| |
| /* Posix threads interface */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR) |
| #define destructor xxdestructor |
| #endif |
| #include <pthread.h> |
| #if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR) |
| #undef destructor |
| #endif |
| #include <signal.h> |
| |
| #if defined(__linux__) |
| # include <sys/syscall.h> /* syscall(SYS_gettid) */ |
| #elif defined(__FreeBSD__) |
| # include <pthread_np.h> /* pthread_getthreadid_np() */ |
| #elif defined(__OpenBSD__) |
| # include <unistd.h> /* getthrid() */ |
| #endif |
| |
| /* The POSIX spec requires that use of pthread_attr_setstacksize |
| be conditional on _POSIX_THREAD_ATTR_STACKSIZE being defined. */ |
| #ifdef _POSIX_THREAD_ATTR_STACKSIZE |
| #ifndef THREAD_STACK_SIZE |
| #define THREAD_STACK_SIZE 0 /* use default stack size */ |
| #endif |
| |
| /* The default stack size for new threads on OSX and BSD is small enough that |
| * we'll get hard crashes instead of 'maximum recursion depth exceeded' |
| * exceptions. |
| * |
| * The default stack sizes below are the empirically determined minimal stack |
| * sizes where a simple recursive function doesn't cause a hard crash. |
| */ |
| #if defined(__APPLE__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 |
| #undef THREAD_STACK_SIZE |
| #define THREAD_STACK_SIZE 0x500000 |
| #endif |
| #if defined(__FreeBSD__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 |
| #undef THREAD_STACK_SIZE |
| #define THREAD_STACK_SIZE 0x400000 |
| #endif |
| /* for safety, ensure a viable minimum stacksize */ |
| #define THREAD_STACK_MIN 0x8000 /* 32 KiB */ |
| #else /* !_POSIX_THREAD_ATTR_STACKSIZE */ |
| #ifdef THREAD_STACK_SIZE |
| #error "THREAD_STACK_SIZE defined but _POSIX_THREAD_ATTR_STACKSIZE undefined" |
| #endif |
| #endif |
| |
| /* The POSIX spec says that implementations supporting the sem_* |
| family of functions must indicate this by defining |
| _POSIX_SEMAPHORES. */ |
| #ifdef _POSIX_SEMAPHORES |
| /* On FreeBSD 4.x, _POSIX_SEMAPHORES is defined empty, so |
| we need to add 0 to make it work there as well. */ |
| #if (_POSIX_SEMAPHORES+0) == -1 |
| #define HAVE_BROKEN_POSIX_SEMAPHORES |
| #else |
| #include <semaphore.h> |
| #include <errno.h> |
| #endif |
| #endif |
| |
| |
| /* Whether or not to use semaphores directly rather than emulating them with |
| * mutexes and condition variables: |
| */ |
| #if (defined(_POSIX_SEMAPHORES) && !defined(HAVE_BROKEN_POSIX_SEMAPHORES) && \ |
| defined(HAVE_SEM_TIMEDWAIT)) |
| # define USE_SEMAPHORES |
| #else |
| # undef USE_SEMAPHORES |
| #endif |
| |
| |
| /* On platforms that don't use standard POSIX threads pthread_sigmask() |
| * isn't present. DEC threads uses sigprocmask() instead as do most |
| * other UNIX International compliant systems that don't have the full |
| * pthread implementation. |
| */ |
| #if defined(HAVE_PTHREAD_SIGMASK) && !defined(HAVE_BROKEN_PTHREAD_SIGMASK) |
| # define SET_THREAD_SIGMASK pthread_sigmask |
| #else |
| # define SET_THREAD_SIGMASK sigprocmask |
| #endif |
| |
| |
| /* We assume all modern POSIX systems have gettimeofday() */ |
| #ifdef GETTIMEOFDAY_NO_TZ |
| #define GETTIMEOFDAY(ptv) gettimeofday(ptv) |
| #else |
| #define GETTIMEOFDAY(ptv) gettimeofday(ptv, (struct timezone *)NULL) |
| #endif |
| |
| #define MICROSECONDS_TO_TIMESPEC(microseconds, ts) \ |
| do { \ |
| struct timeval tv; \ |
