| #include "Python.h" | 
 | #include "pycore_pymem.h" | 
 |  | 
 | #include <stdbool.h> | 
 |  | 
 |  | 
 | /* Defined in tracemalloc.c */ | 
 | extern void _PyMem_DumpTraceback(int fd, const void *ptr); | 
 |  | 
 |  | 
 | /* Python's malloc wrappers (see pymem.h) */ | 
 |  | 
 | #undef  uint | 
 | #define uint    unsigned int    /* assuming >= 16 bits */ | 
 |  | 
 | /* Forward declaration */ | 
 | static void* _PyMem_DebugRawMalloc(void *ctx, size_t size); | 
 | static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize); | 
 | static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size); | 
 | static void _PyMem_DebugRawFree(void *ctx, void *ptr); | 
 |  | 
 | static void* _PyMem_DebugMalloc(void *ctx, size_t size); | 
 | static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize); | 
 | static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size); | 
 | static void _PyMem_DebugFree(void *ctx, void *p); | 
 |  | 
 | static void _PyObject_DebugDumpAddress(const void *p); | 
 | static void _PyMem_DebugCheckAddress(char api_id, const void *p); | 
 |  | 
 | static void _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain); | 
 |  | 
 | #if defined(__has_feature)  /* Clang */ | 
 | #  if __has_feature(address_sanitizer) /* is ASAN enabled? */ | 
 | #    define _Py_NO_ADDRESS_SAFETY_ANALYSIS \ | 
 |         __attribute__((no_address_safety_analysis)) | 
 | #  endif | 
 | #  if __has_feature(thread_sanitizer)  /* is TSAN enabled? */ | 
 | #    define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) | 
 | #  endif | 
 | #  if __has_feature(memory_sanitizer)  /* is MSAN enabled? */ | 
 | #    define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory)) | 
 | #  endif | 
 | #elif defined(__GNUC__) | 
 | #  if defined(__SANITIZE_ADDRESS__)    /* GCC 4.8+, is ASAN enabled? */ | 
 | #    define _Py_NO_ADDRESS_SAFETY_ANALYSIS \ | 
 |         __attribute__((no_address_safety_analysis)) | 
 | #  endif | 
 |    // TSAN is supported since GCC 4.8, but __SANITIZE_THREAD__ macro | 
 |    // is provided only since GCC 7. | 
 | #  if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) | 
 | #    define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) | 
 | #  endif | 
 | #endif | 
 |  | 
 | #ifndef _Py_NO_ADDRESS_SAFETY_ANALYSIS | 
 | #  define _Py_NO_ADDRESS_SAFETY_ANALYSIS | 
 | #endif | 
 | #ifndef _Py_NO_SANITIZE_THREAD | 
 | #  define _Py_NO_SANITIZE_THREAD | 
 | #endif | 
 | #ifndef _Py_NO_SANITIZE_MEMORY | 
 | #  define _Py_NO_SANITIZE_MEMORY | 
 | #endif | 
 |  | 
 | #ifdef WITH_PYMALLOC | 
 |  | 
 | #ifdef MS_WINDOWS | 
 | #  include <windows.h> | 
 | #elif defined(HAVE_MMAP) | 
 | #  include <sys/mman.h> | 
 | #  ifdef MAP_ANONYMOUS | 
 | #    define ARENAS_USE_MMAP | 
 | #  endif | 
 | #endif | 
 |  | 
 | /* Forward declaration */ | 
 | static void* _PyObject_Malloc(void *ctx, size_t size); | 
 | static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize); | 
 | static void _PyObject_Free(void *ctx, void *p); | 
 | static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size); | 
 | #endif | 
 |  | 
 |  | 
 | /* bpo-35053: Declare tracemalloc configuration here rather than | 
 |    Modules/_tracemalloc.c because _tracemalloc can be compiled as dynamic | 
 |    library, whereas _Py_NewReference() requires it. */ | 
 | struct _PyTraceMalloc_Config _Py_tracemalloc_config = _PyTraceMalloc_Config_INIT; | 
 |  | 
 |  | 
 | static void * | 
 | _PyMem_RawMalloc(void *ctx, size_t size) | 
 | { | 
 |     /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL | 
 |        for malloc(0), which would be treated as an error. Some platforms would | 
 |        return a pointer with no memory behind it, which would break pymalloc. | 
 |        To solve these problems, allocate an extra byte. */ | 
 |     if (size == 0) | 
 |         size = 1; | 
 |     return malloc(size); | 
 | } | 
 |  | 
 | static void * | 
 | _PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize) | 
 | { | 
 |     /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL | 
 |        for calloc(0, 0), which would be treated as an error. Some platforms | 
 |        would return a pointer with no memory behind it, which would break | 
 |        pymalloc.  To solve these problems, allocate an extra byte. */ | 
 |     if (nelem == 0 || elsize == 0) { | 
 |         nelem = 1; | 
 |         elsize = 1; | 
 |     } | 
 |     return calloc(nelem, elsize); | 
 | } | 
 |  | 
 | static void * | 
 | _PyMem_RawRealloc(void *ctx, void *ptr, size_t size) | 
 | { | 
 |     if (size == 0) | 
 |         size = 1; | 
 |     return realloc(ptr, size); | 
 | } | 
 |  | 
 | static void | 
 | _PyMem_RawFree(void *ctx, void *ptr) | 
 | { | 
 |     free(ptr); | 
 | } | 
 |  | 
 |  | 
 | #ifdef MS_WINDOWS | 
 | static void * | 
 | _PyObject_ArenaVirtualAlloc(void *ctx, size_t size) | 
 | { | 
 |     return VirtualAlloc(NULL, size, | 
 |                         MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); | 
 | } | 
 |  | 
 | static void | 
 | _PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size) | 
 | { | 
 |     VirtualFree(ptr, 0, MEM_RELEASE); | 
 | } | 
 |  | 
 | #elif defined(ARENAS_USE_MMAP) | 
 | static void * | 
 | _PyObject_ArenaMmap(void *ctx, size_t size) | 
 | { | 
 |     void *ptr; | 
 |     ptr = mmap(NULL, size, PROT_READ|PROT_WRITE, | 
 |                MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); | 
 |     if (ptr == MAP_FAILED) | 
 |         return NULL; | 
 |     assert(ptr != NULL); | 
 |     return ptr; | 
 | } | 
 |  | 
 | static void | 
 | _PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size) | 
 | { | 
 |     munmap(ptr, size); | 
 | } | 
 |  | 
 | #else | 
 | static void * | 
 | _PyObject_ArenaMalloc(void *ctx, size_t size) | 
 | { | 
 |     return malloc(size); | 
 | } | 
 |  | 
 | static void | 
 | _PyObject_ArenaFree(void *ctx, void *ptr, size_t size) | 
 | { | 
 |     free(ptr); | 
 | } | 
 | #endif | 
 |  | 
 | #define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree} | 
 | #ifdef WITH_PYMALLOC | 
 | #  define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free} | 
 | #endif | 
 |  | 
 | #define PYRAW_ALLOC MALLOC_ALLOC | 
 | #ifdef WITH_PYMALLOC | 
 | #  define PYOBJ_ALLOC PYMALLOC_ALLOC | 
 | #else | 
 | #  define PYOBJ_ALLOC MALLOC_ALLOC | 
 | #endif | 
 | #define PYMEM_ALLOC PYOBJ_ALLOC | 
 |  | 
 | typedef struct { | 
 |     /* We tag each block with an API ID in order to tag API violations */ | 
 |     char api_id; | 
 |     PyMemAllocatorEx alloc; | 
 | } debug_alloc_api_t; | 
 | static struct { | 
 |     debug_alloc_api_t raw; | 
 |     debug_alloc_api_t mem; | 
 |     debug_alloc_api_t obj; | 
 | } _PyMem_Debug = { | 
 |     {'r', PYRAW_ALLOC}, | 
 |     {'m', PYMEM_ALLOC}, | 
 |     {'o', PYOBJ_ALLOC} | 
 |     }; | 
 |  | 
 | #define PYDBGRAW_ALLOC \ | 
 |     {&_PyMem_Debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree} | 
 | #define PYDBGMEM_ALLOC \ | 
 |     {&_PyMem_Debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} | 
 | #define PYDBGOBJ_ALLOC \ | 
 |     {&_PyMem_Debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} | 
 |  | 
 | #ifdef Py_DEBUG | 
 | static PyMemAllocatorEx _PyMem_Raw = PYDBGRAW_ALLOC; | 
 | static PyMemAllocatorEx _PyMem = PYDBGMEM_ALLOC; | 
 | static PyMemAllocatorEx _PyObject = PYDBGOBJ_ALLOC; | 
 | #else | 
 | static PyMemAllocatorEx _PyMem_Raw = PYRAW_ALLOC; | 
 | static PyMemAllocatorEx _PyMem = PYMEM_ALLOC; | 
 | static PyMemAllocatorEx _PyObject = PYOBJ_ALLOC; | 
 | #endif | 
 |  | 
 |  | 
 | static int | 
 | pymem_set_default_allocator(PyMemAllocatorDomain domain, int debug, | 
 |                             PyMemAllocatorEx *old_alloc) | 
 | { | 
 |     if (old_alloc != NULL) { | 
 |         PyMem_GetAllocator(domain, old_alloc); | 
 |     } | 
 |  | 
 |  | 
 |     PyMemAllocatorEx new_alloc; | 
 |     switch(domain) | 
 |     { | 
 |     case PYMEM_DOMAIN_RAW: | 
 |         new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC; | 
 |         break; | 
 |     case PYMEM_DOMAIN_MEM: | 
 |         new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC; | 
 |         break; | 
 |     case PYMEM_DOMAIN_OBJ: | 
 |         new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC; | 
 |         break; | 
 |     default: | 
 |         /* unknown domain */ | 
 |         return -1; | 
 |     } | 
 |     PyMem_SetAllocator(domain, &new_alloc); | 
 |     if (debug) { | 
 |         _PyMem_SetupDebugHooksDomain(domain); | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 |  | 
 | int | 
 | _PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain, | 
 |                            PyMemAllocatorEx *old_alloc) | 
 | { | 
 | #ifdef Py_DEBUG | 
 |     const int debug = 1; | 
 | #else | 
 |     const int debug = 0; | 
 | #endif | 
 |     return pymem_set_default_allocator(domain, debug, old_alloc); | 
 | } | 
 |  | 
 |  | 
 | int | 
 | _PyMem_SetupAllocators(const char *opt) | 
 | { | 
 |     if (opt == NULL || *opt == '\0') { | 
 |         /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line | 
 |            options): use default memory allocators */ | 
 |         opt = "default"; | 
 |     } | 
 |  | 
 |     if (strcmp(opt, "default") == 0) { | 
 |         (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, NULL); | 
 |         (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_MEM, NULL); | 
 |         (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_OBJ, NULL); | 
 |     } | 
 |     else if (strcmp(opt, "debug") == 0) { | 
 |         (void)pymem_set_default_allocator(PYMEM_DOMAIN_RAW, 1, NULL); | 
 |         (void)pymem_set_default_allocator(PYMEM_DOMAIN_MEM, 1, NULL); | 
 |         (void)pymem_set_default_allocator(PYMEM_DOMAIN_OBJ, 1, NULL); | 
 |     } | 
 | #ifdef WITH_PYMALLOC | 
 |     else if (strcmp(opt, "pymalloc") == 0 || strcmp(opt, "pymalloc_debug") == 0) { | 
 |         PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; | 
 |         PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc); | 
 |  | 
 |         PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; | 
 |         PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &pymalloc); | 
 |         PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &pymalloc); | 
 |  | 
 |         if (strcmp(opt, "pymalloc_debug") == 0) { | 
 |             PyMem_SetupDebugHooks(); | 
 |         } | 
 |     } | 
 | #endif | 
 |     else if (strcmp(opt, "malloc") == 0 || strcmp(opt, "malloc_debug") == 0) { | 
 |         PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; | 
 |         PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc); | 
 |         PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &malloc_alloc); | 
 |         PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &malloc_alloc); | 
 |  | 
 |         if (strcmp(opt, "malloc_debug") == 0) { | 
 |             PyMem_SetupDebugHooks(); | 
 |         } | 
 |     } | 
 |     else { | 
 |         /* unknown allocator */ | 
 |         return -1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b) | 
 | { | 
 |     return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0); | 
 | } | 
 |  | 
 |  | 
 | const char* | 
 | _PyMem_GetAllocatorsName(void) | 
 | { | 
 |     PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; | 
 | #ifdef WITH_PYMALLOC | 
 |     PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; | 
 | #endif | 
 |  | 
 |     if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && | 
 |         pymemallocator_eq(&_PyMem, &malloc_alloc) && | 
 |         pymemallocator_eq(&_PyObject, &malloc_alloc)) | 
 |     { | 
 |         return "malloc"; | 
 |     } | 
 | #ifdef WITH_PYMALLOC | 
 |     if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && | 
 |         pymemallocator_eq(&_PyMem, &pymalloc) && | 
 |         pymemallocator_eq(&_PyObject, &pymalloc)) | 
 |     { | 
 |         return "pymalloc"; | 
 |     } | 
 | #endif | 
 |  | 
 |     PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC; | 
 |     PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC; | 
 |     PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC; | 
 |  | 
 |     if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) && | 
 |         pymemallocator_eq(&_PyMem, &dbg_mem) && | 
 |         pymemallocator_eq(&_PyObject, &dbg_obj)) | 
 |     { | 
 |         /* Debug hooks installed */ | 
 |         if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && | 
 |             pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) && | 
 |             pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc)) | 
