| /* Drop in replacement for heapq.py | 
 |  | 
 | C implementation derived directly from heapq.py in Py2.3 | 
 | which was written by Kevin O'Connor, augmented by Tim Peters, | 
 | annotated by François Pinard, and converted to C by Raymond Hettinger. | 
 |  | 
 | */ | 
 |  | 
 | #include "Python.h" | 
 |  | 
 | static int | 
 | _siftdown(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos) | 
 | { | 
 |     PyObject *newitem, *parent; | 
 |     Py_ssize_t parentpos, size; | 
 |     int cmp; | 
 |  | 
 |     assert(PyList_Check(heap)); | 
 |     size = PyList_GET_SIZE(heap); | 
 |     if (pos >= size) { | 
 |         PyErr_SetString(PyExc_IndexError, "index out of range"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     /* Follow the path to the root, moving parents down until finding | 
 |        a place newitem fits. */ | 
 |     newitem = PyList_GET_ITEM(heap, pos); | 
 |     while (pos > startpos) { | 
 |         parentpos = (pos - 1) >> 1; | 
 |         parent = PyList_GET_ITEM(heap, parentpos); | 
 |         cmp = PyObject_RichCompareBool(newitem, parent, Py_LT); | 
 |         if (cmp == -1) | 
 |             return -1; | 
 |         if (size != PyList_GET_SIZE(heap)) { | 
 |             PyErr_SetString(PyExc_RuntimeError, | 
 |                             "list changed size during iteration"); | 
 |             return -1; | 
 |         } | 
 |         if (cmp == 0) | 
 |             break; | 
 |         parent = PyList_GET_ITEM(heap, parentpos); | 
 |         newitem = PyList_GET_ITEM(heap, pos); | 
 |         PyList_SET_ITEM(heap, parentpos, newitem); | 
 |         PyList_SET_ITEM(heap, pos, parent); | 
 |         pos = parentpos; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int | 
 | _siftup(PyListObject *heap, Py_ssize_t pos) | 
 | { | 
 |     Py_ssize_t startpos, endpos, childpos, rightpos, limit; | 
 |     PyObject *tmp1, *tmp2; | 
 |     int cmp; | 
 |  | 
 |     assert(PyList_Check(heap)); | 
 |     endpos = PyList_GET_SIZE(heap); | 
 |     startpos = pos; | 
 |     if (pos >= endpos) { | 
 |         PyErr_SetString(PyExc_IndexError, "index out of range"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     /* Bubble up the smaller child until hitting a leaf. */ | 
 |     limit = endpos / 2;          /* smallest pos that has no child */ | 
 |     while (pos < limit) { | 
 |         /* Set childpos to index of smaller child.   */ | 
 |         childpos = 2*pos + 1;    /* leftmost child position  */ | 
 |         rightpos = childpos + 1; | 
 |         if (rightpos < endpos) { | 
 |             cmp = PyObject_RichCompareBool( | 
 |                 PyList_GET_ITEM(heap, childpos), | 
 |                 PyList_GET_ITEM(heap, rightpos), | 
 |                 Py_LT); | 
 |             if (cmp == -1) | 
 |                 return -1; | 
 |             if (cmp == 0) | 
 |                 childpos = rightpos; | 
 |             if (endpos != PyList_GET_SIZE(heap)) { | 
 |                 PyErr_SetString(PyExc_RuntimeError, | 
 |                                 "list changed size during iteration"); | 
 |                 return -1; | 
 |             } | 
 |         } | 
 |         /* Move the smaller child up. */ | 
 |         tmp1 = PyList_GET_ITEM(heap, childpos); | 
 |         tmp2 = PyList_GET_ITEM(heap, pos); | 
 |         PyList_SET_ITEM(heap, childpos, tmp2); | 
 |         PyList_SET_ITEM(heap, pos, tmp1); | 
 |         pos = childpos; | 
 |     } | 
 |     /* Bubble it up to its final resting place (by sifting its parents down). */ | 
 |     return _siftdown(heap, startpos, pos); | 
 | } | 
 |  | 
 | static PyObject * | 
 | heappush(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *heap, *item; | 
 |  | 