| GETTIMEOFDAY(&tv); \ |
| tv.tv_usec += microseconds % 1000000; \ |
| tv.tv_sec += microseconds / 1000000; \ |
| tv.tv_sec += tv.tv_usec / 1000000; \ |
| tv.tv_usec %= 1000000; \ |
| ts.tv_sec = tv.tv_sec; \ |
| ts.tv_nsec = tv.tv_usec * 1000; \ |
| } while(0) |
| |
| |
| /* |
| * pthread_cond support |
| */ |
| |
| #if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
| // monotonic is supported statically. It doesn't mean it works on runtime. |
| #define CONDATTR_MONOTONIC |
| #endif |
| |
| // NULL when pthread_condattr_setclock(CLOCK_MONOTONIC) is not supported. |
| static pthread_condattr_t *condattr_monotonic = NULL; |
| |
| static void |
| init_condattr() |
| { |
| #ifdef CONDATTR_MONOTONIC |
| static pthread_condattr_t ca; |
| pthread_condattr_init(&ca); |
| if (pthread_condattr_setclock(&ca, CLOCK_MONOTONIC) == 0) { |
| condattr_monotonic = &ca; // Use monotonic clock |
| } |
| #endif |
| } |
| |
| int |
| _PyThread_cond_init(PyCOND_T *cond) |
| { |
| return pthread_cond_init(cond, condattr_monotonic); |
| } |
| |
| void |
| _PyThread_cond_after(long long us, struct timespec *abs) |
| { |
| #ifdef CONDATTR_MONOTONIC |
| if (condattr_monotonic) { |
| clock_gettime(CLOCK_MONOTONIC, abs); |
| abs->tv_sec += us / 1000000; |
| abs->tv_nsec += (us % 1000000) * 1000; |
| abs->tv_sec += abs->tv_nsec / 1000000000; |
| abs->tv_nsec %= 1000000000; |
| return; |
| } |
| #endif |
| |
| struct timespec ts; |
| MICROSECONDS_TO_TIMESPEC(us, ts); |
| *abs = ts; |
| } |
| |
| |
| /* A pthread mutex isn't sufficient to model the Python lock type |
| * because, according to Draft 5 of the docs (P1003.4a/D5), both of the |
| * following are undefined: |
| * -> a thread tries to lock a mutex it already has locked |
| * -> a thread tries to unlock a mutex locked by a different thread |
| * pthread mutexes are designed for serializing threads over short pieces |
| * of code anyway, so wouldn't be an appropriate implementation of |
| * Python's locks regardless. |
| * |
| * The pthread_lock struct implements a Python lock as a "locked?" bit |
| * and a <condition, mutex> pair. In general, if the bit can be acquired |
| * instantly, it is, else the pair is used to block the thread until the |
| * bit is cleared. 9 May 1994 tim@ksr.com |
| */ |
| |
| typedef struct { |
| char locked; /* 0=unlocked, 1=locked */ |
| /* a <cond, mutex> pair to handle an acquire of a locked lock */ |
| pthread_cond_t lock_released; |
| pthread_mutex_t mut; |
| } pthread_lock; |
| |
| #define CHECK_STATUS(name) if (status != 0) { perror(name); error = 1; } |
| #define CHECK_STATUS_PTHREAD(name) if (status != 0) { fprintf(stderr, \ |
| "%s: %s\n", name, strerror(status)); error = 1; } |
| |
| /* |
| * Initialization. |
| */ |
| static void |
| PyThread__init_thread(void) |
| { |
| #if defined(_AIX) && defined(__GNUC__) |
| extern void pthread_init(void); |
| pthread_init(); |
| #endif |
| init_condattr(); |
| } |
| |
| /* |
| * Thread support. |
| */ |
| |
| /* bpo-33015: pythread_callback struct and pythread_wrapper() cast |
| "void func(void *)" to "void* func(void *)": always return NULL. |
| |
| PyThread_start_new_thread() uses "void func(void *)" type, whereas |
| pthread_create() requires a void* return value. */ |
| typedef struct { |
| void (*func) (void *); |
| void *arg; |
| } pythread_callback; |
| |
| static void * |