 |         { | 
 |             return "malloc_debug"; | 
 |         } | 
 | #ifdef WITH_PYMALLOC | 
 |         if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && | 
 |             pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) && | 
 |             pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc)) | 
 |         { | 
 |             return "pymalloc_debug"; | 
 |         } | 
 | #endif | 
 |     } | 
 |     return NULL; | 
 | } | 
 |  | 
 |  | 
 | #undef MALLOC_ALLOC | 
 | #undef PYMALLOC_ALLOC | 
 | #undef PYRAW_ALLOC | 
 | #undef PYMEM_ALLOC | 
 | #undef PYOBJ_ALLOC | 
 | #undef PYDBGRAW_ALLOC | 
 | #undef PYDBGMEM_ALLOC | 
 | #undef PYDBGOBJ_ALLOC | 
 |  | 
 |  | 
 | static PyObjectArenaAllocator _PyObject_Arena = {NULL, | 
 | #ifdef MS_WINDOWS | 
 |     _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree | 
 | #elif defined(ARENAS_USE_MMAP) | 
 |     _PyObject_ArenaMmap, _PyObject_ArenaMunmap | 
 | #else | 
 |     _PyObject_ArenaMalloc, _PyObject_ArenaFree | 
 | #endif | 
 |     }; | 
 |  | 
 | #ifdef WITH_PYMALLOC | 
 | static int | 
 | _PyMem_DebugEnabled(void) | 
 | { | 
 |     return (_PyObject.malloc == _PyMem_DebugMalloc); | 
 | } | 
 |  | 
 | static int | 
 | _PyMem_PymallocEnabled(void) | 
 | { | 
 |     if (_PyMem_DebugEnabled()) { | 
 |         return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc); | 
 |     } | 
 |     else { | 
 |         return (_PyObject.malloc == _PyObject_Malloc); | 
 |     } | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | static void | 
 | _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain) | 
 | { | 
 |     PyMemAllocatorEx alloc; | 
 |  | 
 |     if (domain == PYMEM_DOMAIN_RAW) { | 
 |         if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) { | 
 |             return; | 
 |         } | 
 |  | 
 |         PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc); | 
 |         alloc.ctx = &_PyMem_Debug.raw; | 
 |         alloc.malloc = _PyMem_DebugRawMalloc; | 
 |         alloc.calloc = _PyMem_DebugRawCalloc; | 
 |         alloc.realloc = _PyMem_DebugRawRealloc; | 
 |         alloc.free = _PyMem_DebugRawFree; | 
 |         PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc); | 
 |     } | 
 |     else if (domain == PYMEM_DOMAIN_MEM) { | 
 |         if (_PyMem.malloc == _PyMem_DebugMalloc) { | 
 |             return; | 
 |         } | 
 |  | 
 |         PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc); | 
 |         alloc.ctx = &_PyMem_Debug.mem; | 
 |         alloc.malloc = _PyMem_DebugMalloc; | 
 |         alloc.calloc = _PyMem_DebugCalloc; | 
 |         alloc.realloc = _PyMem_DebugRealloc; | 
 |         alloc.free = _PyMem_DebugFree; | 
 |         PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc); | 
 |     } | 
 |     else if (domain == PYMEM_DOMAIN_OBJ)  { | 
 |         if (_PyObject.malloc == _PyMem_DebugMalloc) { | 
 |             return; | 
 |         } | 
 |  | 
 |         PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc); | 
 |         alloc.ctx = &_PyMem_Debug.obj; | 
 |         alloc.malloc = _PyMem_DebugMalloc; | 
 |         alloc.calloc = _PyMem_DebugCalloc; | 
 |         alloc.realloc = _PyMem_DebugRealloc; | 
 |         alloc.free = _PyMem_DebugFree; | 
 |         PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | void | 
 | PyMem_SetupDebugHooks(void) | 
 | { | 
 |     _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_RAW); | 
 |     _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_MEM); | 
 |     _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_OBJ); | 
 | } | 
 |  | 
 | void | 
 | PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) | 
 | { | 
 |     switch(domain) | 
 |     { | 
 |     case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break; | 
 |     case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break; | 
 |     case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break; | 
 |     default: | 
 |         /* unknown domain: set all attributes to NULL */ | 
 |         allocator->ctx = NULL; | 
 |         allocator->malloc = NULL; | 
 |         allocator->calloc = NULL; | 
 |         allocator->realloc = NULL; | 
 |         allocator->free = NULL; | 
 |     } | 
 | } | 
 |  | 
 | void | 
 | PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) | 
 | { | 
 |     switch(domain) | 
 |     { | 
 |     case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break; | 
 |     case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break; | 
 |     case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break; | 
 |     /* ignore unknown domain */ | 
 |     } | 
 | } | 
 |  | 
 | void | 
 | PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator) | 
 | { | 
 |     *allocator = _PyObject_Arena; | 
 | } | 
 |  | 
 | void | 
 | PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator) | 
 | { | 
 |     _PyObject_Arena = *allocator; | 
 | } | 
 |  | 
 | void * | 
 | PyMem_RawMalloc(size_t size) | 
 | { | 
 |     /* | 
 |      * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes. | 
 |      * Most python internals blindly use a signed Py_ssize_t to track | 
 |      * things without checking for overflows or negatives. | 
 |      * As size_t is unsigned, checking for size < 0 is not required. | 
 |      */ | 
 |     if (size > (size_t)PY_SSIZE_T_MAX) | 
 |         return NULL; | 
 |     return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size); | 
 | } | 
 |  | 
 | void * | 
 | PyMem_RawCalloc(size_t nelem, size_t elsize) | 
 | { | 
 |     /* see PyMem_RawMalloc() */ | 
 |     if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) | 
 |         return NULL; | 
 |     return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize); | 
 | } | 
 |  | 
 | void* | 
 | PyMem_RawRealloc(void *ptr, size_t new_size) | 
 | { | 
 |     /* see PyMem_RawMalloc() */ | 
 |     if (new_size > (size_t)PY_SSIZE_T_MAX) | 
 |         return NULL; | 
 |     return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size); | 
 | } | 
 |  | 
 | void PyMem_RawFree(void *ptr) | 
 | { | 
 |     _PyMem_Raw.free(_PyMem_Raw.ctx, ptr); | 
 | } | 
 |  | 
 |  | 
 | void * | 
 | PyMem_Malloc(size_t size) | 
 | { | 
 |     /* see PyMem_RawMalloc() */ | 
 |     if (size > (size_t)PY_SSIZE_T_MAX) | 
 |         return NULL; | 
 |     return _PyMem.malloc(_PyMem.ctx, size); | 
 | } | 
 |  | 
 | void * | 
 | PyMem_Calloc(size_t nelem, size_t elsize) | 
 | { | 
 |     /* see PyMem_RawMalloc() */ | 
 |     if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) | 
 |         return NULL; | 
 |     return _PyMem.calloc(_PyMem.ctx, nelem, elsize); | 
 | } | 
 |  | 
 | void * | 
 | PyMem_Realloc(void *ptr, size_t new_size) | 
 | { | 
 |     /* see PyMem_RawMalloc() */ | 
 |     if (new_size > (size_t)PY_SSIZE_T_MAX) | 
 |         return NULL; | 
 |     return _PyMem.realloc(_PyMem.ctx, ptr, new_size); | 
 | } | 
 |  | 
 | void | 
 | PyMem_Free(void *ptr) | 
 | { | 
 |     _PyMem.free(_PyMem.ctx, ptr); | 
 | } | 
 |  | 
 |  | 
 | wchar_t* | 
 | _PyMem_RawWcsdup(const wchar_t *str) | 
 | { | 
 |     assert(str != NULL); | 
 |  | 
 |     size_t len = wcslen(str); | 
 |     if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     size_t size = (len + 1) * sizeof(wchar_t); | 
 |     wchar_t *str2 = PyMem_RawMalloc(size); | 
 |     if (str2 == NULL) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     memcpy(str2, str, size); | 
 |     return str2; | 
 | } | 
 |  | 
 | char * | 
 | _PyMem_RawStrdup(const char *str) | 
 | { | 
 |     assert(str != NULL); | 
 |     size_t size = strlen(str) + 1; | 
 |     char *copy = PyMem_RawMalloc(size); | 
 |     if (copy == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     memcpy(copy, str, size); | 
 |     return copy; | 
 | } | 
 |  | 
 | char * | 
 | _PyMem_Strdup(const char *str) | 
 | { | 
 |     assert(str != NULL); | 
 |     size_t size = strlen(str) + 1; | 
 |     char *copy = PyMem_Malloc(size); | 
 |     if (copy == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     memcpy(copy, str, size); | 
 |     return copy; | 
 | } | 
 |  | 
 | void * | 
 | PyObject_Malloc(size_t size) | 
 | { | 
 |     /* see PyMem_RawMalloc() */ | 
 |     if (size > (size_t)PY_SSIZE_T_MAX) | 
 |         return NULL; | 
 |     return _PyObject.malloc(_PyObject.ctx, size); | 
 | } | 
 |  | 
 | void * | 
 | PyObject_Calloc(size_t nelem, size_t elsize) | 
 | { | 
 |     /* see PyMem_RawMalloc() */ | 
 |     if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) | 
 |         return NULL; | 
 |     return _PyObject.calloc(_PyObject.ctx, nelem, elsize); | 
 | } | 
 |  | 
 | void * | 
 | PyObject_Realloc(void *ptr, size_t new_size) | 
 | { | 
 |     /* see PyMem_RawMalloc() */ | 
 |     if (new_size > (size_t)PY_SSIZE_T_MAX) | 
 |         return NULL; | 
 |     return _PyObject.realloc(_PyObject.ctx, ptr, new_size); | 
 | } | 
 |  | 
 | void | 
 | PyObject_Free(void *ptr) | 
 | { | 
 |     _PyObject.free(_PyObject.ctx, ptr); | 
 | } | 
 |  | 
 |  | 
 | #ifdef WITH_PYMALLOC | 
 |  | 
 | #ifdef WITH_VALGRIND | 
 | #include <valgrind/valgrind.h> | 
 |  | 
 | /* If we're using GCC, use __builtin_expect() to reduce overhead of | 
 |    the valgrind checks */ | 
 | #if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__) | 
 | #  define UNLIKELY(value) __builtin_expect((value), 0) | 
 | #else | 
 | #  define UNLIKELY(value) (value) | 
 | #endif | 
 |  | 
 | /* -1 indicates that we haven't checked that we're running on valgrind yet. */ | 
 | static int running_on_valgrind = -1; | 
 | #endif | 
 |  | 
 |  | 
 | /* An object allocator for Python. | 
 |  | 
 |    Here is an introduction to the layers of the Python memory architecture, | 
 |    showing where the object allocator is actually used (layer +2), It is | 
 |    called for every object allocation and deallocation (PyObject_New/Del), | 
 |    unless the object-specific allocators implement a proprietary allocation | 
 |    scheme (ex.: ints use a simple free list). This is also the place where | 
 |    the cyclic garbage collector operates selectively on container objects. | 
 |  | 
 |  | 
 |     Object-specific allocators | 
 |     _____   ______   ______       ________ | 
 |    [ int ] [ dict ] [ list ] ... [ string ]       Python core         | | 
 | +3 | <----- Object-specific memory -----> | <-- Non-object memory --> | | 
 |     _______________________________       |                           | | 
 |    [   Python's object allocator   ]      |                           | | 
 | +2 | ####### Object memory ####### | <------ Internal buffers ------> | | 
 |     ______________________________________________________________    | | 
 |    [          Python's raw memory allocator (PyMem_ API)          ]   | | 
 | +1 | <----- Python memory (under PyMem manager's control) ------> |   | | 
 |     __________________________________________________________________ | 
 |    [    Underlying general-purpose allocator (ex: C library malloc)   ] | 
 |  0 | <------ Virtual memory allocated for the python process -------> | | 
 |  | 
 |    ========================================================================= | 
 |     _______________________________________________________________________ | 
 |    [                OS-specific Virtual Memory Manager (VMM)               ] | 
 | -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> | | 
 |     __________________________________   __________________________________ | 
 |    [                                  ] [                                  ] | 
 | -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> | | 
 |  | 
 | */ | 
 | /*==========================================================================*/ | 
 |  | 
 | /* A fast, special-purpose memory allocator for small blocks, to be used | 
 |    on top of a general-purpose malloc -- heavily based on previous art. */ | 
 |  | 
 | /* Vladimir Marangozov -- August 2000 */ | 
 |  | 
 | /* | 
 |  * "Memory management is where the rubber meets the road -- if we do the wrong | 
 |  * thing at any level, the results will not be good. And if we don't make the | 
 |  * levels work well together, we are in serious trouble." (1) | 
 |  * | 
 |  * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, | 
 |  *    "Dynamic Storage Allocation: A Survey and Critical Review", | 
 |  *    in Proc. 1995 Int'l. Workshop on Memory Management, September 1995. | 
 |  */ | 
 |  | 
 | /* #undef WITH_MEMORY_LIMITS */         /* disable mem limit checks  */ | 
 |  | 
 | /*==========================================================================*/ | 