 |     if (!PyArg_UnpackTuple(args, "heappush", 2, 2, &heap, &item)) | 
 |         return NULL; | 
 |  | 
 |     if (!PyList_Check(heap)) { | 
 |         PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     if (PyList_Append(heap, item) == -1) | 
 |         return NULL; | 
 |  | 
 |     if (_siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1) == -1) | 
 |         return NULL; | 
 |     Py_INCREF(Py_None); | 
 |     return Py_None; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(heappush_doc, | 
 | "heappush(heap, item) -> None. Push item onto heap, maintaining the heap invariant."); | 
 |  | 
 | static PyObject * | 
 | heappop(PyObject *self, PyObject *heap) | 
 | { | 
 |     PyObject *lastelt, *returnitem; | 
 |     Py_ssize_t n; | 
 |  | 
 |     if (!PyList_Check(heap)) { | 
 |         PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     /* # raises appropriate IndexError if heap is empty */ | 
 |     n = PyList_GET_SIZE(heap); | 
 |     if (n == 0) { | 
 |         PyErr_SetString(PyExc_IndexError, "index out of range"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     lastelt = PyList_GET_ITEM(heap, n-1) ; | 
 |     Py_INCREF(lastelt); | 
 |     if (PyList_SetSlice(heap, n-1, n, NULL) < 0) { | 
 |         Py_DECREF(lastelt); | 
 |         return NULL; | 
 |     } | 
 |     n--; | 
 |  | 
 |     if (!n) | 
 |         return lastelt; | 
 |     returnitem = PyList_GET_ITEM(heap, 0); | 
 |     PyList_SET_ITEM(heap, 0, lastelt); | 
 |     if (_siftup((PyListObject *)heap, 0) == -1) { | 
 |         Py_DECREF(returnitem); | 
 |         return NULL; | 
 |     } | 
 |     return returnitem; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(heappop_doc, | 
 | "Pop the smallest item off the heap, maintaining the heap invariant."); | 
 |  | 
 | static PyObject * | 
 | heapreplace(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *heap, *item, *returnitem; | 
 |  | 
 |     if (!PyArg_UnpackTuple(args, "heapreplace", 2, 2, &heap, &item)) | 
 |         return NULL; | 
 |  | 
 |     if (!PyList_Check(heap)) { | 
 |         PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     if (PyList_GET_SIZE(heap) < 1) { | 
 |         PyErr_SetString(PyExc_IndexError, "index out of range"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     returnitem = PyList_GET_ITEM(heap, 0); | 
 |     Py_INCREF(item); | 
 |     PyList_SET_ITEM(heap, 0, item); | 
 |     if (_siftup((PyListObject *)heap, 0) == -1) { | 
 |         Py_DECREF(returnitem); | 
 |         return NULL; | 
 |     } | 
 |     return returnitem; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(heapreplace_doc, | 
 | "heapreplace(heap, item) -> value. Pop and return the current smallest value, and add the new item.\n\ | 
 | \n\ | 
 | This is more efficient than heappop() followed by heappush(), and can be\n\ | 
 | more appropriate when using a fixed-size heap.  Note that the value\n\ | 
 | returned may be larger than item!  That constrains reasonable uses of\n\ | 
 | this routine unless written as part of a conditional replacement:\n\n\ | 
 |     if item > heap[0]:\n\ | 
 |         item = heapreplace(heap, item)\n"); | 
 |  | 
 | static PyObject * | 
 | heappushpop(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *heap, *item, *returnitem; | 
 |     int cmp; | 
 |  | 
 |     if (!PyArg_UnpackTuple(args, "heappushpop", 2, 2, &heap, &item)) | 
 |         return NULL; | 
 |  | 
 |     if (!PyList_Check(heap)) { | 
 |         PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     if (PyList_GET_SIZE(heap) < 1) { | 
 |         Py_INCREF(item); | 
 |         return item; | 
 |     } | 
 |  | 
 |     cmp = PyObject_RichCompareBool(PyList_GET_ITEM(heap, 0), item, Py_LT); | 
 |     if (cmp == -1) | 