| pythread_wrapper(void *arg) |
| { |
| /* copy func and func_arg and free the temporary structure */ |
| pythread_callback *callback = arg; |
| void (*func)(void *) = callback->func; |
| void *func_arg = callback->arg; |
| PyMem_RawFree(arg); |
| |
| func(func_arg); |
| return NULL; |
| } |
| |
| unsigned long |
| PyThread_start_new_thread(void (*func)(void *), void *arg) |
| { |
| pthread_t th; |
| int status; |
| #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) |
| pthread_attr_t attrs; |
| #endif |
| #if defined(THREAD_STACK_SIZE) |
| size_t tss; |
| #endif |
| |
| dprintf(("PyThread_start_new_thread called\n")); |
| if (!initialized) |
| PyThread_init_thread(); |
| |
| #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) |
| if (pthread_attr_init(&attrs) != 0) |
| return PYTHREAD_INVALID_THREAD_ID; |
| #endif |
| #if defined(THREAD_STACK_SIZE) |
| PyThreadState *tstate = _PyThreadState_GET(); |
| size_t stacksize = tstate ? tstate->interp->pythread_stacksize : 0; |
| tss = (stacksize != 0) ? stacksize : THREAD_STACK_SIZE; |
| if (tss != 0) { |
| if (pthread_attr_setstacksize(&attrs, tss) != 0) { |
| pthread_attr_destroy(&attrs); |
| return PYTHREAD_INVALID_THREAD_ID; |
| } |
| } |
| #endif |
| #if defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) |
| pthread_attr_setscope(&attrs, PTHREAD_SCOPE_SYSTEM); |
| #endif |
| |
| pythread_callback *callback = PyMem_RawMalloc(sizeof(pythread_callback)); |
| |
| if (callback == NULL) { |
| return PYTHREAD_INVALID_THREAD_ID; |
| } |
| |
| callback->func = func; |
| callback->arg = arg; |
| |
| status = pthread_create(&th, |
| #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) |
| &attrs, |
| #else |
| (pthread_attr_t*)NULL, |
| #endif |
| pythread_wrapper, callback); |
| |
| #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) |
| pthread_attr_destroy(&attrs); |
| #endif |
| |
| if (status != 0) { |
| PyMem_RawFree(callback); |
| return PYTHREAD_INVALID_THREAD_ID; |
| } |
| |
| pthread_detach(th); |
| |
| #if SIZEOF_PTHREAD_T <= SIZEOF_LONG |
| return (unsigned long) th; |
| #else |
| return (unsigned long) *(unsigned long *) &th; |
| #endif |
| } |
| |
| /* XXX This implementation is considered (to quote Tim Peters) "inherently |
| hosed" because: |
| - It does not guarantee the promise that a non-zero integer is returned. |
| - The cast to unsigned long is inherently unsafe. |
| - It is not clear that the 'volatile' (for AIX?) are any longer necessary. |
| */ |
| unsigned long |
| PyThread_get_thread_ident(void) |
| { |
| volatile pthread_t threadid; |
| if (!initialized) |
| PyThread_init_thread(); |
| threadid = pthread_self(); |
| return (unsigned long) threadid; |
| } |
| |
| #ifdef PY_HAVE_THREAD_NATIVE_ID |
| unsigned long |
| PyThread_get_thread_native_id(void) |
| { |
| if (!initialized) |
| PyThread_init_thread(); |
| #ifdef __APPLE__ |
| uint64_t native_id; |
| (void) pthread_threadid_np(NULL, &native_id); |
| #elif defined(__linux__) |
| pid_t native_id; |
| native_id = syscall(SYS_gettid); |
| #elif defined(__FreeBSD__) |
| int native_id; |
| native_id = pthread_getthreadid_np(); |
| #elif defined(__OpenBSD__) |
| pid_t native_id; |
| native_id = getthrid(); |
| #endif |
| return (unsigned long) native_id; |
| } |
| #endif |
| |
| void _Py_NO_RETURN |
| PyThread_exit_thread(void) |
| { |
| dprintf(("PyThread_exit_thread called\n")); |