 |  | 
 | /* | 
 |  * Allocation strategy abstract: | 
 |  * | 
 |  * For small requests, the allocator sub-allocates <Big> blocks of memory. | 
 |  * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the | 
 |  * system's allocator. | 
 |  * | 
 |  * Small requests are grouped in size classes spaced 8 bytes apart, due | 
 |  * to the required valid alignment of the returned address. Requests of | 
 |  * a particular size are serviced from memory pools of 4K (one VMM page). | 
 |  * Pools are fragmented on demand and contain free lists of blocks of one | 
 |  * particular size class. In other words, there is a fixed-size allocator | 
 |  * for each size class. Free pools are shared by the different allocators | 
 |  * thus minimizing the space reserved for a particular size class. | 
 |  * | 
 |  * This allocation strategy is a variant of what is known as "simple | 
 |  * segregated storage based on array of free lists". The main drawback of | 
 |  * simple segregated storage is that we might end up with lot of reserved | 
 |  * memory for the different free lists, which degenerate in time. To avoid | 
 |  * this, we partition each free list in pools and we share dynamically the | 
 |  * reserved space between all free lists. This technique is quite efficient | 
 |  * for memory intensive programs which allocate mainly small-sized blocks. | 
 |  * | 
 |  * For small requests we have the following table: | 
 |  * | 
 |  * Request in bytes     Size of allocated block      Size class idx | 
 |  * ---------------------------------------------------------------- | 
 |  *        1-8                     8                       0 | 
 |  *        9-16                   16                       1 | 
 |  *       17-24                   24                       2 | 
 |  *       25-32                   32                       3 | 
 |  *       33-40                   40                       4 | 
 |  *       41-48                   48                       5 | 
 |  *       49-56                   56                       6 | 
 |  *       57-64                   64                       7 | 
 |  *       65-72                   72                       8 | 
 |  *        ...                   ...                     ... | 
 |  *      497-504                 504                      62 | 
 |  *      505-512                 512                      63 | 
 |  * | 
 |  *      0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying | 
 |  *      allocator. | 
 |  */ | 
 |  | 
 | /*==========================================================================*/ | 
 |  | 
 | /* | 
 |  * -- Main tunable settings section -- | 
 |  */ | 
 |  | 
 | /* | 
 |  * Alignment of addresses returned to the user. 8-bytes alignment works | 
 |  * on most current architectures (with 32-bit or 64-bit address busses). | 
 |  * The alignment value is also used for grouping small requests in size | 
 |  * classes spaced ALIGNMENT bytes apart. | 
 |  * | 
 |  * You shouldn't change this unless you know what you are doing. | 
 |  */ | 
 | #define ALIGNMENT               8               /* must be 2^N */ | 
 | #define ALIGNMENT_SHIFT         3 | 
 |  | 
 | /* Return the number of bytes in size class I, as a uint. */ | 
 | #define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT) | 
 |  | 
 | /* | 
 |  * Max size threshold below which malloc requests are considered to be | 
 |  * small enough in order to use preallocated memory pools. You can tune | 
 |  * this value according to your application behaviour and memory needs. | 
 |  * | 
 |  * Note: a size threshold of 512 guarantees that newly created dictionaries | 
 |  * will be allocated from preallocated memory pools on 64-bit. | 
 |  * | 
 |  * The following invariants must hold: | 
 |  *      1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512 | 
 |  *      2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT | 
 |  * | 
 |  * Although not required, for better performance and space efficiency, | 
 |  * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2. | 
 |  */ | 
 | #define SMALL_REQUEST_THRESHOLD 512 | 
 | #define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT) | 
 |  | 
 | /* | 
 |  * The system's VMM page size can be obtained on most unices with a | 
 |  * getpagesize() call or deduced from various header files. To make | 
 |  * things simpler, we assume that it is 4K, which is OK for most systems. | 
 |  * It is probably better if this is the native page size, but it doesn't | 
 |  * have to be.  In theory, if SYSTEM_PAGE_SIZE is larger than the native page | 
 |  * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation | 
 |  * violation fault.  4K is apparently OK for all the platforms that python | 
 |  * currently targets. | 
 |  */ | 
 | #define SYSTEM_PAGE_SIZE        (4 * 1024) | 
 | #define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1) | 
 |  | 
 | /* | 
 |  * Maximum amount of memory managed by the allocator for small requests. | 
 |  */ | 
 | #ifdef WITH_MEMORY_LIMITS | 
 | #ifndef SMALL_MEMORY_LIMIT | 
 | #define SMALL_MEMORY_LIMIT      (64 * 1024 * 1024)      /* 64 MB -- more? */ | 
 | #endif | 
 | #endif | 
 |  | 
 | /* | 
 |  * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned | 
 |  * on a page boundary. This is a reserved virtual address space for the | 
 |  * current process (obtained through a malloc()/mmap() call). In no way this | 
 |  * means that the memory arenas will be used entirely. A malloc(<Big>) is | 
 |  * usually an address range reservation for <Big> bytes, unless all pages within | 
 |  * this space are referenced subsequently. So malloc'ing big blocks and not | 
 |  * using them does not mean "wasting memory". It's an addressable range | 
 |  * wastage... | 
 |  * | 
 |  * Arenas are allocated with mmap() on systems supporting anonymous memory | 
 |  * mappings to reduce heap fragmentation. | 
 |  */ | 
 | #define ARENA_SIZE              (256 << 10)     /* 256KB */ | 
 |  | 
 | #ifdef WITH_MEMORY_LIMITS | 
 | #define MAX_ARENAS              (SMALL_MEMORY_LIMIT / ARENA_SIZE) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Size of the pools used for small blocks. Should be a power of 2, | 
 |  * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k. | 
 |  */ | 
 | #define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */ | 
 | #define POOL_SIZE_MASK          SYSTEM_PAGE_SIZE_MASK | 
 |  | 
 | /* | 
 |  * -- End of tunable settings section -- | 
 |  */ | 
 |  | 
 | /*==========================================================================*/ | 
 |  | 
 | /* When you say memory, my mind reasons in terms of (pointers to) blocks */ | 
 | typedef uint8_t block; | 
 |  | 
 | /* Pool for small blocks. */ | 
 | struct pool_header { | 
 |     union { block *_padding; | 
 |             uint count; } ref;          /* number of allocated blocks    */ | 
 |     block *freeblock;                   /* pool's free list head         */ | 
 |     struct pool_header *nextpool;       /* next pool of this size class  */ | 
 |     struct pool_header *prevpool;       /* previous pool       ""        */ | 
 |     uint arenaindex;                    /* index into arenas of base adr */ | 
 |     uint szidx;                         /* block size class index        */ | 
 |     uint nextoffset;                    /* bytes to virgin block         */ | 
 |     uint maxnextoffset;                 /* largest valid nextoffset      */ | 
 | }; | 
 |  | 
 | typedef struct pool_header *poolp; | 
 |  | 
 | /* Record keeping for arenas. */ | 
 | struct arena_object { | 
 |     /* The address of the arena, as returned by malloc.  Note that 0 | 
 |      * will never be returned by a successful malloc, and is used | 
 |      * here to mark an arena_object that doesn't correspond to an | 
 |      * allocated arena. | 
 |      */ | 
 |     uintptr_t address; | 
 |  | 
 |     /* Pool-aligned pointer to the next pool to be carved off. */ | 
 |     block* pool_address; | 
 |  | 
 |     /* The number of available pools in the arena:  free pools + never- | 
 |      * allocated pools. | 
 |      */ | 
 |     uint nfreepools; | 
 |  | 
 |     /* The total number of pools in the arena, whether or not available. */ | 
 |     uint ntotalpools; | 
 |  | 
 |     /* Singly-linked list of available pools. */ | 
 |     struct pool_header* freepools; | 
 |  | 
 |     /* Whenever this arena_object is not associated with an allocated | 
 |      * arena, the nextarena member is used to link all unassociated | 
 |      * arena_objects in the singly-linked `unused_arena_objects` list. | 
 |      * The prevarena member is unused in this case. | 
 |      * | 
 |      * When this arena_object is associated with an allocated arena | 
 |      * with at least one available pool, both members are used in the | 
 |      * doubly-linked `usable_arenas` list, which is maintained in | 
 |      * increasing order of `nfreepools` values. | 
 |      * | 
 |      * Else this arena_object is associated with an allocated arena | 
 |      * all of whose pools are in use.  `nextarena` and `prevarena` | 
 |      * are both meaningless in this case. | 
 |      */ | 
 |     struct arena_object* nextarena; | 
 |     struct arena_object* prevarena; | 
 | }; | 
 |  | 
 | #define POOL_OVERHEAD   _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT) | 
 |  | 
 | #define DUMMY_SIZE_IDX          0xffff  /* size class of newly cached pools */ | 
 |  | 
 | /* Round pointer P down to the closest pool-aligned address <= P, as a poolp */ | 
 | #define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE)) | 
 |  | 
 | /* Return total number of blocks in pool of size index I, as a uint. */ | 
 | #define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I)) | 
 |  | 
 | /*==========================================================================*/ | 
 |  | 
 | /* | 
 |  * Pool table -- headed, circular, doubly-linked lists of partially used pools. | 
 |  | 
 | This is involved.  For an index i, usedpools[i+i] is the header for a list of | 
 | all partially used pools holding small blocks with "size class idx" i. So | 
 | usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size | 
 | 16, and so on:  index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT. | 
 |  | 
 | Pools are carved off an arena's highwater mark (an arena_object's pool_address | 
 | member) as needed.  Once carved off, a pool is in one of three states forever | 
 | after: | 
 |  | 
 | used == partially used, neither empty nor full | 
 |     At least one block in the pool is currently allocated, and at least one | 
 |     block in the pool is not currently allocated (note this implies a pool | 
 |     has room for at least two blocks). | 
 |     This is a pool's initial state, as a pool is created only when malloc | 
 |     needs space. | 
 |     The pool holds blocks of a fixed size, and is in the circular list headed | 
 |     at usedpools[i] (see above).  It's linked to the other used pools of the | 
 |     same size class via the pool_header's nextpool and prevpool members. | 
 |     If all but one block is currently allocated, a malloc can cause a | 
 |     transition to the full state.  If all but one block is not currently | 
 |     allocated, a free can cause a transition to the empty state. | 
 |  | 
 | full == all the pool's blocks are currently allocated | 
 |     On transition to full, a pool is unlinked from its usedpools[] list. | 
 |     It's not linked to from anything then anymore, and its nextpool and | 
 |     prevpool members are meaningless until it transitions back to used. | 
 |     A free of a block in a full pool puts the pool back in the used state. | 
 |     Then it's linked in at the front of the appropriate usedpools[] list, so | 
 |     that the next allocation for its size class will reuse the freed block. | 
 |  | 
 | empty == all the pool's blocks are currently available for allocation | 
 |     On transition to empty, a pool is unlinked from its usedpools[] list, | 
 |     and linked to the front of its arena_object's singly-linked freepools list, | 
 |     via its nextpool member.  The prevpool member has no meaning in this case. | 
 |     Empty pools have no inherent size class:  the next time a malloc finds | 
 |     an empty list in usedpools[], it takes the first pool off of freepools. | 
 |     If the size class needed happens to be the same as the size class the pool | 
 |     last had, some pool initialization can be skipped. | 
 |  | 
 |  | 
 | Block Management | 
 |  | 