 |         return NULL; | 
 |     if (cmp == 0) { | 
 |         Py_INCREF(item); | 
 |         return item; | 
 |     } | 
 |  | 
 |     if (PyList_GET_SIZE(heap) == 0) { | 
 |         PyErr_SetString(PyExc_IndexError, "index out of range"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     returnitem = PyList_GET_ITEM(heap, 0); | 
 |     Py_INCREF(item); | 
 |     PyList_SET_ITEM(heap, 0, item); | 
 |     if (_siftup((PyListObject *)heap, 0) == -1) { | 
 |         Py_DECREF(returnitem); | 
 |         return NULL; | 
 |     } | 
 |     return returnitem; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(heappushpop_doc, | 
 | "heappushpop(heap, item) -> value. Push item on the heap, then pop and return the smallest item\n\ | 
 | from the heap. The combined action runs more efficiently than\n\ | 
 | heappush() followed by a separate call to heappop()."); | 
 |  | 
 | static PyObject * | 
 | heapify(PyObject *self, PyObject *heap) | 
 | { | 
 |     Py_ssize_t i, n; | 
 |  | 
 |     if (!PyList_Check(heap)) { | 
 |         PyErr_SetString(PyExc_TypeError, "heap argument must be a list"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     n = PyList_GET_SIZE(heap); | 
 |     /* Transform bottom-up.  The largest index there's any point to | 
 |        looking at is the largest with a child index in-range, so must | 
 |        have 2*i + 1 < n, or i < (n-1)/2.  If n is even = 2*j, this is | 
 |        (2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1.  If | 
 |        n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest, | 
 |        and that's again n//2-1. | 
 |     */ | 
 |     for (i=n/2-1 ; i>=0 ; i--) | 
 |         if(_siftup((PyListObject *)heap, i) == -1) | 
 |             return NULL; | 
 |     Py_INCREF(Py_None); | 
 |     return Py_None; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(heapify_doc, | 
 | "Transform list into a heap, in-place, in O(len(heap)) time."); | 
 |  | 
 | static PyObject * | 
 | nlargest(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *heap=NULL, *elem, *iterable, *sol, *it, *oldelem; | 
 |     Py_ssize_t i, n; | 
 |     int cmp; | 
 |  | 
 |     if (!PyArg_ParseTuple(args, "nO:nlargest", &n, &iterable)) | 
 |         return NULL; | 
 |  | 
 |     it = PyObject_GetIter(iterable); | 
 |     if (it == NULL) | 
 |         return NULL; | 
 |  | 
 |     heap = PyList_New(0); | 
 |     if (heap == NULL) | 
 |         goto fail; | 
 |  | 
 |     for (i=0 ; i<n ; i++ ){ | 
 |         elem = PyIter_Next(it); | 
 |         if (elem == NULL) { | 
 |             if (PyErr_Occurred()) | 
 |                 goto fail; | 
 |             else | 
 |                 goto sortit; | 
 |         } | 
 |         if (PyList_Append(heap, elem) == -1) { | 
 |             Py_DECREF(elem); | 
 |             goto fail; | 
 |         } | 
 |         Py_DECREF(elem); | 
 |     } | 
 |     if (PyList_GET_SIZE(heap) == 0) | 
 |         goto sortit; | 
 |  | 
 |     for (i=n/2-1 ; i>=0 ; i--) | 
 |         if(_siftup((PyListObject *)heap, i) == -1) | 
 |             goto fail; | 
 |  | 
 |     sol = PyList_GET_ITEM(heap, 0); | 
 |     while (1) { | 
 |         elem = PyIter_Next(it); | 
 |         if (elem == NULL) { | 
 |             if (PyErr_Occurred()) | 
 |                 goto fail; | 
 |             else | 
 |                 goto sortit; | 
 |         } | 
 |         cmp = PyObject_RichCompareBool(sol, elem, Py_LT); | 
 |         if (cmp == -1) { | 
 |             Py_DECREF(elem); | 
 |             goto fail; | 
 |         } | 
 |         if (cmp == 0) { | 
 |             Py_DECREF(elem); | 
 |             continue; | 
 |         } | 
 |         oldelem = PyList_GET_ITEM(heap, 0); | 