| if (!initialized) |
| exit(0); |
| pthread_exit(0); |
| } |
| |
| #ifdef USE_SEMAPHORES |
| |
| /* |
| * Lock support. |
| */ |
| |
| PyThread_type_lock |
| PyThread_allocate_lock(void) |
| { |
| sem_t *lock; |
| int status, error = 0; |
| |
| dprintf(("PyThread_allocate_lock called\n")); |
| if (!initialized) |
| PyThread_init_thread(); |
| |
| lock = (sem_t *)PyMem_RawMalloc(sizeof(sem_t)); |
| |
| if (lock) { |
| status = sem_init(lock,0,1); |
| CHECK_STATUS("sem_init"); |
| |
| if (error) { |
| PyMem_RawFree((void *)lock); |
| lock = NULL; |
| } |
| } |
| |
| dprintf(("PyThread_allocate_lock() -> %p\n", (void *)lock)); |
| return (PyThread_type_lock)lock; |
| } |
| |
| void |
| PyThread_free_lock(PyThread_type_lock lock) |
| { |
| sem_t *thelock = (sem_t *)lock; |
| int status, error = 0; |
| |
| (void) error; /* silence unused-but-set-variable warning */ |
| dprintf(("PyThread_free_lock(%p) called\n", lock)); |
| |
| if (!thelock) |
| return; |
| |
| status = sem_destroy(thelock); |
| CHECK_STATUS("sem_destroy"); |
| |
| PyMem_RawFree((void *)thelock); |
| } |
| |
| /* |
| * As of February 2002, Cygwin thread implementations mistakenly report error |
| * codes in the return value of the sem_ calls (like the pthread_ functions). |
| * Correct implementations return -1 and put the code in errno. This supports |
| * either. |
| */ |
| static int |
| fix_status(int status) |
| { |
| return (status == -1) ? errno : status; |
| } |
| |
| PyLockStatus |
| PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds, |
| int intr_flag) |
| { |
| PyLockStatus success; |
| sem_t *thelock = (sem_t *)lock; |
| int status, error = 0; |
| struct timespec ts; |
| _PyTime_t deadline = 0; |
| |
| (void) error; /* silence unused-but-set-variable warning */ |
| dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) called\n", |
| lock, microseconds, intr_flag)); |
| |
| if (microseconds > PY_TIMEOUT_MAX) { |
| Py_FatalError("Timeout larger than PY_TIMEOUT_MAX"); |
| } |
| |
| if (microseconds > 0) { |
| MICROSECONDS_TO_TIMESPEC(microseconds, ts); |
| |
| if (!intr_flag) { |
| /* cannot overflow thanks to (microseconds > PY_TIMEOUT_MAX) |
| check done above */ |
| _PyTime_t timeout = _PyTime_FromNanoseconds(microseconds * 1000); |
| deadline = _PyTime_GetMonotonicClock() + timeout; |
| } |
| } |
| |
| while (1) { |
| if (microseconds > 0) { |
| status = fix_status(sem_timedwait(thelock, &ts)); |
| } |
| else if (microseconds == 0) { |
| status = fix_status(sem_trywait(thelock)); |
| } |
| else { |
| status = fix_status(sem_wait(thelock)); |
| } |
| |
| /* Retry if interrupted by a signal, unless the caller wants to be |
| notified. */ |
| if (intr_flag || status != EINTR) { |
| break; |
| } |
| |
| if (microseconds > 0) { |
| /* wait interrupted by a signal (EINTR): recompute the timeout */ |
| _PyTime_t dt = deadline - _PyTime_GetMonotonicClock(); |
| if (dt < 0) { |
| status = ETIMEDOUT; |
| break; |
| } |
| else if (dt > 0) { |
| _PyTime_t realtime_deadline = _PyTime_GetSystemClock() + dt; |
| if (_PyTime_AsTimespec(realtime_deadline, &ts) < 0) { |
| /* Cannot occur thanks to (microseconds > PY_TIMEOUT_MAX) |
| check done above */ |
| Py_UNREACHABLE(); |
| } |
| /* no need to update microseconds value, the code only care |
| if (microseconds > 0 or (microseconds == 0). */ |
| } |
| else { |
| microseconds = 0; |
| } |
