]; |
| if (pool != pool->nextpool) { |
| /* |
| * There is a used pool for this size class. |
| * Pick up the head block of its free list. |
| */ |
| ++pool->ref.count; |
| bp = pool->freeblock; |
| if ((pool->freeblock = *(block **)bp) != NULL) { |
| UNLOCK(); |
| return (void *)bp; |
| } |
| /* |
| * Reached the end of the free list, try to extend it |
| */ |
| if (pool->ref.count < pool->capacity) { |
| /* |
| * There is room for another block |
| */ |
| size++; |
| size <<= ALIGNMENT_SHIFT; /* block size */ |
| pool->freeblock = (block *)pool + \ |
| POOL_OVERHEAD + \ |
| pool->ref.count * size; |
| *(block **)(pool->freeblock) = NULL; |
| UNLOCK(); |
| return (void *)bp; |
| } |
| /* |
| * Pool is full, unlink from used pools |
| */ |
| next = pool->nextpool; |
| pool = pool->prevpool; |
| next->prevpool = pool; |
| pool->nextpool = next; |
| UNLOCK(); |
| return (void *)bp; |
| } |
| /* |
| * Try to get a cached free pool |
| */ |
| pool = freepools; |
| if (pool != NULL) { |
| /* |
| * Unlink from cached pools |
| */ |
| freepools = pool->nextpool; |
| init_pool: |
| /* |
| * Frontlink to used pools |
| */ |
| next = usedpools[size + size]; /* == prev */ |
| pool->nextpool = next; |
| pool->prevpool = next; |
| next->nextpool = pool; |
| next->prevpool = pool; |
| pool->ref.count = 1; |
| if (pool->szidx == size) { |
| /* |
| * Luckily, this pool last contained blocks |
| * of the same size class, so its header |
| * and free list are already initialized. |
| */ |
| bp = pool->freeblock; |
| pool->freeblock = *(block **)bp; |
| UNLOCK(); |
| return (void *)bp; |
| } |
| /* |
| * Initialize the pool header and free list |
| * then return the first block. |
| */ |
| pool->szidx = size; |
| size++; |
| size <<= ALIGNMENT_SHIFT; /* block size */ |
| bp = (block *)pool + POOL_OVERHEAD; |
| pool->freeblock = bp + size; |
| *(block **)(pool->freeblock) = NULL; |
| pool->capacity = (POOL_SIZE - POOL_OVERHEAD) / size; |
| UNLOCK(); |
| return (void *)bp; |
| } |
| /* |
| * Allocate new pool |
| */ |
| if (watermark < ARENA_NB_POOLS) { |
| /* commit malloc(POOL_SIZE) from the current arena */ |
| commit_pool: |
| watermark++; |
| pool = (poolp )arenabase; |
| arenabase += POOL_SIZE; |
| pool->pooladdr = pool; |
| pool->magic = (uint )POOL_MAGIC; |
| pool->szidx = DUMMY_SIZE_IDX; |
| goto init_pool; |
| } |
| /* |
| * Allocate new arena |
| */ |
| #ifdef WITH_MEMORY_LIMITS |
| if (!(arenacnt < MAX_ARENAS)) { |
| UNLOCK(); |
| goto redirect; |
| } |
| #endif |
| /* |
| * With malloc, we can't avoid loosing one page address space |
| * per arena due to the required alignment on page boundaries. |
| */ |
| bp = (block *)_SYSTEM_MALLOC(ARENA_SIZE + SYSTEM_PAGE_SIZE); |
| if (bp == NULL) { |
| UNLOCK(); |
| goto redirect; |
| } |
| /* |
| * Keep a reference in the list of allocated arenas. We might |
| * want to release (some of) them in the future. The first |
| * word is never used, no matter whether the returned address |
| * is page-aligned or not, so we safely store a pointer in it. |
| */ |
| *(block **)bp = arenalist; |
| arenalist = bp; |
| arenacnt++; |
| watermark = 0; |
| /* Page-round up */ |
| arenabase = bp + (SYSTEM_PAGE_SIZE - |
| ((off_t )bp & SYSTEM_PAGE_SIZE_MASK)); |
| goto commit_pool; |
| } |
| |
| /* The small block allocator ends here. */ |
| |
| redirect: |
| |
| /* |
| * Redirect the original request to the underlying (libc) allocator. |
| * We jump here on bigger requests, on error in the code above (as a |
| * last chance to serve the request) or when the max memory limit |
| * has been reached. |
| */ |
| return (void *)_SYSTEM_MALLOC(nbytes); |
| } |
| |
| /* free */ |
| |
| void |
| _THIS_FREE(void *p) |
| { |
| poolp pool; |
| poolp next, prev; |
| uint size; |
| off_t offset; |
| |
| #ifdef WITH_MALLOC_HOOKS |
| if (free_hook != NULL) { |
| (*free_hook)(p); |
| return; |
| } |
| #endif |
| |
| if (p == NULL) /* free(NULL) has no effect */ |