 |         PyList_SET_ITEM(heap, 0, elem); | 
 |         Py_DECREF(oldelem); | 
 |         if (_siftup((PyListObject *)heap, 0) == -1) | 
 |             goto fail; | 
 |         sol = PyList_GET_ITEM(heap, 0); | 
 |     } | 
 | sortit: | 
 |     if (PyList_Sort(heap) == -1) | 
 |         goto fail; | 
 |     if (PyList_Reverse(heap) == -1) | 
 |         goto fail; | 
 |     Py_DECREF(it); | 
 |     return heap; | 
 |  | 
 | fail: | 
 |     Py_DECREF(it); | 
 |     Py_XDECREF(heap); | 
 |     return NULL; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(nlargest_doc, | 
 | "Find the n largest elements in a dataset.\n\ | 
 | \n\ | 
 | Equivalent to:  sorted(iterable, reverse=True)[:n]\n"); | 
 |  | 
 | static int | 
 | _siftdownmax(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos) | 
 | { | 
 |     PyObject *newitem, *parent; | 
 |     int cmp; | 
 |     Py_ssize_t parentpos; | 
 |  | 
 |     assert(PyList_Check(heap)); | 
 |     if (pos >= PyList_GET_SIZE(heap)) { | 
 |         PyErr_SetString(PyExc_IndexError, "index out of range"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     newitem = PyList_GET_ITEM(heap, pos); | 
 |     Py_INCREF(newitem); | 
 |     /* Follow the path to the root, moving parents down until finding | 
 |        a place newitem fits. */ | 
 |     while (pos > startpos){ | 
 |         parentpos = (pos - 1) >> 1; | 
 |         parent = PyList_GET_ITEM(heap, parentpos); | 
 |         cmp = PyObject_RichCompareBool(parent, newitem, Py_LT); | 
 |         if (cmp == -1) { | 
 |             Py_DECREF(newitem); | 
 |             return -1; | 
 |         } | 
 |         if (cmp == 0) | 
 |             break; | 
 |         Py_INCREF(parent); | 
 |         Py_DECREF(PyList_GET_ITEM(heap, pos)); | 
 |         PyList_SET_ITEM(heap, pos, parent); | 
 |         pos = parentpos; | 
 |     } | 
 |     Py_DECREF(PyList_GET_ITEM(heap, pos)); | 
 |     PyList_SET_ITEM(heap, pos, newitem); | 
 |     return 0; | 
 | } | 
 |  | 
 | static int | 
 | _siftupmax(PyListObject *heap, Py_ssize_t pos) | 
 | { | 
 |     Py_ssize_t startpos, endpos, childpos, rightpos, limit; | 
 |     int cmp; | 
 |     PyObject *newitem, *tmp; | 
 |  | 
 |     assert(PyList_Check(heap)); | 
 |     endpos = PyList_GET_SIZE(heap); | 
 |     startpos = pos; | 
 |     if (pos >= endpos) { | 
 |         PyErr_SetString(PyExc_IndexError, "index out of range"); | 
 |         return -1; | 
 |     } | 
 |     newitem = PyList_GET_ITEM(heap, pos); | 
 |     Py_INCREF(newitem); | 
 |  | 
 |     /* Bubble up the smaller child until hitting a leaf. */ | 
 |     limit = endpos / 2;          /* smallest pos that has no child */ | 
 |     while (pos < limit) { | 
 |         /* Set childpos to index of smaller child.   */ | 
 |         childpos = 2*pos + 1;    /* leftmost child position  */ | 
 |         rightpos = childpos + 1; | 
 |         if (rightpos < endpos) { | 
 |             cmp = PyObject_RichCompareBool( | 
 |                 PyList_GET_ITEM(heap, rightpos), | 
 |                 PyList_GET_ITEM(heap, childpos), | 
 |                 Py_LT); | 
 |             if (cmp == -1) { | 
 |                 Py_DECREF(newitem); | 
 |                 return -1; | 
 |             } | 
 |             if (cmp == 0) | 
 |                 childpos = rightpos; | 
 |         } | 
 |         /* Move the smaller child up. */ | 
 |         tmp = PyList_GET_ITEM(heap, childpos); | 
 |         Py_INCREF(tmp); | 
 |         Py_DECREF(PyList_GET_ITEM(heap, pos)); | 
 |         PyList_SET_ITEM(heap, pos, tmp); | 
 |         pos = childpos; | 
 |     } | 
 |  | 
 |     /* The leaf at pos is empty now.  Put newitem there, and bubble | 
 |        it up to its final resting place (by sifting its parents down). */ | 