 | Blocks within pools are again carved out as needed.  pool->freeblock points to | 
 | the start of a singly-linked list of free blocks within the pool.  When a | 
 | block is freed, it's inserted at the front of its pool's freeblock list.  Note | 
 | that the available blocks in a pool are *not* linked all together when a pool | 
 | is initialized.  Instead only "the first two" (lowest addresses) blocks are | 
 | set up, returning the first such block, and setting pool->freeblock to a | 
 | one-block list holding the second such block.  This is consistent with that | 
 | pymalloc strives at all levels (arena, pool, and block) never to touch a piece | 
 | of memory until it's actually needed. | 
 |  | 
 | So long as a pool is in the used state, we're certain there *is* a block | 
 | available for allocating, and pool->freeblock is not NULL.  If pool->freeblock | 
 | points to the end of the free list before we've carved the entire pool into | 
 | blocks, that means we simply haven't yet gotten to one of the higher-address | 
 | blocks.  The offset from the pool_header to the start of "the next" virgin | 
 | block is stored in the pool_header nextoffset member, and the largest value | 
 | of nextoffset that makes sense is stored in the maxnextoffset member when a | 
 | pool is initialized.  All the blocks in a pool have been passed out at least | 
 | once when and only when nextoffset > maxnextoffset. | 
 |  | 
 |  | 
 | Major obscurity:  While the usedpools vector is declared to have poolp | 
 | entries, it doesn't really.  It really contains two pointers per (conceptual) | 
 | poolp entry, the nextpool and prevpool members of a pool_header.  The | 
 | excruciating initialization code below fools C so that | 
 |  | 
 |     usedpool[i+i] | 
 |  | 
 | "acts like" a genuine poolp, but only so long as you only reference its | 
 | nextpool and prevpool members.  The "- 2*sizeof(block *)" gibberish is | 
 | compensating for that a pool_header's nextpool and prevpool members | 
 | immediately follow a pool_header's first two members: | 
 |  | 
 |     union { block *_padding; | 
 |             uint count; } ref; | 
 |     block *freeblock; | 
 |  | 
 | each of which consume sizeof(block *) bytes.  So what usedpools[i+i] really | 
 | contains is a fudged-up pointer p such that *if* C believes it's a poolp | 
 | pointer, then p->nextpool and p->prevpool are both p (meaning that the headed | 
 | circular list is empty). | 
 |  | 
 | It's unclear why the usedpools setup is so convoluted.  It could be to | 
 | minimize the amount of cache required to hold this heavily-referenced table | 
 | (which only *needs* the two interpool pointer members of a pool_header). OTOH, | 
 | referencing code has to remember to "double the index" and doing so isn't | 
 | free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying | 
 | on that C doesn't insert any padding anywhere in a pool_header at or before | 
 | the prevpool member. | 
 | **************************************************************************** */ | 
 |  | 
 | #define PTA(x)  ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *))) | 
 | #define PT(x)   PTA(x), PTA(x) | 
 |  | 
 | static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { | 
 |     PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7) | 
 | #if NB_SMALL_SIZE_CLASSES > 8 | 
 |     , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15) | 
 | #if NB_SMALL_SIZE_CLASSES > 16 | 
 |     , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23) | 
 | #if NB_SMALL_SIZE_CLASSES > 24 | 
 |     , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31) | 
 | #if NB_SMALL_SIZE_CLASSES > 32 | 
 |     , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39) | 
 | #if NB_SMALL_SIZE_CLASSES > 40 | 
 |     , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47) | 
 | #if NB_SMALL_SIZE_CLASSES > 48 | 
 |     , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55) | 
 | #if NB_SMALL_SIZE_CLASSES > 56 | 
 |     , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63) | 
 | #if NB_SMALL_SIZE_CLASSES > 64 | 
 | #error "NB_SMALL_SIZE_CLASSES should be less than 64" | 
 | #endif /* NB_SMALL_SIZE_CLASSES > 64 */ | 
 | #endif /* NB_SMALL_SIZE_CLASSES > 56 */ | 
 | #endif /* NB_SMALL_SIZE_CLASSES > 48 */ | 
 | #endif /* NB_SMALL_SIZE_CLASSES > 40 */ | 
 | #endif /* NB_SMALL_SIZE_CLASSES > 32 */ | 
 | #endif /* NB_SMALL_SIZE_CLASSES > 24 */ | 
 | #endif /* NB_SMALL_SIZE_CLASSES > 16 */ | 
 | #endif /* NB_SMALL_SIZE_CLASSES >  8 */ | 
 | }; | 
 |  | 
 | /*========================================================================== | 
 | Arena management. | 
 |  | 
 | `arenas` is a vector of arena_objects.  It contains maxarenas entries, some of | 
 | which may not be currently used (== they're arena_objects that aren't | 
 | currently associated with an allocated arena).  Note that arenas proper are | 
 | separately malloc'ed. | 
 |  | 
 | Prior to Python 2.5, arenas were never free()'ed.  Starting with Python 2.5, | 
 | we do try to free() arenas, and use some mild heuristic strategies to increase | 
 | the likelihood that arenas eventually can be freed. | 
 |  | 
 | unused_arena_objects | 
 |  | 
 |     This is a singly-linked list of the arena_objects that are currently not | 
 |     being used (no arena is associated with them).  Objects are taken off the | 
 |     head of the list in new_arena(), and are pushed on the head of the list in | 
 |     PyObject_Free() when the arena is empty.  Key invariant:  an arena_object | 
 |     is on this list if and only if its .address member is 0. | 
 |  | 
 | usable_arenas | 
 |  | 
 |     This is a doubly-linked list of the arena_objects associated with arenas | 
 |     that have pools available.  These pools are either waiting to be reused, | 
 |     or have not been used before.  The list is sorted to have the most- | 
 |     allocated arenas first (ascending order based on the nfreepools member). | 
 |     This means that the next allocation will come from a heavily used arena, | 
 |     which gives the nearly empty arenas a chance to be returned to the system. | 
 |     In my unscientific tests this dramatically improved the number of arenas | 
 |     that could be freed. | 
 |  | 
 | Note that an arena_object associated with an arena all of whose pools are | 
 | currently in use isn't on either list. | 
 | */ | 
 |  | 
 | /* Array of objects used to track chunks of memory (arenas). */ | 
 | static struct arena_object* arenas = NULL; | 
 | /* Number of slots currently allocated in the `arenas` vector. */ | 
 | static uint maxarenas = 0; | 
 |  | 
 | /* The head of the singly-linked, NULL-terminated list of available | 
 |  * arena_objects. | 
 |  */ | 
 | static struct arena_object* unused_arena_objects = NULL; | 
 |  | 
 | /* The head of the doubly-linked, NULL-terminated at each end, list of | 
 |  * arena_objects associated with arenas that have pools available. | 
 |  */ | 
 | static struct arena_object* usable_arenas = NULL; | 
 |  | 
 | /* How many arena_objects do we initially allocate? | 
 |  * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the | 
 |  * `arenas` vector. | 
 |  */ | 
 | #define INITIAL_ARENA_OBJECTS 16 | 
 |  | 
 | /* Number of arenas allocated that haven't been free()'d. */ | 
 | static size_t narenas_currently_allocated = 0; | 
 |  | 
 | /* Total number of times malloc() called to allocate an arena. */ | 
 | static size_t ntimes_arena_allocated = 0; | 
 | /* High water mark (max value ever seen) for narenas_currently_allocated. */ | 
 | static size_t narenas_highwater = 0; | 
 |  | 
 | static Py_ssize_t _Py_AllocatedBlocks = 0; | 
 |  | 
 | Py_ssize_t | 
 | _Py_GetAllocatedBlocks(void) | 
 | { | 
 |     return _Py_AllocatedBlocks; | 
 | } | 
 |  | 
 |  | 
 | /* Allocate a new arena.  If we run out of memory, return NULL.  Else | 
 |  * allocate a new arena, and return the address of an arena_object | 
 |  * describing the new arena.  It's expected that the caller will set | 
 |  * `usable_arenas` to the return value. | 
 |  */ | 
 | static struct arena_object* | 
 | new_arena(void) | 
 | { | 
 |     struct arena_object* arenaobj; | 
 |     uint excess;        /* number of bytes above pool alignment */ | 
 |     void *address; | 
 |     static int debug_stats = -1; | 
 |  | 
 |     if (debug_stats == -1) { | 
 |         const char *opt = Py_GETENV("PYTHONMALLOCSTATS"); | 
 |         debug_stats = (opt != NULL && *opt != '\0'); | 
 |     } | 
 |     if (debug_stats) | 
 |         _PyObject_DebugMallocStats(stderr); | 
 |  | 
 |     if (unused_arena_objects == NULL) { | 
 |         uint i; | 
 |         uint numarenas; | 
 |         size_t nbytes; | 
 |  | 
 |         /* Double the number of arena objects on each allocation. | 
 |          * Note that it's possible for `numarenas` to overflow. | 
 |          */ | 
 |         numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS; | 
 |         if (numarenas <= maxarenas) | 
 |             return NULL;                /* overflow */ | 
 | #if SIZEOF_SIZE_T <= SIZEOF_INT | 
 |         if (numarenas > SIZE_MAX / sizeof(*arenas)) | 
 |             return NULL;                /* overflow */ | 
 | #endif | 
 |         nbytes = numarenas * sizeof(*arenas); | 
 |         arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes); | 
 |         if (arenaobj == NULL) | 
 |             return NULL; | 
 |         arenas = arenaobj; | 
 |  | 
 |         /* We might need to fix pointers that were copied.  However, | 
 |          * new_arena only gets called when all the pages in the | 
 |          * previous arenas are full.  Thus, there are *no* pointers | 
 |          * into the old array. Thus, we don't have to worry about | 
 |          * invalid pointers.  Just to be sure, some asserts: | 
 |          */ | 
 |         assert(usable_arenas == NULL); | 
 |         assert(unused_arena_objects == NULL); | 
 |  | 
 |         /* Put the new arenas on the unused_arena_objects list. */ | 
 |         for (i = maxarenas; i < numarenas; ++i) { | 
 |             arenas[i].address = 0;              /* mark as unassociated */ | 
 |             arenas[i].nextarena = i < numarenas - 1 ? | 
 |                                    &arenas[i+1] : NULL; | 
 |         } | 
 |  | 
 |         /* Update globals. */ | 
 |         unused_arena_objects = &arenas[maxarenas]; | 
 |         maxarenas = numarenas; | 
 |     } | 
 |  | 
 |     /* Take the next available arena object off the head of the list. */ | 
 |     assert(unused_arena_objects != NULL); | 
 |     arenaobj = unused_arena_objects; | 
 |     unused_arena_objects = arenaobj->nextarena; | 
 |     assert(arenaobj->address == 0); | 
 |     address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE); | 
 |     if (address == NULL) { | 
 |         /* The allocation failed: return NULL after putting the | 
 |          * arenaobj back. | 
 |          */ | 
 |         arenaobj->nextarena = unused_arena_objects; | 
 |         unused_arena_objects = arenaobj; | 
 |         return NULL; | 
 |     } | 
 |     arenaobj->address = (uintptr_t)address; | 
 |  | 
 |     ++narenas_currently_allocated; | 
 |     ++ntimes_arena_allocated; | 
 |     if (narenas_currently_allocated > narenas_highwater) | 
 |         narenas_highwater = narenas_currently_allocated; | 
 |     arenaobj->freepools = NULL; | 
 |     /* pool_address <- first pool-aligned address in the arena | 
 |        nfreepools <- number of whole pools that fit after alignment */ | 
 |     arenaobj->pool_address = (block*)arenaobj->address; | 
 |     arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE; | 
 |     assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE); | 
 |     excess = (uint)(arenaobj->address & POOL_SIZE_MASK); | 
 |     if (excess != 0) { | 
 |         --arenaobj->nfreepools; | 
 |         arenaobj->pool_address += POOL_SIZE - excess; | 
 |     } | 
 |     arenaobj->ntotalpools = arenaobj->nfreepools; | 
 |  | 
 |     return arenaobj; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 | address_in_range(P, POOL) | 
 |  | 
 | Return true if and only if P is an address that was allocated by pymalloc. | 
 | POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P) | 
 | (the caller is asked to compute this because the macro expands POOL more than | 
 | once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a | 
 | variable and pass the latter to the macro; because address_in_range is | 
 | called on every alloc/realloc/free, micro-efficiency is important here). | 
 |  | 
 | Tricky:  Let B be the arena base address associated with the pool, B = | 
