| #. Copyright (C) 2005-2010 Gregory P. Smith (greg@krypto.org) |
| # Licensed to PSF under a Contributor Agreement. |
| # |
| |
| __doc__ = """hashlib module - A common interface to many hash functions. |
| |
| new(name, data=b'') - returns a new hash object implementing the |
| given hash function; initializing the hash |
| using the given binary data. |
| |
| Named constructor functions are also available, these are faster |
| than using new(name): |
| |
| md5(), sha1(), sha224(), sha256(), sha384(), and sha512() |
| |
| More algorithms may be available on your platform but the above are guaranteed |
| to exist. See the algorithms_guaranteed and algorithms_available attributes |
| to find out what algorithm names can be passed to new(). |
| |
| NOTE: If you want the adler32 or crc32 hash functions they are available in |
| the zlib module. |
| |
| Choose your hash function wisely. Some have known collision weaknesses. |
| sha384 and sha512 will be slow on 32 bit platforms. |
| |
| Hash objects have these methods: |
| - update(arg): Update the hash object with the bytes in arg. Repeated calls |
| are equivalent to a single call with the concatenation of all |
| the arguments. |
| - digest(): Return the digest of the bytes passed to the update() method |
| so far. |
| - hexdigest(): Like digest() except the digest is returned as a unicode |
| object of double length, containing only hexadecimal digits. |
| - copy(): Return a copy (clone) of the hash object. This can be used to |
| efficiently compute the digests of strings that share a common |
| initial substring. |
| |
| For example, to obtain the digest of the string 'Nobody inspects the |
| spammish repetition': |
| |
| >>> import hashlib |
| >>> m = hashlib.md5() |
| >>> m.update(b"Nobody inspects") |
| >>> m.update(b" the spammish repetition") |
| >>> m.digest() |
| b'\\xbbd\\x9c\\x83\\xdd\\x1e\\xa5\\xc9\\xd9\\xde\\xc9\\xa1\\x8d\\xf0\\xff\\xe9' |
| |
| More condensed: |
| |
| >>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest() |
| 'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2' |
| |
| """ |
| |
| # This tuple and __get_builtin_constructor() must be modified if a new |
| # always available algorithm is added. |
| __always_supported = ('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512') |
| |
| algorithms_guaranteed = set(__always_supported) |
| algorithms_available = set(__always_supported) |
| |
| __all__ = __always_supported + ('new', 'algorithms_guaranteed', |
| 'algorithms_available', 'pbkdf2_hmac') |
| |
| |
| __builtin_constructor_cache = {} |
| |
| def __get_builtin_constructor(name): |
| cache = __builtin_constructor_cache |
| constructor = cache.get(name) |
| if constructor is not None: |
| return constructor |
| try: |
| if name in ('SHA1', 'sha1'): |
| import _sha1 |
| cache['SHA1'] = cache['sha1'] = _sha1.sha1 |
| elif name in ('MD5', 'md5'): |
| import _md5 |
| cache['MD5'] = cache['md5'] = _md5.md5 |
| elif name in ('SHA256', 'sha256', 'SHA224', 'sha224'): |
| import _sha256 |
| cache['SHA224'] = cache['sha224'] = _sha256.sha224 |
| cache['SHA256'] = cache['sha256'] = _sha256.sha256 |
| elif name in ('SHA512', 'sha512', 'SHA384', 'sha384'): |
| import _sha512 |
| cache['SHA384'] = cache['sha384'] = _sha512.sha384 |
| cache['SHA512'] = cache['sha512'] = _sha512.sha512 |
| except ImportError: |
| pass # no extension module, this hash is unsupported. |
| |
| constructor = cache.get(name) |
| if constructor is not None: |
| return constructor |
| |
| raise ValueError('unsupported hash type ' + name) |
| |
| |
| def __get_openssl_constructor(name): |
| try: |
| f = getattr(_hashlib, 'openssl_' + name) |
| # Allow the C module to raise ValueError. The function will be |
| # defined but the hash not actually available thanks to OpenSSL. |
| f() |