 |     Py_DECREF(PyList_GET_ITEM(heap, pos)); | 
 |     PyList_SET_ITEM(heap, pos, newitem); | 
 |     return _siftdownmax(heap, startpos, pos); | 
 | } | 
 |  | 
 | static PyObject * | 
 | nsmallest(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *heap=NULL, *elem, *iterable, *los, *it, *oldelem; | 
 |     Py_ssize_t i, n; | 
 |     int cmp; | 
 |  | 
 |     if (!PyArg_ParseTuple(args, "nO:nsmallest", &n, &iterable)) | 
 |         return NULL; | 
 |  | 
 |     it = PyObject_GetIter(iterable); | 
 |     if (it == NULL) | 
 |         return NULL; | 
 |  | 
 |     heap = PyList_New(0); | 
 |     if (heap == NULL) | 
 |         goto fail; | 
 |  | 
 |     for (i=0 ; i<n ; i++ ){ | 
 |         elem = PyIter_Next(it); | 
 |         if (elem == NULL) { | 
 |             if (PyErr_Occurred()) | 
 |                 goto fail; | 
 |             else | 
 |                 goto sortit; | 
 |         } | 
 |         if (PyList_Append(heap, elem) == -1) { | 
 |             Py_DECREF(elem); | 
 |             goto fail; | 
 |         } | 
 |         Py_DECREF(elem); | 
 |     } | 
 |     n = PyList_GET_SIZE(heap); | 
 |     if (n == 0) | 
 |         goto sortit; | 
 |  | 
 |     for (i=n/2-1 ; i>=0 ; i--) | 
 |         if(_siftupmax((PyListObject *)heap, i) == -1) | 
 |             goto fail; | 
 |  | 
 |     los = PyList_GET_ITEM(heap, 0); | 
 |     while (1) { | 
 |         elem = PyIter_Next(it); | 
 |         if (elem == NULL) { | 
 |             if (PyErr_Occurred()) | 
 |                 goto fail; | 
 |             else | 
 |                 goto sortit; | 
 |         } | 
 |         cmp = PyObject_RichCompareBool(elem, los, Py_LT); | 
 |         if (cmp == -1) { | 
 |             Py_DECREF(elem); | 
 |             goto fail; | 
 |         } | 
 |         if (cmp == 0) { | 
 |             Py_DECREF(elem); | 
 |             continue; | 
 |         } | 
 |  | 
 |         oldelem = PyList_GET_ITEM(heap, 0); | 
 |         PyList_SET_ITEM(heap, 0, elem); | 
 |         Py_DECREF(oldelem); | 
 |         if (_siftupmax((PyListObject *)heap, 0) == -1) | 
 |             goto fail; | 
 |         los = PyList_GET_ITEM(heap, 0); | 
 |     } | 
 |  | 
 | sortit: | 
 |     if (PyList_Sort(heap) == -1) | 
 |         goto fail; | 
 |     Py_DECREF(it); | 
 |     return heap; | 
 |  | 
 | fail: | 
 |     Py_DECREF(it); | 
 |     Py_XDECREF(heap); | 
 |     return NULL; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(nsmallest_doc, | 
 | "Find the n smallest elements in a dataset.\n\ | 
 | \n\ | 
 | Equivalent to:  sorted(iterable)[:n]\n"); | 
 |  | 
 | static PyMethodDef heapq_methods[] = { | 
 |     {"heappush",        (PyCFunction)heappush, | 
 |         METH_VARARGS,           heappush_doc}, | 
 |     {"heappushpop",     (PyCFunction)heappushpop, | 
 |         METH_VARARGS,           heappushpop_doc}, | 
 |     {"heappop",         (PyCFunction)heappop, | 
 |         METH_O,                 heappop_doc}, | 
 |     {"heapreplace",     (PyCFunction)heapreplace, | 
 |         METH_VARARGS,           heapreplace_doc}, | 
 |     {"heapify",         (PyCFunction)heapify, | 
 |         METH_O,                 heapify_doc}, | 
 |     {"nlargest",        (PyCFunction)nlargest, | 
 |         METH_VARARGS,           nlargest_doc}, | 
 |     {"nsmallest",       (PyCFunction)nsmallest, | 
 |         METH_VARARGS,           nsmallest_doc}, | 
 |     {NULL,              NULL}           /* sentinel */ | 
 | }; | 
 |  | 
 | PyDoc_STRVAR(module_doc, | 
 | "Heap queue algorithm (a.k.a. priority queue).\n\ | 
 | \n\ | 
 | Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\ | 
 | all k, counting elements from 0.  For the sake of comparison,\n\ | 
 | non-existing elements are considered to be infinite.  The interesting\n\ | 