 | arenas[(POOL)->arenaindex].address.  Then P belongs to the arena if and only if | 
 |  | 
 |     B <= P < B + ARENA_SIZE | 
 |  | 
 | Subtracting B throughout, this is true iff | 
 |  | 
 |     0 <= P-B < ARENA_SIZE | 
 |  | 
 | By using unsigned arithmetic, the "0 <=" half of the test can be skipped. | 
 |  | 
 | Obscure:  A PyMem "free memory" function can call the pymalloc free or realloc | 
 | before the first arena has been allocated.  `arenas` is still NULL in that | 
 | case.  We're relying on that maxarenas is also 0 in that case, so that | 
 | (POOL)->arenaindex < maxarenas  must be false, saving us from trying to index | 
 | into a NULL arenas. | 
 |  | 
 | Details:  given P and POOL, the arena_object corresponding to P is AO = | 
 | arenas[(POOL)->arenaindex].  Suppose obmalloc controls P.  Then (barring wild | 
 | stores, etc), POOL is the correct address of P's pool, AO.address is the | 
 | correct base address of the pool's arena, and P must be within ARENA_SIZE of | 
 | AO.address.  In addition, AO.address is not 0 (no arena can start at address 0 | 
 | (NULL)).  Therefore address_in_range correctly reports that obmalloc | 
 | controls P. | 
 |  | 
 | Now suppose obmalloc does not control P (e.g., P was obtained via a direct | 
 | call to the system malloc() or realloc()).  (POOL)->arenaindex may be anything | 
 | in this case -- it may even be uninitialized trash.  If the trash arenaindex | 
 | is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't | 
 | control P. | 
 |  | 
 | Else arenaindex is < maxarena, and AO is read up.  If AO corresponds to an | 
 | allocated arena, obmalloc controls all the memory in slice AO.address : | 
 | AO.address+ARENA_SIZE.  By case assumption, P is not controlled by obmalloc, | 
 | so P doesn't lie in that slice, so the macro correctly reports that P is not | 
 | controlled by obmalloc. | 
 |  | 
 | Finally, if P is not controlled by obmalloc and AO corresponds to an unused | 
 | arena_object (one not currently associated with an allocated arena), | 
 | AO.address is 0, and the second test in the macro reduces to: | 
 |  | 
 |     P < ARENA_SIZE | 
 |  | 
 | If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes | 
 | that P is not controlled by obmalloc.  However, if P < ARENA_SIZE, this part | 
 | of the test still passes, and the third clause (AO.address != 0) is necessary | 
 | to get the correct result:  AO.address is 0 in this case, so the macro | 
 | correctly reports that P is not controlled by obmalloc (despite that P lies in | 
 | slice AO.address : AO.address + ARENA_SIZE). | 
 |  | 
 | Note:  The third (AO.address != 0) clause was added in Python 2.5.  Before | 
 | 2.5, arenas were never free()'ed, and an arenaindex < maxarena always | 
 | corresponded to a currently-allocated arena, so the "P is not controlled by | 
 | obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case | 
 | was impossible. | 
 |  | 
 | Note that the logic is excruciating, and reading up possibly uninitialized | 
 | memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex) | 
 | creates problems for some memory debuggers.  The overwhelming advantage is | 
 | that this test determines whether an arbitrary address is controlled by | 
 | obmalloc in a small constant time, independent of the number of arenas | 
 | obmalloc controls.  Since this test is needed at every entry point, it's | 
 | extremely desirable that it be this fast. | 
 | */ | 
 |  | 
 | static bool _Py_NO_ADDRESS_SAFETY_ANALYSIS | 
 |             _Py_NO_SANITIZE_THREAD | 
 |             _Py_NO_SANITIZE_MEMORY | 
 | address_in_range(void *p, poolp pool) | 
 | { | 
 |     // Since address_in_range may be reading from memory which was not allocated | 
 |     // by Python, it is important that pool->arenaindex is read only once, as | 
 |     // another thread may be concurrently modifying the value without holding | 
 |     // the GIL. The following dance forces the compiler to read pool->arenaindex | 
 |     // only once. | 
 |     uint arenaindex = *((volatile uint *)&pool->arenaindex); | 
 |     return arenaindex < maxarenas && | 
 |         (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE && | 
 |         arenas[arenaindex].address != 0; | 
 | } | 
 |  | 
 |  | 
 | /*==========================================================================*/ | 
 |  | 
 | /* pymalloc allocator | 
 |  | 
 |    The basic blocks are ordered by decreasing execution frequency, | 
 |    which minimizes the number of jumps in the most common cases, | 
 |    improves branching prediction and instruction scheduling (small | 
 |    block allocations typically result in a couple of instructions). | 
 |    Unless the optimizer reorders everything, being too smart... | 
 |  | 
 |    Return 1 if pymalloc allocated memory and wrote the pointer into *ptr_p. | 
 |  | 
 |    Return 0 if pymalloc failed to allocate the memory block: on bigger | 
 |    requests, on error in the code below (as a last chance to serve the request) | 
 |    or when the max memory limit has been reached. */ | 
 | static int | 
 | pymalloc_alloc(void *ctx, void **ptr_p, size_t nbytes) | 
 | { | 
 |     block *bp; | 
 |     poolp pool; | 
 |     poolp next; | 
 |     uint size; | 
 |  | 
 | #ifdef WITH_VALGRIND | 
 |     if (UNLIKELY(running_on_valgrind == -1)) { | 
 |         running_on_valgrind = RUNNING_ON_VALGRIND; | 
 |     } | 
 |     if (UNLIKELY(running_on_valgrind)) { | 
 |         return 0; | 
 |     } | 
 | #endif | 
 |  | 
 |     if (nbytes == 0) { | 
 |         return 0; | 
 |     } | 
 |     if (nbytes > SMALL_REQUEST_THRESHOLD) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     /* | 
 |      * Most frequent paths first | 
 |      */ | 
 |     size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT; | 
 |     pool = usedpools[size + size]; | 
 |     if (pool != pool->nextpool) { | 
 |         /* | 
 |          * There is a used pool for this size class. | 
 |          * Pick up the head block of its free list. | 
 |          */ | 
 |         ++pool->ref.count; | 
 |         bp = pool->freeblock; | 
 |         assert(bp != NULL); | 
 |         if ((pool->freeblock = *(block **)bp) != NULL) { | 
 |             goto success; | 
 |         } | 
 |  | 
 |         /* | 
 |          * Reached the end of the free list, try to extend it. | 
 |          */ | 
 |         if (pool->nextoffset <= pool->maxnextoffset) { | 
 |             /* There is room for another block. */ | 
 |             pool->freeblock = (block*)pool + | 
 |                               pool->nextoffset; | 
 |             pool->nextoffset += INDEX2SIZE(size); | 
 |             *(block **)(pool->freeblock) = NULL; | 
 |             goto success; | 
 |         } | 
 |  | 
 |         /* Pool is full, unlink from used pools. */ | 
 |         next = pool->nextpool; | 
 |         pool = pool->prevpool; | 
 |         next->prevpool = pool; | 
 |         pool->nextpool = next; | 
 |         goto success; | 
 |     } | 
 |  | 
 |     /* There isn't a pool of the right size class immediately | 
 |      * available:  use a free pool. | 
 |      */ | 
 |     if (usable_arenas == NULL) { | 
 |         /* No arena has a free pool:  allocate a new arena. */ | 
 | #ifdef WITH_MEMORY_LIMITS | 
 |         if (narenas_currently_allocated >= MAX_ARENAS) { | 
 |             goto failed; | 
 |         } | 
 | #endif | 
 |         usable_arenas = new_arena(); | 
 |         if (usable_arenas == NULL) { | 
 |             goto failed; | 
 |         } | 
 |         usable_arenas->nextarena = | 
 |             usable_arenas->prevarena = NULL; | 
 |     } | 
 |     assert(usable_arenas->address != 0); | 
 |  | 
 |     /* Try to get a cached free pool. */ | 
 |     pool = usable_arenas->freepools; | 
 |     if (pool != NULL) { | 
 |         /* Unlink from cached pools. */ | 
 |         usable_arenas->freepools = pool->nextpool; | 
 |  | 
 |         /* This arena already had the smallest nfreepools | 
 |          * value, so decreasing nfreepools doesn't change | 
 |          * that, and we don't need to rearrange the | 
 |          * usable_arenas list.  However, if the arena has | 
 |          * become wholly allocated, we need to remove its | 
 |          * arena_object from usable_arenas. | 
 |          */ | 
 |         --usable_arenas->nfreepools; | 
 |         if (usable_arenas->nfreepools == 0) { | 
 |             /* Wholly allocated:  remove. */ | 
 |             assert(usable_arenas->freepools == NULL); | 
 |             assert(usable_arenas->nextarena == NULL || | 
 |                    usable_arenas->nextarena->prevarena == | 
 |                    usable_arenas); | 
 |  | 
 |             usable_arenas = usable_arenas->nextarena; | 
 |             if (usable_arenas != NULL) { | 
 |                 usable_arenas->prevarena = NULL; | 
 |                 assert(usable_arenas->address != 0); | 
 |             } | 
 |         } | 
 |         else { | 
 |             /* nfreepools > 0:  it must be that freepools | 
 |              * isn't NULL, or that we haven't yet carved | 
 |              * off all the arena's pools for the first | 
 |              * time. | 
 |              */ | 
 |             assert(usable_arenas->freepools != NULL || | 
 |                    usable_arenas->pool_address <= | 
 |                    (block*)usable_arenas->address + | 
 |                        ARENA_SIZE - POOL_SIZE); | 
 |         } | 
 |  | 
 |     init_pool: | 
 |         /* Frontlink to used pools. */ | 
 |         next = usedpools[size + size]; /* == prev */ | 
 |         pool->nextpool = next; | 
 |         pool->prevpool = next; | 
 |         next->nextpool = pool; | 
 |         next->prevpool = pool; | 
 |         pool->ref.count = 1; | 
 |         if (pool->szidx == size) { | 
 |             /* Luckily, this pool last contained blocks | 
 |              * of the same size class, so its header | 
 |              * and free list are already initialized. | 
 |              */ | 
 |             bp = pool->freeblock; | 
 |             assert(bp != NULL); | 
 |             pool->freeblock = *(block **)bp; | 
 |             goto success; | 
 |         } | 
 |         /* | 
 |          * Initialize the pool header, set up the free list to | 
 |          * contain just the second block, and return the first | 
 |          * block. | 
 |          */ | 
 |         pool->szidx = size; | 
 |         size = INDEX2SIZE(size); | 
 |         bp = (block *)pool + POOL_OVERHEAD; | 
 |         pool->nextoffset = POOL_OVERHEAD + (size << 1); | 
 |         pool->maxnextoffset = POOL_SIZE - size; | 
 |         pool->freeblock = bp + size; | 
 |         *(block **)(pool->freeblock) = NULL; | 
 |         goto success; | 
 |     } | 
 |  | 
 |     /* Carve off a new pool. */ | 
 |     assert(usable_arenas->nfreepools > 0); | 
 |     assert(usable_arenas->freepools == NULL); | 
 |     pool = (poolp)usable_arenas->pool_address; | 
 |     assert((block*)pool <= (block*)usable_arenas->address + | 
 |                              ARENA_SIZE - POOL_SIZE); | 
 |     pool->arenaindex = (uint)(usable_arenas - arenas); | 
 |     assert(&arenas[pool->arenaindex] == usable_arenas); | 
 |     pool->szidx = DUMMY_SIZE_IDX; | 
 |     usable_arenas->pool_address += POOL_SIZE; | 
 |     --usable_arenas->nfreepools; | 
 |  | 
 |     if (usable_arenas->nfreepools == 0) { | 
 |         assert(usable_arenas->nextarena == NULL || | 
 |                usable_arenas->nextarena->prevarena == | 
 |                usable_arenas); | 
 |         /* Unlink the arena:  it is completely allocated. */ | 
 |         usable_arenas = usable_arenas->nextarena; | 
 |         if (usable_arenas != NULL) { | 
 |             usable_arenas->prevarena = NULL; | 
 |             assert(usable_arenas->address != 0); | 
 |         } | 
 |     } | 
 |  | 
 |     goto init_pool; | 
 |  | 
 | success: | 
 |     assert(bp != NULL); | 
 |     *ptr_p = (void *)bp; | 
 |     return 1; | 
 |  | 
 | failed: | 
 |     return 0; | 
 | } | 
 |  | 
 |  | 
 | static void * | 
 | _PyObject_Malloc(void *ctx, size_t nbytes) | 
 | { | 
 |     void* ptr; | 
 |     if (pymalloc_alloc(ctx, &ptr, nbytes)) { | 
 |         _Py_AllocatedBlocks++; | 
 |         return ptr; | 
 |     } | 
 |  | 
 |     ptr = PyMem_RawMalloc(nbytes); | 
 |     if (ptr != NULL) { | 
 |         _Py_AllocatedBlocks++; | 
 |     } | 
 |     return ptr; | 
 | } | 
 |  | 
 |  | 
 | static void * | 
 | _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize) | 
 | { | 
 |     void* ptr; | 
 |  | 
 |     assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); | 