| } |
| } |
| |
| /* Don't check the status if we're stopping because of an interrupt. */ |
| if (!(intr_flag && status == EINTR)) { |
| if (microseconds > 0) { |
| if (status != ETIMEDOUT) |
| CHECK_STATUS("sem_timedwait"); |
| } |
| else if (microseconds == 0) { |
| if (status != EAGAIN) |
| CHECK_STATUS("sem_trywait"); |
| } |
| else { |
| CHECK_STATUS("sem_wait"); |
| } |
| } |
| |
| if (status == 0) { |
| success = PY_LOCK_ACQUIRED; |
| } else if (intr_flag && status == EINTR) { |
| success = PY_LOCK_INTR; |
| } else { |
| success = PY_LOCK_FAILURE; |
| } |
| |
| dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) -> %d\n", |
| lock, microseconds, intr_flag, success)); |
| return success; |
| } |
| |
| void |
| PyThread_release_lock(PyThread_type_lock lock) |
| { |
| sem_t *thelock = (sem_t *)lock; |
| int status, error = 0; |
| |
| (void) error; /* silence unused-but-set-variable warning */ |
| dprintf(("PyThread_release_lock(%p) called\n", lock)); |
| |
| status = sem_post(thelock); |
| CHECK_STATUS("sem_post"); |
| } |
| |
| #else /* USE_SEMAPHORES */ |
| |
| /* |
| * Lock support. |
| */ |
| PyThread_type_lock |
| PyThread_allocate_lock(void) |
| { |
| pthread_lock *lock; |
| int status, error = 0; |
| |
| dprintf(("PyThread_allocate_lock called\n")); |
| if (!initialized) |
| PyThread_init_thread(); |
| |
| lock = (pthread_lock *) PyMem_RawMalloc(sizeof(pthread_lock)); |
| if (lock) { |
| memset((void *)lock, '\0', sizeof(pthread_lock)); |
| lock->locked = 0; |
| |
| status = pthread_mutex_init(&lock->mut, NULL); |
| CHECK_STATUS_PTHREAD("pthread_mutex_init"); |
| /* Mark the pthread mutex underlying a Python mutex as |
| pure happens-before. We can't simply mark the |
| Python-level mutex as a mutex because it can be |
| acquired and released in different threads, which |
| will cause errors. */ |
| _Py_ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&lock->mut); |
| |
| status = _PyThread_cond_init(&lock->lock_released); |
| CHECK_STATUS_PTHREAD("pthread_cond_init"); |
| |
| if (error) { |
| PyMem_RawFree((void *)lock); |
| lock = 0; |
| } |
| } |
| |
| dprintf(("PyThread_allocate_lock() -> %p\n", (void *)lock)); |
| return (PyThread_type_lock) lock; |
| } |
| |
| void |
| PyThread_free_lock(PyThread_type_lock lock) |
| { |
| pthread_lock *thelock = (pthread_lock *)lock; |
| int status, error = 0; |
| |
| (void) error; /* silence unused-but-set-variable warning */ |
| dprintf(("PyThread_free_lock(%p) called\n", lock)); |
| |
| /* some pthread-like implementations tie the mutex to the cond |
| * and must have the cond destroyed first. |
| */ |
| status = pthread_cond_destroy( &thelock->lock_released ); |
| CHECK_STATUS_PTHREAD("pthread_cond_destroy"); |
| |
| status = pthread_mutex_destroy( &thelock->mut ); |
| CHECK_STATUS_PTHREAD("pthread_mutex_destroy"); |
| |
| PyMem_RawFree((void *)thelock); |
| } |
| |
| PyLockStatus |
| PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds, |
| int intr_flag) |
| { |
| PyLockStatus success = PY_LOCK_FAILURE; |
| pthread_lock *thelock = (pthread_lock *)lock; |
| int status, error = 0; |
| |
| dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) called\n", |
| lock, microseconds, intr_flag)); |
| |
| if (microseconds == 0) { |
| status = pthread_mutex_trylock( &thelock->mut ); |
| if (status != EBUSY) |
| CHECK_STATUS_PTHREAD("pthread_mutex_trylock[1]"); |