| # Use the C function directly (very fast) |
| return f |
| except (AttributeError, ValueError): |
| return __get_builtin_constructor(name) |
| |
| |
| def __py_new(name, data=b''): |
| """new(name, data=b'') - Return a new hashing object using the named algorithm; |
| optionally initialized with data (which must be bytes). |
| """ |
| return __get_builtin_constructor(name)(data) |
| |
| |
| def __hash_new(name, data=b''): |
| """new(name, data=b'') - Return a new hashing object using the named algorithm; |
| optionally initialized with data (which must be bytes). |
| """ |
| try: |
| return _hashlib.new(name, data) |
| except ValueError: |
| # If the _hashlib module (OpenSSL) doesn't support the named |
| # hash, try using our builtin implementations. |
| # This allows for SHA224/256 and SHA384/512 support even though |
| # the OpenSSL library prior to 0.9.8 doesn't provide them. |
| return __get_builtin_constructor(name)(data) |
| |
| |
| try: |
| import _hashlib |
| new = __hash_new |
| __get_hash = __get_openssl_constructor |
| algorithms_available = algorithms_available.union( |
| _hashlib.openssl_md_meth_names) |
| except ImportError: |
| new = __py_new |
| __get_hash = __get_builtin_constructor |
| |
| try: |
| # OpenSSL's PKCS5_PBKDF2_HMAC requires OpenSSL 1.0+ with HMAC and SHA |
| from _hashlib import pbkdf2_hmac |
| except ImportError: |
| _trans_5C = bytes((x ^ 0x5C) for x in range(256)) |
| _trans_36 = bytes((x ^ 0x36) for x in range(256)) |
| |
| def pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None): |
| """Password based key derivation function 2 (PKCS #5 v2.0) |
| |
| This Python implementations based on the hmac module about as fast |
| as OpenSSL's PKCS5_PBKDF2_HMAC for short passwords and much faster |
| for long passwords. |
| """ |
| if not isinstance(hash_name, str): |
| raise TypeError(hash_name) |
| |
| if not isinstance(password, (bytes, bytearray)): |
| password = bytes(memoryview(password)) |
| if not isinstance(salt, (bytes, bytearray)): |
| salt = bytes(memoryview(salt)) |
| |
| # Fast inline HMAC implementation |
| inner = new(hash_name) |
| outer = new(hash_name) |
| blocksize = getattr(inner, 'block_size', 64) |
| if len(password) > blocksize: |
| password = new(hash_name, password).digest() |
| password = password + b'\x00' * (blocksize - len(password)) |
| inner.update(password.translate(_trans_36)) |
| outer.update(password.translate(_trans_5C)) |
| |
| def prf(msg, inner=inner, outer=outer): |
| # PBKDF2_HMAC uses the password as key. We can re-use the same |
| # digest objects and and just update copies to skip initialization. |
| icpy = inner.copy() |
| ocpy = outer.copy() |
| icpy.update(msg) |
| ocpy.update(icpy.digest()) |
| return ocpy.digest() |
| |
| if iterations < 1: |
| raise ValueError(iterations) |
| if dklen is None: |
| dklen = outer.digest_size |
| if dklen < 1: |
| raise ValueError(dklen) |
| |
| dkey = b'' |
| loop = 1 |
| from_bytes = int.from_bytes |
| while len(dkey) < dklen: |
| prev = prf(salt + loop.to_bytes(4, 'big')) |
| # endianess doesn't matter here as long to / from use the same |
| rkey = int.from_bytes(prev, 'big') |
| for i in range(iterations - 1): |
| prev = prf(prev) |
| # rkey = rkey ^ prev |
| rkey ^= from_bytes(prev, 'big') |
| loop += 1 |
| dkey += rkey.to_bytes(inner.digest_size, 'big') |
| |
| return dkey[:dklen] |
| |
| |
| for __func_name in __always_supported: |
| # try them all, some may not work due to the OpenSSL |
| # version not supporting that algorithm. |
| try: |
| globals()[__func_name] = __get_hash(__func_name) |
| except ValueError: |
| import logging |
| logging.exception('code for hash %s was not found.', __func_name) |
| |
| # Cleanup locals() |
| del __always_supported, __func_name, __get_hash |
| del __py_new, __hash_new, __get_openssl_constructor |