 |     size_t nbytes = nelem * elsize; | 
 |  | 
 |     if (pymalloc_alloc(ctx, &ptr, nbytes)) { | 
 |         memset(ptr, 0, nbytes); | 
 |         _Py_AllocatedBlocks++; | 
 |         return ptr; | 
 |     } | 
 |  | 
 |     ptr = PyMem_RawCalloc(nelem, elsize); | 
 |     if (ptr != NULL) { | 
 |         _Py_AllocatedBlocks++; | 
 |     } | 
 |     return ptr; | 
 | } | 
 |  | 
 |  | 
 | /* Free a memory block allocated by pymalloc_alloc(). | 
 |    Return 1 if it was freed. | 
 |    Return 0 if the block was not allocated by pymalloc_alloc(). */ | 
 | static int | 
 | pymalloc_free(void *ctx, void *p) | 
 | { | 
 |     poolp pool; | 
 |     block *lastfree; | 
 |     poolp next, prev; | 
 |     uint size; | 
 |  | 
 |     assert(p != NULL); | 
 |  | 
 | #ifdef WITH_VALGRIND | 
 |     if (UNLIKELY(running_on_valgrind > 0)) { | 
 |         return 0; | 
 |     } | 
 | #endif | 
 |  | 
 |     pool = POOL_ADDR(p); | 
 |     if (!address_in_range(p, pool)) { | 
 |         return 0; | 
 |     } | 
 |     /* We allocated this address. */ | 
 |  | 
 |     /* Link p to the start of the pool's freeblock list.  Since | 
 |      * the pool had at least the p block outstanding, the pool | 
 |      * wasn't empty (so it's already in a usedpools[] list, or | 
 |      * was full and is in no list -- it's not in the freeblocks | 
 |      * list in any case). | 
 |      */ | 
 |     assert(pool->ref.count > 0);            /* else it was empty */ | 
 |     *(block **)p = lastfree = pool->freeblock; | 
 |     pool->freeblock = (block *)p; | 
 |     if (!lastfree) { | 
 |         /* Pool was full, so doesn't currently live in any list: | 
 |          * link it to the front of the appropriate usedpools[] list. | 
 |          * This mimics LRU pool usage for new allocations and | 
 |          * targets optimal filling when several pools contain | 
 |          * blocks of the same size class. | 
 |          */ | 
 |         --pool->ref.count; | 
 |         assert(pool->ref.count > 0);            /* else the pool is empty */ | 
 |         size = pool->szidx; | 
 |         next = usedpools[size + size]; | 
 |         prev = next->prevpool; | 
 |  | 
 |         /* insert pool before next:   prev <-> pool <-> next */ | 
 |         pool->nextpool = next; | 
 |         pool->prevpool = prev; | 
 |         next->prevpool = pool; | 
 |         prev->nextpool = pool; | 
 |         goto success; | 
 |     } | 
 |  | 
 |     struct arena_object* ao; | 
 |     uint nf;  /* ao->nfreepools */ | 
 |  | 
 |     /* freeblock wasn't NULL, so the pool wasn't full, | 
 |      * and the pool is in a usedpools[] list. | 
 |      */ | 
 |     if (--pool->ref.count != 0) { | 
 |         /* pool isn't empty:  leave it in usedpools */ | 
 |         goto success; | 
 |     } | 
 |     /* Pool is now empty:  unlink from usedpools, and | 
 |      * link to the front of freepools.  This ensures that | 
 |      * previously freed pools will be allocated later | 
 |      * (being not referenced, they are perhaps paged out). | 
 |      */ | 
 |     next = pool->nextpool; | 
 |     prev = pool->prevpool; | 
 |     next->prevpool = prev; | 
 |     prev->nextpool = next; | 
 |  | 
 |     /* Link the pool to freepools.  This is a singly-linked | 
 |      * list, and pool->prevpool isn't used there. | 
 |      */ | 
 |     ao = &arenas[pool->arenaindex]; | 
 |     pool->nextpool = ao->freepools; | 
 |     ao->freepools = pool; | 
 |     nf = ++ao->nfreepools; | 
 |  | 
 |     /* All the rest is arena management.  We just freed | 
 |      * a pool, and there are 4 cases for arena mgmt: | 
 |      * 1. If all the pools are free, return the arena to | 
 |      *    the system free(). | 
 |      * 2. If this is the only free pool in the arena, | 
 |      *    add the arena back to the `usable_arenas` list. | 
 |      * 3. If the "next" arena has a smaller count of free | 
 |      *    pools, we have to "slide this arena right" to | 
 |      *    restore that usable_arenas is sorted in order of | 
 |      *    nfreepools. | 
 |      * 4. Else there's nothing more to do. | 
 |      */ | 
 |     if (nf == ao->ntotalpools) { | 
 |         /* Case 1.  First unlink ao from usable_arenas. | 
 |          */ | 
 |         assert(ao->prevarena == NULL || | 
 |                ao->prevarena->address != 0); | 
 |         assert(ao ->nextarena == NULL || | 
 |                ao->nextarena->address != 0); | 
 |  | 
 |         /* Fix the pointer in the prevarena, or the | 
 |          * usable_arenas pointer. | 
 |          */ | 
 |         if (ao->prevarena == NULL) { | 
 |             usable_arenas = ao->nextarena; | 
 |             assert(usable_arenas == NULL || | 
 |                    usable_arenas->address != 0); | 
 |         } | 
 |         else { | 
 |             assert(ao->prevarena->nextarena == ao); | 
 |             ao->prevarena->nextarena = | 
 |                 ao->nextarena; | 
 |         } | 
 |         /* Fix the pointer in the nextarena. */ | 
 |         if (ao->nextarena != NULL) { | 
 |             assert(ao->nextarena->prevarena == ao); | 
 |             ao->nextarena->prevarena = | 
 |                 ao->prevarena; | 
 |         } | 
 |         /* Record that this arena_object slot is | 
 |          * available to be reused. | 
 |          */ | 
 |         ao->nextarena = unused_arena_objects; | 
 |         unused_arena_objects = ao; | 
 |  | 
 |         /* Free the entire arena. */ | 
 |         _PyObject_Arena.free(_PyObject_Arena.ctx, | 
 |                              (void *)ao->address, ARENA_SIZE); | 
 |         ao->address = 0;                        /* mark unassociated */ | 
 |         --narenas_currently_allocated; | 
 |  | 
 |         goto success; | 
 |     } | 
 |  | 
 |     if (nf == 1) { | 
 |         /* Case 2.  Put ao at the head of | 
 |          * usable_arenas.  Note that because | 
 |          * ao->nfreepools was 0 before, ao isn't | 
 |          * currently on the usable_arenas list. | 
 |          */ | 
 |         ao->nextarena = usable_arenas; | 
 |         ao->prevarena = NULL; | 
 |         if (usable_arenas) | 
 |             usable_arenas->prevarena = ao; | 
 |         usable_arenas = ao; | 
 |         assert(usable_arenas->address != 0); | 
 |  | 
 |         goto success; | 
 |     } | 
 |  | 
 |     /* If this arena is now out of order, we need to keep | 
 |      * the list sorted.  The list is kept sorted so that | 
 |      * the "most full" arenas are used first, which allows | 
 |      * the nearly empty arenas to be completely freed.  In | 
 |      * a few un-scientific tests, it seems like this | 
 |      * approach allowed a lot more memory to be freed. | 
 |      */ | 
 |     if (ao->nextarena == NULL || | 
 |                  nf <= ao->nextarena->nfreepools) { | 
 |         /* Case 4.  Nothing to do. */ | 
 |         goto success; | 
 |     } | 
 |     /* Case 3:  We have to move the arena towards the end | 
 |      * of the list, because it has more free pools than | 
 |      * the arena to its right. | 
 |      * First unlink ao from usable_arenas. | 
 |      */ | 
 |     if (ao->prevarena != NULL) { | 
 |         /* ao isn't at the head of the list */ | 
 |         assert(ao->prevarena->nextarena == ao); | 
 |         ao->prevarena->nextarena = ao->nextarena; | 
 |     } | 
 |     else { | 
 |         /* ao is at the head of the list */ | 
 |         assert(usable_arenas == ao); | 
 |         usable_arenas = ao->nextarena; | 
 |     } | 
 |     ao->nextarena->prevarena = ao->prevarena; | 
 |  | 
 |     /* Locate the new insertion point by iterating over | 
 |      * the list, using our nextarena pointer. | 
 |      */ | 
 |     while (ao->nextarena != NULL && nf > ao->nextarena->nfreepools) { | 
 |         ao->prevarena = ao->nextarena; | 
 |         ao->nextarena = ao->nextarena->nextarena; | 
 |     } | 
 |  | 
 |     /* Insert ao at this point. */ | 
 |     assert(ao->nextarena == NULL || ao->prevarena == ao->nextarena->prevarena); | 
 |     assert(ao->prevarena->nextarena == ao->nextarena); | 
 |  | 
 |     ao->prevarena->nextarena = ao; | 
 |     if (ao->nextarena != NULL) { | 
 |         ao->nextarena->prevarena = ao; | 
 |     } | 
 |  | 
 |     /* Verify that the swaps worked. */ | 
 |     assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools); | 
 |     assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools); | 
 |     assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao); | 
 |     assert((usable_arenas == ao && ao->prevarena == NULL) | 
 |            || ao->prevarena->nextarena == ao); | 
 |  | 
 |     goto success; | 
 |  | 
 | success: | 
 |     return 1; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | _PyObject_Free(void *ctx, void *p) | 
 | { | 
 |     /* PyObject_Free(NULL) has no effect */ | 
 |     if (p == NULL) { | 
 |         return; | 
 |     } | 
 |  | 
 |     _Py_AllocatedBlocks--; | 
 |     if (!pymalloc_free(ctx, p)) { | 
 |         /* pymalloc didn't allocate this address */ | 
 |         PyMem_RawFree(p); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | /* pymalloc realloc. | 
 |  | 
 |    If nbytes==0, then as the Python docs promise, we do not treat this like | 
 |    free(p), and return a non-NULL result. | 
 |  | 
 |    Return 1 if pymalloc reallocated memory and wrote the new pointer into | 
 |    newptr_p. | 
 |  | 
 |    Return 0 if pymalloc didn't allocated p. */ | 
 | static int | 
 | pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes) | 
 | { | 
 |     void *bp; | 
 |     poolp pool; | 
 |     size_t size; | 
 |  | 
 |     assert(p != NULL); | 
 |  | 
 | #ifdef WITH_VALGRIND | 
 |     /* Treat running_on_valgrind == -1 the same as 0 */ | 
 |     if (UNLIKELY(running_on_valgrind > 0)) { | 
 |         return 0; | 
 |     } | 
 | #endif | 
 |  | 
 |     pool = POOL_ADDR(p); | 
 |     if (!address_in_range(p, pool)) { | 
 |         /* pymalloc is not managing this block. | 
 |  | 
 |            If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take | 
 |            over this block.  However, if we do, we need to copy the valid data | 
 |            from the C-managed block to one of our blocks, and there's no | 
 |            portable way to know how much of the memory space starting at p is | 
 |            valid. | 
 |  | 
 |            As bug 1185883 pointed out the hard way, it's possible that the | 
 |            C-managed block is "at the end" of allocated VM space, so that a | 
 |            memory fault can occur if we try to copy nbytes bytes starting at p. | 
 |            Instead we punt: let C continue to manage this block. */ | 
 |         return 0; | 
 |     } | 
 |  | 
 |     /* pymalloc is in charge of this block */ | 
 |     size = INDEX2SIZE(pool->szidx); | 
 |     if (nbytes <= size) { | 
 |         /* The block is staying the same or shrinking. | 
 |  | 
 |            If it's shrinking, there's a tradeoff: it costs cycles to copy the | 
 |            block to a smaller size class, but it wastes memory not to copy it. | 
 |  | 
 |            The compromise here is to copy on shrink only if at least 25% of | 
 |            size can be shaved off. */ | 
 |         if (4 * nbytes > 3 * size) { | 
 |             /* It's the same, or shrinking and new/old > 3/4. */ | 
 |             *newptr_p = p; | 
 |             return 1; | 
 |         } | 
 |         size = nbytes; | 
 |     } | 
 |  | 
 |     bp = _PyObject_Malloc(ctx, nbytes); | 
 |     if (bp != NULL) { | 
 |         memcpy(bp, p, size); | 
 |         _PyObject_Free(ctx, p); | 
 |     } | 
 |     *newptr_p = bp; | 
 |     return 1; | 
 | } | 
 |  | 
 |  | 
 | static void * | 
 | _PyObject_Realloc(void *ctx, void *ptr, size_t nbytes) | 
 | { | 
 |     void *ptr2; | 
 |  | 
 |     if (ptr == NULL) { | 
 |         return _PyObject_Malloc(ctx, nbytes); | 
 |     } | 
 |  | 
 |     if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) { | 
 |         return ptr2; | 
 |     } | 
 |  | 
 |     return PyMem_RawRealloc(ptr, nbytes); | 
 | } | 
 |  | 
 | #else   /* ! WITH_PYMALLOC */ | 
 |  | 
 | /*==========================================================================*/ | 
 | /* pymalloc not enabled:  Redirect the entry points to malloc.  These will | 
 |  * only be used by extensions that are compiled with pymalloc enabled. */ | 
 |  | 
 | Py_ssize_t | 
 | _Py_GetAllocatedBlocks(void) | 
 | { | 
 |     return 0; | 
 | } | 
 |  | 
 | #endif /* WITH_PYMALLOC */ | 
 |  | 
 |  | 
 | /*==========================================================================*/ | 