| } |
| else { |
| status = pthread_mutex_lock( &thelock->mut ); |
| CHECK_STATUS_PTHREAD("pthread_mutex_lock[1]"); |
| } |
| if (status == 0) { |
| if (thelock->locked == 0) { |
| success = PY_LOCK_ACQUIRED; |
| } |
| else if (microseconds != 0) { |
| struct timespec abs; |
| if (microseconds > 0) { |
| _PyThread_cond_after(microseconds, &abs); |
| } |
| /* continue trying until we get the lock */ |
| |
| /* mut must be locked by me -- part of the condition |
| * protocol */ |
| while (success == PY_LOCK_FAILURE) { |
| if (microseconds > 0) { |
| status = pthread_cond_timedwait( |
| &thelock->lock_released, |
| &thelock->mut, &abs); |
| if (status == 1) { |
| break; |
| } |
| if (status == ETIMEDOUT) |
| break; |
| CHECK_STATUS_PTHREAD("pthread_cond_timedwait"); |
| } |
| else { |
| status = pthread_cond_wait( |
| &thelock->lock_released, |
| &thelock->mut); |
| CHECK_STATUS_PTHREAD("pthread_cond_wait"); |
| } |
| |
| if (intr_flag && status == 0 && thelock->locked) { |
| /* We were woken up, but didn't get the lock. We probably received |
| * a signal. Return PY_LOCK_INTR to allow the caller to handle |
| * it and retry. */ |
| success = PY_LOCK_INTR; |
| break; |
| } |
| else if (status == 0 && !thelock->locked) { |
| success = PY_LOCK_ACQUIRED; |
| } |
| } |
| } |
| if (success == PY_LOCK_ACQUIRED) thelock->locked = 1; |
| status = pthread_mutex_unlock( &thelock->mut ); |
| CHECK_STATUS_PTHREAD("pthread_mutex_unlock[1]"); |
| } |
| |
| if (error) success = PY_LOCK_FAILURE; |
| dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) -> %d\n", |
| lock, microseconds, intr_flag, success)); |
| return success; |
| } |
| |
| void |
| PyThread_release_lock(PyThread_type_lock lock) |
| { |
| pthread_lock *thelock = (pthread_lock *)lock; |
| int status, error = 0; |
| |
| (void) error; /* silence unused-but-set-variable warning */ |
| dprintf(("PyThread_release_lock(%p) called\n", lock)); |
| |
| status = pthread_mutex_lock( &thelock->mut ); |
| CHECK_STATUS_PTHREAD("pthread_mutex_lock[3]"); |
| |
| thelock->locked = 0; |
| |
| /* wake up someone (anyone, if any) waiting on the lock */ |
| status = pthread_cond_signal( &thelock->lock_released ); |
| CHECK_STATUS_PTHREAD("pthread_cond_signal"); |
| |
| status = pthread_mutex_unlock( &thelock->mut ); |
| CHECK_STATUS_PTHREAD("pthread_mutex_unlock[3]"); |
| } |
| |
| #endif /* USE_SEMAPHORES */ |
| |
| int |
| PyThread_acquire_lock(PyThread_type_lock lock, int waitflag) |
| { |
| return PyThread_acquire_lock_timed(lock, waitflag ? -1 : 0, /*intr_flag=*/0); |
| } |
| |
| /* set the thread stack size. |
| * Return 0 if size is valid, -1 if size is invalid, |
| * -2 if setting stack size is not supported. |
| */ |
| static int |
| _pythread_pthread_set_stacksize(size_t size) |
| { |
| #if defined(THREAD_STACK_SIZE) |
| pthread_attr_t attrs; |
| size_t tss_min; |
| int rc = 0; |
| #endif |
| |
| /* set to default */ |
| if (size == 0) { |
| _PyInterpreterState_GET_UNSAFE()->pythread_stacksize = 0; |
| return 0; |
| } |
| |
| #if defined(THREAD_STACK_SIZE) |
| #if defined(PTHREAD_STACK_MIN) |
| tss_min = PTHREAD_STACK_MIN > THREAD_STACK_MIN ? PTHREAD_STACK_MIN |
| : THREAD_STACK_MIN; |
| #else |
| tss_min = THREAD_STACK_MIN; |
| #endif |
| if (size >= tss_min) { |
| /* validate stack size by setting thread attribute */ |
| if (pthread_attr_init(&attrs) == 0) { |