 | property of a heap is that a[0] is always its smallest element.\n\ | 
 | \n\ | 
 | Usage:\n\ | 
 | \n\ | 
 | heap = []            # creates an empty heap\n\ | 
 | heappush(heap, item) # pushes a new item on the heap\n\ | 
 | item = heappop(heap) # pops the smallest item from the heap\n\ | 
 | item = heap[0]       # smallest item on the heap without popping it\n\ | 
 | heapify(x)           # transforms list into a heap, in-place, in linear time\n\ | 
 | item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\ | 
 |                                # new item; the heap size is unchanged\n\ | 
 | \n\ | 
 | Our API differs from textbook heap algorithms as follows:\n\ | 
 | \n\ | 
 | - We use 0-based indexing.  This makes the relationship between the\n\ | 
 |   index for a node and the indexes for its children slightly less\n\ | 
 |   obvious, but is more suitable since Python uses 0-based indexing.\n\ | 
 | \n\ | 
 | - Our heappop() method returns the smallest item, not the largest.\n\ | 
 | \n\ | 
 | These two make it possible to view the heap as a regular Python list\n\ | 
 | without surprises: heap[0] is the smallest item, and heap.sort()\n\ | 
 | maintains the heap invariant!\n"); | 
 |  | 
 |  | 
 | PyDoc_STRVAR(__about__, | 
 | "Heap queues\n\ | 
 | \n\ | 
 | [explanation by Fran\xc3\xa7ois Pinard]\n\ | 
 | \n\ | 
 | Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\ | 
 | all k, counting elements from 0.  For the sake of comparison,\n\ | 
 | non-existing elements are considered to be infinite.  The interesting\n\ | 
 | property of a heap is that a[0] is always its smallest element.\n" | 
 | "\n\ | 
 | The strange invariant above is meant to be an efficient memory\n\ | 
 | representation for a tournament.  The numbers below are `k', not a[k]:\n\ | 
 | \n\ | 
 |                                    0\n\ | 
 | \n\ | 
 |                   1                                 2\n\ | 
 | \n\ | 
 |           3               4                5               6\n\ | 
 | \n\ | 
 |       7       8       9       10      11      12      13      14\n\ | 
 | \n\ | 
 |     15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30\n\ | 
 | \n\ | 
 | \n\ | 
 | In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In\n\ | 
 | an usual binary tournament we see in sports, each cell is the winner\n\ | 
 | over the two cells it tops, and we can trace the winner down the tree\n\ | 
 | to see all opponents s/he had.  However, in many computer applications\n\ | 
 | of such tournaments, we do not need to trace the history of a winner.\n\ | 
 | To be more memory efficient, when a winner is promoted, we try to\n\ | 
 | replace it by something else at a lower level, and the rule becomes\n\ | 
 | that a cell and the two cells it tops contain three different items,\n\ | 
 | but the top cell \"wins\" over the two topped cells.\n" | 
 | "\n\ | 
 | If this heap invariant is protected at all time, index 0 is clearly\n\ | 
 | the overall winner.  The simplest algorithmic way to remove it and\n\ | 
 | find the \"next\" winner is to move some loser (let's say cell 30 in the\n\ | 
 | diagram above) into the 0 position, and then percolate this new 0 down\n\ | 
 | the tree, exchanging values, until the invariant is re-established.\n\ | 
 | This is clearly logarithmic on the total number of items in the tree.\n\ | 
 | By iterating over all items, you get an O(n ln n) sort.\n" | 
 | "\n\ | 
 | A nice feature of this sort is that you can efficiently insert new\n\ | 
 | items while the sort is going on, provided that the inserted items are\n\ | 
 | not \"better\" than the last 0'th element you extracted.  This is\n\ | 
