| '''\ |
| This module implements rational numbers. |
| |
| The entry point of this module is the function |
| rat(numerator, denominator) |
| If either numerator or denominator is of an integral or rational type, |
| the result is a rational number, else, the result is the simplest of |
| the types float and complex which can hold numerator/denominator. |
| If denominator is omitted, it defaults to 1. |
| Rational numbers can be used in calculations with any other numeric |
| type. The result of the calculation will be rational if possible. |
| |
| There is also a test function with calling sequence |
| test() |
| The documentation string of the test function contains the expected |
| output. |
| ''' |
| |
| # Contributed by Sjoerd Mullender |
| |
| from types import * |
| |
| def gcd(a, b): |
| '''Calculate the Greatest Common Divisor.''' |
| while b: |
| a, b = b, a%b |
| return a |
| |
| def rat(num, den = 1): |
| # must check complex before float |
| if type(num) is ComplexType or type(den) is ComplexType: |
| # numerator or denominator is complex: return a complex |
| return complex(num) / complex(den) |
| if type(num) is FloatType or type(den) is FloatType: |
| # numerator or denominator is float: return a float |
| return float(num) / float(den) |
| # otherwise return a rational |
| return Rat(num, den) |
| |
| class Rat: |
| '''This class implements rational numbers.''' |
| |
| def __init__(self, num, den = 1): |
| if den == 0: |
| raise ZeroDivisionError, 'rat(x, 0)' |
| |
| # normalize |
| |
| # must check complex before float |
| if type(num) is ComplexType or type(den) is ComplexType: |
| # numerator or denominator is complex: |
| # normalized form has denominator == 1+0j |
| self.__num = complex(num) / complex(den) |
| self.__den = complex(1) |
| return |
| if type(num) is FloatType or type(den) is FloatType: |
| # numerator or denominator is float: |
| # normalized form has denominator == 1.0 |
| self.__num = float(num) / float(den) |
| self.__den = 1.0 |
| return |
| if (type(num) is InstanceType and |
| num.__class__ is self.__class__) or \ |
| (type(den) is InstanceType and |
| den.__class__ is self.__class__): |
| # numerator or denominator is rational |
| new = num / den |
| if type(new) is not InstanceType or \ |
| new.__class__ is not self.__class__: |
| self.__num = new |
| if type(new) is ComplexType: |
| self.__den = complex(1) |
| else: |
| self.__den = 1.0 |
| else: |
| self.__num = new.__num |
| self.__den = new.__den |
| else: |
| # make sure numerator and denominator don't |
| # have common factors |
| # this also makes sure that denominator > 0 |
| g = gcd(num, den) |
| self.__num = num / g |
| self.__den = den / g |
| # try making numerator and denominator of IntType if they fit |
| try: |
| numi = int(self.__num) |
| deni = int(self.__den) |
| except (OverflowError, TypeError): |
| pass |
| else: |
| if self.__num == numi and self.__den == deni: |
| self.__num = numi |
| self.__den = deni |
| |
| def __repr__(self): |
| return 'Rat(%s,%s)' % (self.__num, self.__den) |
| |
| def __str__(self): |
| if self.__den == 1: |
| return str(self.__num) |
| else: |
| return '%s/%s' % (str(self.__num), str(self.__den)) |
| |
| # a + b |
| def __add__(a, b): |
| try: |