| rc = pthread_attr_setstacksize(&attrs, size); |
| pthread_attr_destroy(&attrs); |
| if (rc == 0) { |
| _PyInterpreterState_GET_UNSAFE()->pythread_stacksize = size; |
| return 0; |
| } |
| } |
| } |
| return -1; |
| #else |
| return -2; |
| #endif |
| } |
| |
| #define THREAD_SET_STACKSIZE(x) _pythread_pthread_set_stacksize(x) |
| |
| |
| /* Thread Local Storage (TLS) API |
| |
| This API is DEPRECATED since Python 3.7. See PEP 539 for details. |
| */ |
| |
| /* Issue #25658: On platforms where native TLS key is defined in a way that |
| cannot be safely cast to int, PyThread_create_key returns immediately a |
| failure status and other TLS functions all are no-ops. This indicates |
| clearly that the old API is not supported on platforms where it cannot be |
| used reliably, and that no effort will be made to add such support. |
| |
| Note: PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT will be unnecessary after |
| removing this API. |
| */ |
| |
| int |
| PyThread_create_key(void) |
| { |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT |
| pthread_key_t key; |
| int fail = pthread_key_create(&key, NULL); |
| if (fail) |
| return -1; |
| if (key > INT_MAX) { |
| /* Issue #22206: handle integer overflow */ |
| pthread_key_delete(key); |
| errno = ENOMEM; |
| return -1; |
| } |
| return (int)key; |
| #else |
| return -1; /* never return valid key value. */ |
| #endif |
| } |
| |
| void |
| PyThread_delete_key(int key) |
| { |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT |
| pthread_key_delete(key); |
| #endif |
| } |
| |
| void |
| PyThread_delete_key_value(int key) |
| { |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT |
| pthread_setspecific(key, NULL); |
| #endif |
| } |
| |
| int |
| PyThread_set_key_value(int key, void *value) |
| { |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT |
| int fail = pthread_setspecific(key, value); |
| return fail ? -1 : 0; |
| #else |
| return -1; |
| #endif |
| } |
| |
| void * |
| PyThread_get_key_value(int key) |
| { |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT |
| return pthread_getspecific(key); |
| #else |
| return NULL; |
| #endif |
| } |
| |
| |
| void |
| PyThread_ReInitTLS(void) |
| { |
| } |
| |
| |
| /* Thread Specific Storage (TSS) API |
| |
| Platform-specific components of TSS API implementation. |
| */ |
| |
| int |
| PyThread_tss_create(Py_tss_t *key) |
| { |
| assert(key != NULL); |
| /* If the key has been created, function is silently skipped. */ |
| if (key->_is_initialized) { |
| return 0; |
| } |
| |
| int fail = pthread_key_create(&(key->_key), NULL); |
| if (fail) { |
| return -1; |
| } |
| key->_is_initialized = 1; |
| return 0; |
| } |
| |
| void |
| PyThread_tss_delete(Py_tss_t *key) |
| { |
| assert(key != NULL); |
| /* If the key has not been created, function is silently skipped. */ |
| if (!key->_is_initialized) { |
| return; |
| } |
| |
| pthread_key_delete(key->_key); |
| /* pthread has not provided the defined invalid value for the key. */ |
| key->_is_initialized = 0; |
| } |
| |
| int |
| PyThread_tss_set(Py_tss_t *key, void *value) |
| { |
| assert(key != NULL); |
| int fail = pthread_setspecific(key->_key, value); |
| return fail ? -1 : 0; |
| } |
| |
| void * |
| PyThread_tss_get(Py_tss_t *key) |
| { |
| assert(key != NULL); |
| return pthread_getspecific(key->_key); |
| } |