| return; |
| |
| offset = (off_t )p & POOL_SIZE_MASK; |
| pool = (poolp )((block *)p - offset); |
| if (pool->pooladdr != pool || pool->magic != (uint )POOL_MAGIC) { |
| _SYSTEM_FREE(p); |
| return; |
| } |
| |
| LOCK(); |
| /* |
| * At this point, the pool is not empty |
| */ |
| if ((*(block **)p = pool->freeblock) == NULL) { |
| /* |
| * Pool was full |
| */ |
| pool->freeblock = (block *)p; |
| --pool->ref.count; |
| /* |
| * Frontlink to used pools |
| * This mimics LRU pool usage for new allocations and |
| * targets optimal filling when several pools contain |
| * blocks of the same size class. |
| */ |
| size = pool->szidx; |
| next = usedpools[size + size]; |
| prev = next->prevpool; |
| pool->nextpool = next; |
| pool->prevpool = prev; |
| next->prevpool = pool; |
| prev->nextpool = pool; |
| UNLOCK(); |
| return; |
| } |
| /* |
| * Pool was not full |
| */ |
| pool->freeblock = (block *)p; |
| if (--pool->ref.count != 0) { |
| UNLOCK(); |
| return; |
| } |
| /* |
| * Pool is now empty, unlink from used pools |
| */ |
| next = pool->nextpool; |
| prev = pool->prevpool; |
| next->prevpool = prev; |
| prev->nextpool = next; |
| /* |
| * Frontlink to free pools |
| * This ensures that previously freed pools will be allocated |
| * later (being not referenced, they are perhaps paged out). |
| */ |
| pool->nextpool = freepools; |
| freepools = pool; |
| UNLOCK(); |
| return; |
| } |
| |
| /* realloc */ |
| |
| void * |
| _THIS_REALLOC(void *p, size_t nbytes) |
| { |
| block *bp; |
| poolp pool; |
| uint size; |
| |
| #ifdef WITH_MALLOC_HOOKS |
| if (realloc_hook != NULL) |
| return (*realloc_hook)(p, nbytes); |
| #endif |
| |
| if (p == NULL) |
| return _THIS_MALLOC(nbytes); |
| |
| /* realloc(p, 0) on big blocks is redirected. */ |
| pool = (poolp )((block *)p - ((off_t )p & POOL_SIZE_MASK)); |
| if (pool->pooladdr != pool || pool->magic != (uint )POOL_MAGIC) { |
| /* We haven't allocated this block */ |
| if (!(nbytes > SMALL_REQUEST_THRESHOLD) && nbytes) { |
| /* small request */ |
| size = nbytes; |
| goto malloc_copy_free; |
| } |
| bp = (block *)_SYSTEM_REALLOC(p, nbytes); |
| } |
| else { |
| /* We're in charge of this block */ |
| size = (pool->szidx + 1) << ALIGNMENT_SHIFT; /* block size */ |
| if (size >= nbytes) { |
| /* Don't bother if a smaller size was requested |
| except for realloc(p, 0) == free(p), ret NULL */ |
| if (nbytes == 0) { |
| _THIS_FREE(p); |
| bp = NULL; |
| } |
| else |
| bp = (block *)p; |
| } |
| else { |
| |
| malloc_copy_free: |
| |
| bp = (block *)_THIS_MALLOC(nbytes); |
| if (bp != NULL) { |
| memcpy(bp, p, size); |
| _THIS_FREE(p); |
| } |
| } |
| } |
| return (void *)bp; |
| } |
| |
| /* calloc */ |
| |
| /* -- unused -- |
| void * |
| _THIS_CALLOC(size_t nbel, size_t elsz) |
| { |
| void *p; |
| size_t nbytes; |
| |
| #ifdef WITH_MALLOC_HOOKS |
| if (calloc_hook != NULL) |
| return (*calloc_hook)(nbel, elsz); |
| #endif |
| |
| nbytes = nbel * elsz; |
| p = _THIS_MALLOC(nbytes); |
| if (p != NULL) |
| memset(p, 0, nbytes); |
| return p; |
| } |
| */ |
| |
| /*==========================================================================*/ |
| |
| /* |
| * Hooks |
| */ |
| |
| #ifdef WITH_MALLOC_HOOKS |
| |
| void |
| _SET_HOOKS( void *(*malloc_func)(size_t), |
| void *(*calloc_func)(size_t, size_t), |
| void *(*realloc_func)(void *, size_t), |
| void (*free_func)(void *) ) |
| { |
| LOCK(); |
| malloc_hook = malloc_func; |
| calloc_hook = calloc_func; |
| realloc_hook = realloc_func; |
| free_hook = free_func; |
| UNLOCK(); |
| } |
| |
| void |
| _FETCH_HOOKS( void *(**malloc_funcp)(size_t), |
| void *(**calloc_funcp)(size_t, size_t), |
| void *(**realloc_funcp)(void *, size_t), |
| void (**free_funcp)(void *) ) |
| { |
| LOCK(); |
| *malloc_funcp = malloc_hook; |
| *calloc_funcp = calloc_hook; |
| *realloc_funcp = realloc_hook; |
| *free_funcp = free_hook; |
| UNLOCK(); |
| } |
| #endif /* !WITH_MALLOC_HOOKS */ |