 | especially useful in simulation contexts, where the tree holds all\n\ | 
 | incoming events, and the \"win\" condition means the smallest scheduled\n\ | 
 | time.  When an event schedule other events for execution, they are\n\ | 
 | scheduled into the future, so they can easily go into the heap.  So, a\n\ | 
 | heap is a good structure for implementing schedulers (this is what I\n\ | 
 | used for my MIDI sequencer :-).\n" | 
 | "\n\ | 
 | Various structures for implementing schedulers have been extensively\n\ | 
 | studied, and heaps are good for this, as they are reasonably speedy,\n\ | 
 | the speed is almost constant, and the worst case is not much different\n\ | 
 | than the average case.  However, there are other representations which\n\ | 
 | are more efficient overall, yet the worst cases might be terrible.\n" | 
 | "\n\ | 
 | Heaps are also very useful in big disk sorts.  You most probably all\n\ | 
 | know that a big sort implies producing \"runs\" (which are pre-sorted\n\ | 
 | sequences, which size is usually related to the amount of CPU memory),\n\ | 
 | followed by a merging passes for these runs, which merging is often\n\ | 
 | very cleverly organised[1].  It is very important that the initial\n\ | 
 | sort produces the longest runs possible.  Tournaments are a good way\n\ | 
 | to that.  If, using all the memory available to hold a tournament, you\n\ | 
 | replace and percolate items that happen to fit the current run, you'll\n\ | 
 | produce runs which are twice the size of the memory for random input,\n\ | 
 | and much better for input fuzzily ordered.\n" | 
 | "\n\ | 
 | Moreover, if you output the 0'th item on disk and get an input which\n\ | 
 | may not fit in the current tournament (because the value \"wins\" over\n\ | 
 | the last output value), it cannot fit in the heap, so the size of the\n\ | 
 | heap decreases.  The freed memory could be cleverly reused immediately\n\ | 
 | for progressively building a second heap, which grows at exactly the\n\ | 
 | same rate the first heap is melting.  When the first heap completely\n\ | 
 | vanishes, you switch heaps and start a new run.  Clever and quite\n\ | 
 | effective!\n\ | 
 | \n\ | 
 | In a word, heaps are useful memory structures to know.  I use them in\n\ | 
 | a few applications, and I think it is good to keep a `heap' module\n\ | 
 | around. :-)\n" | 
 | "\n\ | 
 | --------------------\n\ | 
 | [1] The disk balancing algorithms which are current, nowadays, are\n\ | 
 | more annoying than clever, and this is a consequence of the seeking\n\ | 
 | capabilities of the disks.  On devices which cannot seek, like big\n\ | 
 | tape drives, the story was quite different, and one had to be very\n\ | 
 | clever to ensure (far in advance) that each tape movement will be the\n\ | 
 | most effective possible (that is, will best participate at\n\ | 
 | \"progressing\" the merge).  Some tapes were even able to read\n\ | 
 | backwards, and this was also used to avoid the rewinding time.\n\ | 
 | Believe me, real good tape sorts were quite spectacular to watch!\n\ | 
 | From all times, sorting has always been a Great Art! :-)\n"); | 
 |  | 
 |  | 
 | static struct PyModuleDef _heapqmodule = { | 
 |     PyModuleDef_HEAD_INIT, | 
 |     "_heapq", | 
 |     module_doc, | 
 |     -1, | 
 |     heapq_methods, | 
 |     NULL, | 
 |     NULL, | 
 |     NULL, | 
 |     NULL | 
 | }; | 
 |  | 
 | PyMODINIT_FUNC | 
 | PyInit__heapq(void) | 
 | { | 
 |     PyObject *m, *about; | 
 |  | 
 |     m = PyModule_Create(&_heapqmodule); | 
 |     if (m == NULL) | 
 |         return NULL; | 
 |     about = PyUnicode_DecodeUTF8(__about__, strlen(__about__), NULL); | 
 |     PyModule_AddObject(m, "__about__", about); | 
 |     return m; | 
 | } | 
 |  |