 | /* A x-platform debugging allocator.  This doesn't manage memory directly, | 
 |  * it wraps a real allocator, adding extra debugging info to the memory blocks. | 
 |  */ | 
 |  | 
 | /* Special bytes broadcast into debug memory blocks at appropriate times. | 
 |  * Strings of these are unlikely to be valid addresses, floats, ints or | 
 |  * 7-bit ASCII. | 
 |  */ | 
 | #undef CLEANBYTE | 
 | #undef DEADBYTE | 
 | #undef FORBIDDENBYTE | 
 | #define CLEANBYTE      0xCB    /* clean (newly allocated) memory */ | 
 | #define DEADBYTE       0xDB    /* dead (newly freed) memory */ | 
 | #define FORBIDDENBYTE  0xFB    /* untouchable bytes at each end of a block */ | 
 |  | 
 | static size_t serialno = 0;     /* incremented on each debug {m,re}alloc */ | 
 |  | 
 | /* serialno is always incremented via calling this routine.  The point is | 
 |  * to supply a single place to set a breakpoint. | 
 |  */ | 
 | static void | 
 | bumpserialno(void) | 
 | { | 
 |     ++serialno; | 
 | } | 
 |  | 
 | #define SST SIZEOF_SIZE_T | 
 |  | 
 | /* Read sizeof(size_t) bytes at p as a big-endian size_t. */ | 
 | static size_t | 
 | read_size_t(const void *p) | 
 | { | 
 |     const uint8_t *q = (const uint8_t *)p; | 
 |     size_t result = *q++; | 
 |     int i; | 
 |  | 
 |     for (i = SST; --i > 0; ++q) | 
 |         result = (result << 8) | *q; | 
 |     return result; | 
 | } | 
 |  | 
 | /* Write n as a big-endian size_t, MSB at address p, LSB at | 
 |  * p + sizeof(size_t) - 1. | 
 |  */ | 
 | static void | 
 | write_size_t(void *p, size_t n) | 
 | { | 
 |     uint8_t *q = (uint8_t *)p + SST - 1; | 
 |     int i; | 
 |  | 
 |     for (i = SST; --i >= 0; --q) { | 
 |         *q = (uint8_t)(n & 0xff); | 
 |         n >>= 8; | 
 |     } | 
 | } | 
 |  | 
 | /* Let S = sizeof(size_t).  The debug malloc asks for 4*S extra bytes and | 
 |    fills them with useful stuff, here calling the underlying malloc's result p: | 
 |  | 
 | p[0: S] | 
 |     Number of bytes originally asked for.  This is a size_t, big-endian (easier | 
 |     to read in a memory dump). | 
 | p[S] | 
 |     API ID.  See PEP 445.  This is a character, but seems undocumented. | 
 | p[S+1: 2*S] | 
 |     Copies of FORBIDDENBYTE.  Used to catch under- writes and reads. | 
 | p[2*S: 2*S+n] | 
 |     The requested memory, filled with copies of CLEANBYTE. | 
 |     Used to catch reference to uninitialized memory. | 
 |     &p[2*S] is returned.  Note that this is 8-byte aligned if pymalloc | 
 |     handled the request itself. | 
 | p[2*S+n: 2*S+n+S] | 
 |     Copies of FORBIDDENBYTE.  Used to catch over- writes and reads. | 
 | p[2*S+n+S: 2*S+n+2*S] | 
 |     A serial number, incremented by 1 on each call to _PyMem_DebugMalloc | 
 |     and _PyMem_DebugRealloc. | 
 |     This is a big-endian size_t. | 
 |     If "bad memory" is detected later, the serial number gives an | 
 |     excellent way to set a breakpoint on the next run, to capture the | 
 |     instant at which this block was passed out. | 
 | */ | 
 |  | 
 | static void * | 
 | _PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes) | 
 | { | 
 |     debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; | 
 |     uint8_t *p;           /* base address of malloc'ed pad block */ | 
 |     uint8_t *data;        /* p + 2*SST == pointer to data bytes */ | 
 |     uint8_t *tail;        /* data + nbytes == pointer to tail pad bytes */ | 
 |     size_t total;         /* 2 * SST + nbytes + 2 * SST */ | 
 |  | 
 |     if (nbytes > (size_t)PY_SSIZE_T_MAX - 4 * SST) { | 
 |         /* integer overflow: can't represent total as a Py_ssize_t */ | 
 |         return NULL; | 
 |     } | 
 |     total = nbytes + 4 * SST; | 
 |  | 
 |     /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN] | 
 |      *          ^--- p    ^--- data   ^--- tail | 
 |        S: nbytes stored as size_t | 
 |        I: API identifier (1 byte) | 
 |        F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after) | 
 |        C: Clean bytes used later to store actual data | 
 |        N: Serial number stored as size_t */ | 
 |  | 
 |     if (use_calloc) { | 
 |         p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total); | 
 |     } | 
 |     else { | 
 |         p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total); | 
 |     } | 
 |     if (p == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     data = p + 2*SST; | 
 |  | 
 |     bumpserialno(); | 
 |  | 
 |     /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */ | 
 |     write_size_t(p, nbytes); | 
 |     p[SST] = (uint8_t)api->api_id; | 
 |     memset(p + SST + 1, FORBIDDENBYTE, SST-1); | 
 |  | 
 |     if (nbytes > 0 && !use_calloc) { | 
 |         memset(data, CLEANBYTE, nbytes); | 
 |     } | 
 |  | 
 |     /* at tail, write pad (SST bytes) and serialno (SST bytes) */ | 
 |     tail = data + nbytes; | 
 |     memset(tail, FORBIDDENBYTE, SST); | 
 |     write_size_t(tail + SST, serialno); | 
 |  | 
 |     return data; | 
 | } | 
 |  | 
 | static void * | 
 | _PyMem_DebugRawMalloc(void *ctx, size_t nbytes) | 
 | { | 
 |     return _PyMem_DebugRawAlloc(0, ctx, nbytes); | 
 | } | 
 |  | 
 | static void * | 
 | _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize) | 
 | { | 
 |     size_t nbytes; | 
 |     assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); | 
 |     nbytes = nelem * elsize; | 
 |     return _PyMem_DebugRawAlloc(1, ctx, nbytes); | 
 | } | 
 |  | 
 |  | 
 | /* Heuristic checking if the memory has been freed. Rely on the debug hooks on | 
 |    Python memory allocators which fills the memory with DEADBYTE (0xDB) when | 
 |    memory is deallocated. */ | 
 | int | 
 | _PyMem_IsFreed(void *ptr, size_t size) | 
 | { | 
 |     unsigned char *bytes = ptr; | 
 |     for (size_t i=0; i < size; i++) { | 
 |         if (bytes[i] != DEADBYTE) { | 
 |             return 0; | 
 |         } | 
 |     } | 
 |     return 1; | 
 | } | 
 |  | 
 |  | 
 | /* The debug free first checks the 2*SST bytes on each end for sanity (in | 
 |    particular, that the FORBIDDENBYTEs with the api ID are still intact). | 
 |    Then fills the original bytes with DEADBYTE. | 
 |    Then calls the underlying free. | 
 | */ | 
 | static void | 
 | _PyMem_DebugRawFree(void *ctx, void *p) | 
 | { | 
 |     /* PyMem_Free(NULL) has no effect */ | 
 |     if (p == NULL) { | 
 |         return; | 
 |     } | 
 |  | 
 |     debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; | 
 |     uint8_t *q = (uint8_t *)p - 2*SST;  /* address returned from malloc */ | 
 |     size_t nbytes; | 
 |  | 
 |     _PyMem_DebugCheckAddress(api->api_id, p); | 
 |     nbytes = read_size_t(q); | 
 |     nbytes += 4 * SST; | 
 |     memset(q, DEADBYTE, nbytes); | 
 |     api->alloc.free(api->alloc.ctx, q); | 
 | } | 
 |  | 
 |  | 
 | static void * | 
 | _PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes) | 
 | { | 
 |     if (p == NULL) { | 
 |         return _PyMem_DebugRawAlloc(0, ctx, nbytes); | 
 |     } | 
 |  | 
 |     debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; | 
 |     uint8_t *head;        /* base address of malloc'ed pad block */ | 
 |     uint8_t *data;        /* pointer to data bytes */ | 
 |     uint8_t *r; | 
 |     uint8_t *tail;        /* data + nbytes == pointer to tail pad bytes */ | 
 |     size_t total;         /* 2 * SST + nbytes + 2 * SST */ | 
 |     size_t original_nbytes; | 
 |     size_t block_serialno; | 
 | #define ERASED_SIZE 64 | 
 |     uint8_t save[2*ERASED_SIZE];  /* A copy of erased bytes. */ | 
 |  | 
 |     _PyMem_DebugCheckAddress(api->api_id, p); | 
 |  | 
 |     data = (uint8_t *)p; | 
 |     head = data - 2*SST; | 
 |     original_nbytes = read_size_t(head); | 
 |     if (nbytes > (size_t)PY_SSIZE_T_MAX - 4*SST) { | 
 |         /* integer overflow: can't represent total as a Py_ssize_t */ | 
 |         return NULL; | 
 |     } | 
 |     total = nbytes + 4*SST; | 
 |  | 
 |     tail = data + original_nbytes; | 
 |     block_serialno = read_size_t(tail + SST); | 
 |     /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and | 
 |        ERASED_SIZE bytes at the end as dead and save the copy of erased bytes. | 
 |      */ | 
 |     if (original_nbytes <= sizeof(save)) { | 
 |         memcpy(save, data, original_nbytes); | 
 |         memset(data - 2*SST, DEADBYTE, original_nbytes + 4*SST); | 
 |     } | 
 |     else { | 
 |         memcpy(save, data, ERASED_SIZE); | 
 |         memset(head, DEADBYTE, ERASED_SIZE + 2*SST); | 
 |         memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE); | 
 |         memset(tail - ERASED_SIZE, DEADBYTE, ERASED_SIZE + 2*SST); | 
 |     } | 
 |  | 
 |     /* Resize and add decorations. */ | 
 |     r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total); | 
 |     if (r == NULL) { | 
 |         nbytes = original_nbytes; | 
 |     } | 
 |     else { | 
 |         head = r; | 
 |         bumpserialno(); | 
 |         block_serialno = serialno; | 
 |     } | 
 |  | 
 |     write_size_t(head, nbytes); | 
 |     head[SST] = (uint8_t)api->api_id; | 
 |     memset(head + SST + 1, FORBIDDENBYTE, SST-1); | 
 |     data = head + 2*SST; | 
 |  | 
 |     tail = data + nbytes; | 
 |     memset(tail, FORBIDDENBYTE, SST); | 
 |     write_size_t(tail + SST, block_serialno); | 
 |  | 
 |     /* Restore saved bytes. */ | 
 |     if (original_nbytes <= sizeof(save)) { | 
 |         memcpy(data, save, Py_MIN(nbytes, original_nbytes)); | 
 |     } | 
 |     else { | 
 |         size_t i = original_nbytes - ERASED_SIZE; | 
 |         memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE)); | 
 |         if (nbytes > i) { | 
 |             memcpy(data + i, &save[ERASED_SIZE], | 
 |                    Py_MIN(nbytes - i, ERASED_SIZE)); | 
 |         } | 
 |     } | 
 |  | 
 |     if (r == NULL) { | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     if (nbytes > original_nbytes) { | 
 |         /* growing:  mark new extra memory clean */ | 
 |         memset(data + original_nbytes, CLEANBYTE, nbytes - original_nbytes); | 
 |     } | 
 |  | 
 |     return data; | 
 | } | 
 |  | 
 | static void | 
 | _PyMem_DebugCheckGIL(void) | 
 | { | 
 |     if (!PyGILState_Check()) | 
 |         Py_FatalError("Python memory allocator called " | 
 |                       "without holding the GIL"); | 
 | } | 
 |  | 
 | static void * | 
 | _PyMem_DebugMalloc(void *ctx, size_t nbytes) | 
 | { | 
 |     _PyMem_DebugCheckGIL(); | 
 |     return _PyMem_DebugRawMalloc(ctx, nbytes); | 
 | } | 
 |  | 
 | static void * | 
 | _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize) | 
 | { | 
 |     _PyMem_DebugCheckGIL(); | 
 |     return _PyMem_DebugRawCalloc(ctx, nelem, elsize); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | _PyMem_DebugFree(void *ctx, void *ptr) | 
 | { | 
 |     _PyMem_DebugCheckGIL(); | 
 |     _PyMem_DebugRawFree(ctx, ptr); | 
 | } | 
 |  | 
 |  | 
 | static void * | 
 | _PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes) | 
 | { | 
 |     _PyMem_DebugCheckGIL(); | 
 |     return _PyMem_DebugRawRealloc(ctx, ptr, nbytes); | 
 | } | 
 |  | 
 | /* Check the forbidden bytes on both ends of the memory allocated for p. | 
 |  * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, | 
 |  * and call Py_FatalError to kill the program. | 
 |  * The API id, is also checked. | 
 |  */ | 
 | static void | 
 | _PyMem_DebugCheckAddress(char api, const void *p) | 
 | { | 
 |     const uint8_t *q = (const uint8_t *)p; | 
 |     char msgbuf[64]; | 
 |     const char *msg; | 
 |     size_t nbytes; | 
 |     const uint8_t *tail; | 
 |     int i; | 
 |     char id; | 
 |  | 
 |     if (p == NULL) { | 
 |         msg = "didn't expect a NULL pointer"; | 
 |         goto error; | 
 |     } | 
 |  | 
 |     /* Check the API id */ | 
 |     id = (char)q[-SST]; | 
 |     if (id != api) { | 
 |         msg = msgbuf; | 
 |         snprintf(msgbuf, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api); | 
 |         msgbuf[sizeof(msgbuf)-1] = 0; | 
 |         goto error; | 
 |     } | 
 |  | 
 |     /* Check the stuff at the start of p first:  if there's underwrite | 
 |      * corruption, the number-of-bytes field may be nuts, and checking | 
 |      * the tail could lead to a segfault then. | 
 |      */ | 
 |     for (i = SST-1; i >= 1; --i) { | 
 |         if (*(q-i) != FORBIDDENBYTE) { | 
 |             msg = "bad leading pad byte"; | 
 |             goto error; | 
 |         } | 
 |     } | 
 |  | 
 |     nbytes = read_size_t(q - 2*SST); | 
 |     tail = q + nbytes; | 
 |     for (i = 0; i < SST; ++i) { | 
 |         if (tail[i] != FORBIDDENBYTE) { | 
