| /* Bisection algorithms. Drop in replacement for bisect.py |
| |
| Converted to C by Dmitry Vasiliev (dima at hlabs.spb.ru). |
| */ |
| |
| #define PY_SSIZE_T_CLEAN |
| #include "Python.h" |
| |
| _Py_IDENTIFIER(insert); |
| |
| static inline Py_ssize_t |
| internal_bisect_right(PyObject *list, PyObject *item, Py_ssize_t lo, Py_ssize_t hi) |
| { |
| PyObject *litem; |
| Py_ssize_t mid; |
| int res; |
| |
| if (lo < 0) { |
| PyErr_SetString(PyExc_ValueError, "lo must be non-negative"); |
| return -1; |
| } |
| if (hi == -1) { |
| hi = PySequence_Size(list); |
| if (hi < 0) |
| return -1; |
| } |
| while (lo < hi) { |
| /* The (size_t)cast ensures that the addition and subsequent division |
| are performed as unsigned operations, avoiding difficulties from |
| signed overflow. (See issue 13496.) */ |
| mid = ((size_t)lo + hi) / 2; |
| litem = PySequence_GetItem(list, mid); |
| if (litem == NULL) |
| return -1; |
| res = PyObject_RichCompareBool(item, litem, Py_LT); |
| Py_DECREF(litem); |
| if (res < 0) |
| return -1; |
| if (res) |
| hi = mid; |
| else |
| lo = mid + 1; |
| } |
| return lo; |
| } |
| |
| static PyObject * |
| bisect_right(PyObject *self, PyObject *args, PyObject *kw) |
| { |
| PyObject *list, *item; |
| Py_ssize_t lo = 0; |
| Py_ssize_t hi = -1; |
| Py_ssize_t index; |
| static char *keywords[] = {"a", "x", "lo", "hi", NULL}; |
| |
| if (kw == NULL && PyTuple_GET_SIZE(args) == 2) { |
| list = PyTuple_GET_ITEM(args, 0); |
| item = PyTuple_GET_ITEM(args, 1); |
| } |
| else { |
| if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|nn:bisect_right", |
| keywords, &list, &item, &lo, &hi)) |
| return NULL; |
| } |
| index = internal_bisect_right(list, item, lo, hi); |
| if (index < 0) |
| return NULL; |
| return PyLong_FromSsize_t(index); |
| } |
| |
| PyDoc_STRVAR(bisect_right_doc, |
| "bisect_right(a, x[, lo[, hi]]) -> index\n\ |
| \n\ |
| Return the index where to insert item x in list a, assuming a is sorted.\n\ |
| \n\ |
| The return value i is such that all e in a[:i] have e <= x, and all e in\n\ |
| a[i:] have e > x. So if x already appears in the list, i points just\n\ |
| beyond the rightmost x already there\n\ |
| \n\ |
| Optional args lo (default 0) and hi (default len(a)) bound the\n\ |
| slice of a to be searched.\n"); |
| |
| static PyObject * |
| insort_right(PyObject *self, PyObject *args, PyObject *kw) |
| { |
| PyObject *list, *item, *result; |
| Py_ssize_t lo = 0; |
| Py_ssize_t hi = -1; |
| Py_ssize_t index; |
| static char *keywords[] = {"a", "x", "lo", "hi", NULL}; |
| |
| if (kw == NULL && PyTuple_GET_SIZE(args) == 2) { |
| list = PyTuple_GET_ITEM(args, 0); |
| item = PyTuple_GET_ITEM(args, 1); |
| } |
| else { |
| if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|nn:insort_right", |
| keywords, &list, &item, &lo, &hi)) |
| return NULL; |
| } |
| index = internal_bisect_right(list, item, lo, hi); |
| if (index < 0) |
| return NULL; |
| if (PyList_CheckExact(list)) { |
| if (PyList_Insert(list, index, item) < 0) |
| return NULL; |
| } |
| else { |
| result = _PyObject_CallMethodId(list, &PyId_insert, "nO", index, item); |
| if (result == NULL) |
| return NULL; |
| Py_DECREF(result); |
| } |
| |
| Py_RETURN_NONE; |
| } |
| |
| PyDoc_STRVAR(insort_right_doc, |
| "insort_right(a, x[, lo[, hi]])\n\ |
| \n\ |
| Insert item x in list a, and keep it sorted assuming a is sorted.\n\ |
| \n\ |
| If x is already in a, insert it to the right of the rightmost x.\n\ |
| \n\ |
| Optional args lo (default 0) and hi (default len(a)) bound the\n\ |
| slice of a to be searched.\n"); |
| |
| static inline Py_ssize_t |
| internal_bisect_left(PyObject *list, PyObject *item, Py_ssize_t lo, Py_ssize_t hi) |
| { |
| PyObject *litem; |
| Py_ssize_t mid; |
| int res; |
| |
| if (lo < 0) { |
| PyErr_SetString(PyExc_ValueError, "lo must be non-negative"); |
| return -1; |
| } |
| if (hi == -1) { |
| hi = PySequence_Size(list); |
| if (hi < 0) |
| return -1; |
| } |
| while (lo < hi) { |
| /* The (size_t)cast ensures that the addition and subsequent division |