 |             msg = "bad trailing pad byte"; | 
 |             goto error; | 
 |         } | 
 |     } | 
 |  | 
 |     return; | 
 |  | 
 | error: | 
 |     _PyObject_DebugDumpAddress(p); | 
 |     Py_FatalError(msg); | 
 | } | 
 |  | 
 | /* Display info to stderr about the memory block at p. */ | 
 | static void | 
 | _PyObject_DebugDumpAddress(const void *p) | 
 | { | 
 |     const uint8_t *q = (const uint8_t *)p; | 
 |     const uint8_t *tail; | 
 |     size_t nbytes, serial; | 
 |     int i; | 
 |     int ok; | 
 |     char id; | 
 |  | 
 |     fprintf(stderr, "Debug memory block at address p=%p:", p); | 
 |     if (p == NULL) { | 
 |         fprintf(stderr, "\n"); | 
 |         return; | 
 |     } | 
 |     id = (char)q[-SST]; | 
 |     fprintf(stderr, " API '%c'\n", id); | 
 |  | 
 |     nbytes = read_size_t(q - 2*SST); | 
 |     fprintf(stderr, "    %" PY_FORMAT_SIZE_T "u bytes originally " | 
 |                     "requested\n", nbytes); | 
 |  | 
 |     /* In case this is nuts, check the leading pad bytes first. */ | 
 |     fprintf(stderr, "    The %d pad bytes at p-%d are ", SST-1, SST-1); | 
 |     ok = 1; | 
 |     for (i = 1; i <= SST-1; ++i) { | 
 |         if (*(q-i) != FORBIDDENBYTE) { | 
 |             ok = 0; | 
 |             break; | 
 |         } | 
 |     } | 
 |     if (ok) | 
 |         fputs("FORBIDDENBYTE, as expected.\n", stderr); | 
 |     else { | 
 |         fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", | 
 |             FORBIDDENBYTE); | 
 |         for (i = SST-1; i >= 1; --i) { | 
 |             const uint8_t byte = *(q-i); | 
 |             fprintf(stderr, "        at p-%d: 0x%02x", i, byte); | 
 |             if (byte != FORBIDDENBYTE) | 
 |                 fputs(" *** OUCH", stderr); | 
 |             fputc('\n', stderr); | 
 |         } | 
 |  | 
 |         fputs("    Because memory is corrupted at the start, the " | 
 |               "count of bytes requested\n" | 
 |               "       may be bogus, and checking the trailing pad " | 
 |               "bytes may segfault.\n", stderr); | 
 |     } | 
 |  | 
 |     tail = q + nbytes; | 
 |     fprintf(stderr, "    The %d pad bytes at tail=%p are ", SST, tail); | 
 |     ok = 1; | 
 |     for (i = 0; i < SST; ++i) { | 
 |         if (tail[i] != FORBIDDENBYTE) { | 
 |             ok = 0; | 
 |             break; | 
 |         } | 
 |     } | 
 |     if (ok) | 
 |         fputs("FORBIDDENBYTE, as expected.\n", stderr); | 
 |     else { | 
 |         fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", | 
 |                 FORBIDDENBYTE); | 
 |         for (i = 0; i < SST; ++i) { | 
 |             const uint8_t byte = tail[i]; | 
 |             fprintf(stderr, "        at tail+%d: 0x%02x", | 
 |                     i, byte); | 
 |             if (byte != FORBIDDENBYTE) | 
 |                 fputs(" *** OUCH", stderr); | 
 |             fputc('\n', stderr); | 
 |         } | 
 |     } | 
 |  | 
 |     serial = read_size_t(tail + SST); | 
 |     fprintf(stderr, "    The block was made by call #%" PY_FORMAT_SIZE_T | 
 |                     "u to debug malloc/realloc.\n", serial); | 
 |  | 
 |     if (nbytes > 0) { | 
 |         i = 0; | 
 |         fputs("    Data at p:", stderr); | 
 |         /* print up to 8 bytes at the start */ | 
 |         while (q < tail && i < 8) { | 
 |             fprintf(stderr, " %02x", *q); | 
 |             ++i; | 
 |             ++q; | 
 |         } | 
 |         /* and up to 8 at the end */ | 
 |         if (q < tail) { | 
 |             if (tail - q > 8) { | 
 |                 fputs(" ...", stderr); | 
 |                 q = tail - 8; | 
 |             } | 
 |             while (q < tail) { | 
 |                 fprintf(stderr, " %02x", *q); | 
 |                 ++q; | 
 |             } | 
 |         } | 
 |         fputc('\n', stderr); | 
 |     } | 
 |     fputc('\n', stderr); | 
 |  | 
 |     fflush(stderr); | 
 |     _PyMem_DumpTraceback(fileno(stderr), p); | 
 | } | 
 |  | 
 |  | 
 | static size_t | 
 | printone(FILE *out, const char* msg, size_t value) | 
 | { | 
 |     int i, k; | 
 |     char buf[100]; | 
 |     size_t origvalue = value; | 
 |  | 
 |     fputs(msg, out); | 
 |     for (i = (int)strlen(msg); i < 35; ++i) | 
 |         fputc(' ', out); | 
 |     fputc('=', out); | 
 |  | 
 |     /* Write the value with commas. */ | 
 |     i = 22; | 
 |     buf[i--] = '\0'; | 
 |     buf[i--] = '\n'; | 
 |     k = 3; | 
 |     do { | 
 |         size_t nextvalue = value / 10; | 
 |         unsigned int digit = (unsigned int)(value - nextvalue * 10); | 
 |         value = nextvalue; | 
 |         buf[i--] = (char)(digit + '0'); | 
 |         --k; | 
 |         if (k == 0 && value && i >= 0) { | 
 |             k = 3; | 
 |             buf[i--] = ','; | 
 |         } | 
 |     } while (value && i >= 0); | 
 |  | 
 |     while (i >= 0) | 
 |         buf[i--] = ' '; | 
 |     fputs(buf, out); | 
 |  | 
 |     return origvalue; | 
 | } | 
 |  | 
 | void | 
 | _PyDebugAllocatorStats(FILE *out, | 
 |                        const char *block_name, int num_blocks, size_t sizeof_block) | 
 | { | 
 |     char buf1[128]; | 
 |     char buf2[128]; | 
 |     PyOS_snprintf(buf1, sizeof(buf1), | 
 |                   "%d %ss * %" PY_FORMAT_SIZE_T "d bytes each", | 
 |                   num_blocks, block_name, sizeof_block); | 
 |     PyOS_snprintf(buf2, sizeof(buf2), | 
 |                   "%48s ", buf1); | 
 |     (void)printone(out, buf2, num_blocks * sizeof_block); | 
 | } | 
 |  | 
 |  | 
 | #ifdef WITH_PYMALLOC | 
 |  | 
 | #ifdef Py_DEBUG | 
 | /* Is target in the list?  The list is traversed via the nextpool pointers. | 
 |  * The list may be NULL-terminated, or circular.  Return 1 if target is in | 
 |  * list, else 0. | 
 |  */ | 
 | static int | 
 | pool_is_in_list(const poolp target, poolp list) | 
 | { | 
 |     poolp origlist = list; | 
 |     assert(target != NULL); | 
 |     if (list == NULL) | 
 |         return 0; | 
 |     do { | 
 |         if (target == list) | 
 |             return 1; | 
 |         list = list->nextpool; | 
 |     } while (list != NULL && list != origlist); | 
 |     return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* Print summary info to "out" about the state of pymalloc's structures. | 
 |  * In Py_DEBUG mode, also perform some expensive internal consistency | 
 |  * checks. | 
 |  * | 
 |  * Return 0 if the memory debug hooks are not installed or no statistics was | 
 |  * written into out, return 1 otherwise. | 
 |  */ | 
 | int | 
 | _PyObject_DebugMallocStats(FILE *out) | 
 | { | 
 |     if (!_PyMem_PymallocEnabled()) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     uint i; | 
 |     const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; | 
 |     /* # of pools, allocated blocks, and free blocks per class index */ | 
 |     size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; | 
 |     size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; | 
 |     size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; | 
 |     /* total # of allocated bytes in used and full pools */ | 
 |     size_t allocated_bytes = 0; | 
 |     /* total # of available bytes in used pools */ | 
 |     size_t available_bytes = 0; | 
 |     /* # of free pools + pools not yet carved out of current arena */ | 
 |     uint numfreepools = 0; | 
 |     /* # of bytes for arena alignment padding */ | 
 |     size_t arena_alignment = 0; | 
 |     /* # of bytes in used and full pools used for pool_headers */ | 
 |     size_t pool_header_bytes = 0; | 
 |     /* # of bytes in used and full pools wasted due to quantization, | 
 |      * i.e. the necessarily leftover space at the ends of used and | 
 |      * full pools. | 
 |      */ | 
 |     size_t quantization = 0; | 
 |     /* # of arenas actually allocated. */ | 
 |     size_t narenas = 0; | 
 |     /* running total -- should equal narenas * ARENA_SIZE */ | 
 |     size_t total; | 
 |     char buf[128]; | 
 |  | 
 |     fprintf(out, "Small block threshold = %d, in %u size classes.\n", | 
 |             SMALL_REQUEST_THRESHOLD, numclasses); | 
 |  | 
 |     for (i = 0; i < numclasses; ++i) | 
 |         numpools[i] = numblocks[i] = numfreeblocks[i] = 0; | 
 |  | 
 |     /* Because full pools aren't linked to from anything, it's easiest | 
 |      * to march over all the arenas.  If we're lucky, most of the memory | 
 |      * will be living in full pools -- would be a shame to miss them. | 
 |      */ | 
 |     for (i = 0; i < maxarenas; ++i) { | 
 |         uint j; | 
 |         uintptr_t base = arenas[i].address; | 
 |  | 
 |         /* Skip arenas which are not allocated. */ | 
 |         if (arenas[i].address == (uintptr_t)NULL) | 
 |             continue; | 
 |         narenas += 1; | 
 |  | 
 |         numfreepools += arenas[i].nfreepools; | 
 |  | 
 |         /* round up to pool alignment */ | 
 |         if (base & (uintptr_t)POOL_SIZE_MASK) { | 
 |             arena_alignment += POOL_SIZE; | 
 |             base &= ~(uintptr_t)POOL_SIZE_MASK; | 
 |             base += POOL_SIZE; | 
 |         } | 
 |  | 
 |         /* visit every pool in the arena */ | 
 |         assert(base <= (uintptr_t) arenas[i].pool_address); | 
 |         for (j = 0; base < (uintptr_t) arenas[i].pool_address; | 
 |              ++j, base += POOL_SIZE) { | 
 |             poolp p = (poolp)base; | 
 |             const uint sz = p->szidx; | 
 |             uint freeblocks; | 
 |  | 
 |             if (p->ref.count == 0) { | 
 |                 /* currently unused */ | 
 | #ifdef Py_DEBUG | 
 |                 assert(pool_is_in_list(p, arenas[i].freepools)); | 
 | #endif | 
 |                 continue; | 
 |             } | 
 |             ++numpools[sz]; | 
 |             numblocks[sz] += p->ref.count; | 
 |             freeblocks = NUMBLOCKS(sz) - p->ref.count; | 
 |             numfreeblocks[sz] += freeblocks; | 
 | #ifdef Py_DEBUG | 
 |             if (freeblocks > 0) | 
 |                 assert(pool_is_in_list(p, usedpools[sz + sz])); | 
 | #endif | 
 |         } | 
 |     } | 
 |     assert(narenas == narenas_currently_allocated); | 
 |  | 
 |     fputc('\n', out); | 
 |     fputs("class   size   num pools   blocks in use  avail blocks\n" | 
 |           "-----   ----   ---------   -------------  ------------\n", | 
 |           out); | 
 |  | 
 |     for (i = 0; i < numclasses; ++i) { | 
 |         size_t p = numpools[i]; | 
 |         size_t b = numblocks[i]; | 
 |         size_t f = numfreeblocks[i]; | 
 |         uint size = INDEX2SIZE(i); | 
 |         if (p == 0) { | 
 |             assert(b == 0 && f == 0); | 
 |             continue; | 
 |         } | 
 |         fprintf(out, "%5u %6u " | 
 |                         "%11" PY_FORMAT_SIZE_T "u " | 
 |                         "%15" PY_FORMAT_SIZE_T "u " | 
 |                         "%13" PY_FORMAT_SIZE_T "u\n", | 
 |                 i, size, p, b, f); | 
 |         allocated_bytes += b * size; | 
 |         available_bytes += f * size; | 
 |         pool_header_bytes += p * POOL_OVERHEAD; | 
 |         quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); | 
 |     } | 
 |     fputc('\n', out); | 
 |     if (_PyMem_DebugEnabled()) | 
 |         (void)printone(out, "# times object malloc called", serialno); | 
 |     (void)printone(out, "# arenas allocated total", ntimes_arena_allocated); | 
 |     (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas); | 
 |     (void)printone(out, "# arenas highwater mark", narenas_highwater); | 
 |     (void)printone(out, "# arenas allocated current", narenas); | 
 |  | 
 |     PyOS_snprintf(buf, sizeof(buf), | 
 |         "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena", | 
 |         narenas, ARENA_SIZE); | 
 |     (void)printone(out, buf, narenas * ARENA_SIZE); | 
 |  | 
 |     fputc('\n', out); | 
 |  | 
 |     total = printone(out, "# bytes in allocated blocks", allocated_bytes); | 
 |     total += printone(out, "# bytes in available blocks", available_bytes); | 
 |  | 
 |     PyOS_snprintf(buf, sizeof(buf), | 
 |         "%u unused pools * %d bytes", numfreepools, POOL_SIZE); | 
 |     total += printone(out, buf, (size_t)numfreepools * POOL_SIZE); | 
 |  | 
 |     total += printone(out, "# bytes lost to pool headers", pool_header_bytes); | 
 |     total += printone(out, "# bytes lost to quantization", quantization); | 
 |     total += printone(out, "# bytes lost to arena alignment", arena_alignment); | 
 |     (void)printone(out, "Total", total); | 
 |     return 1; | 
 | } | 
 |  | 
 | #endif /* #ifdef WITH_PYMALLOC */ |