| are performed as unsigned operations, avoiding difficulties from |
| signed overflow. (See issue 13496.) */ |
| mid = ((size_t)lo + hi) / 2; |
| litem = PySequence_GetItem(list, mid); |
| if (litem == NULL) |
| return -1; |
| res = PyObject_RichCompareBool(litem, item, Py_LT); |
| Py_DECREF(litem); |
| if (res < 0) |
| return -1; |
| if (res) |
| lo = mid + 1; |
| else |
| hi = mid; |
| } |
| return lo; |
| } |
| |
| static PyObject * |
| bisect_left(PyObject *self, PyObject *args, PyObject *kw) |
| { |
| PyObject *list, *item; |
| Py_ssize_t lo = 0; |
| Py_ssize_t hi = -1; |
| Py_ssize_t index; |
| static char *keywords[] = {"a", "x", "lo", "hi", NULL}; |
| |
| if (kw == NULL && PyTuple_GET_SIZE(args) == 2) { |
| list = PyTuple_GET_ITEM(args, 0); |
| item = PyTuple_GET_ITEM(args, 1); |
| } |
| else { |
| if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|nn:bisect_left", |
| keywords, &list, &item, &lo, &hi)) |
| return NULL; |
| } |
| index = internal_bisect_left(list, item, lo, hi); |
| if (index < 0) |
| return NULL; |
| return PyLong_FromSsize_t(index); |
| } |
| |
| PyDoc_STRVAR(bisect_left_doc, |
| "bisect_left(a, x[, lo[, hi]]) -> index\n\ |
| \n\ |
| Return the index where to insert item x in list a, assuming a is sorted.\n\ |
| \n\ |
| The return value i is such that all e in a[:i] have e < x, and all e in\n\ |
| a[i:] have e >= x. So if x already appears in the list, i points just\n\ |
| before the leftmost x already there.\n\ |
| \n\ |
| Optional args lo (default 0) and hi (default len(a)) bound the\n\ |
| slice of a to be searched.\n"); |
| |
| static PyObject * |
| insort_left(PyObject *self, PyObject *args, PyObject *kw) |
| { |
| PyObject *list, *item, *result; |
| Py_ssize_t lo = 0; |
| Py_ssize_t hi = -1; |
| Py_ssize_t index; |
| static char *keywords[] = {"a", "x", "lo", "hi", NULL}; |
| |
| if (kw == NULL && PyTuple_GET_SIZE(args) == 2) { |
| list = PyTuple_GET_ITEM(args, 0); |
| item = PyTuple_GET_ITEM(args, 1); |
| } else { |
| if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|nn:insort_left", |
| keywords, &list, &item, &lo, &hi)) |
| return NULL; |
| } |
| index = internal_bisect_left(list, item, lo, hi); |
| if (index < 0) |
| return NULL; |
| if (PyList_CheckExact(list)) { |
| if (PyList_Insert(list, index, item) < 0) |
| return NULL; |
| } else { |
| result = _PyObject_CallMethodId(list, &PyId_insert, "nO", index, item); |
| if (result == NULL) |
| return NULL; |
| Py_DECREF(result); |
| } |
| |
| Py_RETURN_NONE; |
| } |
| |
| PyDoc_STRVAR(insort_left_doc, |
| "insort_left(a, x[, lo[, hi]])\n\ |
| \n\ |
| Insert item x in list a, and keep it sorted assuming a is sorted.\n\ |
| \n\ |
| If x is already in a, insert it to the left of the leftmost x.\n\ |
| \n\ |
| Optional args lo (default 0) and hi (default len(a)) bound the\n\ |
| slice of a to be searched.\n"); |
| |
| static PyMethodDef bisect_methods[] = { |
| {"bisect_right", (PyCFunction)(void(*)(void))bisect_right, |
| METH_VARARGS|METH_KEYWORDS, bisect_right_doc}, |
| {"insort_right", (PyCFunction)(void(*)(void))insort_right, |
| METH_VARARGS|METH_KEYWORDS, insort_right_doc}, |
| {"bisect_left", (PyCFunction)(void(*)(void))bisect_left, |
| METH_VARARGS|METH_KEYWORDS, bisect_left_doc}, |
| {"insort_left", (PyCFunction)(void(*)(void))insort_left, |
| METH_VARARGS|METH_KEYWORDS, insort_left_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyDoc_STRVAR(module_doc, |
| "Bisection algorithms.\n\ |
| \n\ |
| This module provides support for maintaining a list in sorted order without\n\ |
| having to sort the list after each insertion. For long lists of items with\n\ |
| expensive comparison operations, this can be an improvement over the more\n\ |
| common approach.\n"); |
| |
| |
| static struct PyModuleDef _bisectmodule = { |
| PyModuleDef_HEAD_INIT, |
| "_bisect", |
| module_doc, |
| -1, |
| bisect_methods, |
| NULL, |
| NULL, |
| NULL, |
| NULL |
| }; |
| |
| PyMODINIT_FUNC |
| PyInit__bisect(void) |
| { |
| return PyModule_Create(&_bisectmodule); |
| } |