| return rat(a.__num * b.__den + b.__num * a.__den, |
| a.__den * b.__den) |
| except OverflowError: |
| return rat(long(a.__num) * long(b.__den) + |
| long(b.__num) * long(a.__den), |
| long(a.__den) * long(b.__den)) |
| |
| def __radd__(b, a): |
| return Rat(a) + b |
| |
| # a - b |
| def __sub__(a, b): |
| try: |
| return rat(a.__num * b.__den - b.__num * a.__den, |
| a.__den * b.__den) |
| except OverflowError: |
| return rat(long(a.__num) * long(b.__den) - |
| long(b.__num) * long(a.__den), |
| long(a.__den) * long(b.__den)) |
| |
| def __rsub__(b, a): |
| return Rat(a) - b |
| |
| # a * b |
| def __mul__(a, b): |
| try: |
| return rat(a.__num * b.__num, a.__den * b.__den) |
| except OverflowError: |
| return rat(long(a.__num) * long(b.__num), |
| long(a.__den) * long(b.__den)) |
| |
| def __rmul__(b, a): |
| return Rat(a) * b |
| |
| # a / b |
| def __div__(a, b): |
| try: |
| return rat(a.__num * b.__den, a.__den * b.__num) |
| except OverflowError: |
| return rat(long(a.__num) * long(b.__den), |
| long(a.__den) * long(b.__num)) |
| |
| def __rdiv__(b, a): |
| return Rat(a) / b |
| |
| # a % b |
| def __mod__(a, b): |
| div = a / b |
| try: |
| div = int(div) |
| except OverflowError: |
| div = long(div) |
| return a - b * div |
| |
| def __rmod__(b, a): |
| return Rat(a) % b |
| |
| # a ** b |
| def __pow__(a, b): |
| if b.__den != 1: |
| if type(a.__num) is ComplexType: |
| a = complex(a) |
| else: |
| a = float(a) |
| if type(b.__num) is ComplexType: |
| b = complex(b) |
| else: |
| b = float(b) |
| return a ** b |
| try: |
| return rat(a.__num ** b.__num, a.__den ** b.__num) |
| except OverflowError: |
| return rat(long(a.__num) ** b.__num, |
| long(a.__den) ** b.__num) |
| |
| def __rpow__(b, a): |
| return Rat(a) ** b |
| |
| # -a |
| def __neg__(a): |
| try: |
| return rat(-a.__num, a.__den) |
| except OverflowError: |
| # a.__num == sys.maxint |
| return rat(-long(a.__num), a.__den) |
| |
| # abs(a) |
| def __abs__(a): |
| return rat(abs(a.__num), a.__den) |
| |
| # int(a) |
| def __int__(a): |
| return int(a.__num / a.__den) |
| |
| # long(a) |
| def __long__(a): |
| return long(a.__num) / long(a.__den) |
| |
| # float(a) |
| def __float__(a): |
| return float(a.__num) / float(a.__den) |
| |
| # complex(a) |
| def __complex__(a): |
| return complex(a.__num) / complex(a.__den) |
| |
| # cmp(a,b) |
| def __cmp__(a, b): |
| diff = a - b |
| if diff.__num < 0: |
| return -1 |
| elif diff.__num > 0: |
| return 1 |
| else: |
| return 0 |
| |
| def __rcmp__(b, a): |
| return cmp(Rat(a), b) |
| |
| # a != 0 |
| def __nonzero__(a): |
| return a.__num != 0 |
| |
| # coercion |
| def __coerce__(a, b): |
| return a, Rat(b) |
| |
| def test(): |
| '''\ |
| Test function for rat module. |
| |
| The expected output is (module some differences in floating |
| precission): |
| -1 |
| -1 |
| 0 0L 0.1 (0.1+0j) |
| [Rat(1,2), Rat(-3,10), Rat(1,25), Rat(1,4)] |
| [Rat(-3,10), Rat(1,25), Rat(1,4), Rat(1,2)] |
| 0 |
| 11/10 |
| 11/10 |
| 1.1 |
| OK |
| 2 1.5 3/2 (1.5+1.5j) 15707963/5000000 |
| 2 2 2.0 (2+0j) |
| |
| 4 0 4 1 4 0 |
| 3.5 0.5 3.0 1.33333333333 2.82842712475 1 |
| 7/2 1/2 3 4/3 2.82842712475 1 |
| (3.5+1.5j) (0.5-1.5j) (3+3j) (0.666666666667-0.666666666667j) (1.43248815986+2.43884761145j) 1 |
| 1.5 1 1.5 (1.5+0j) |
| |
| 3.5 -0.5 3.0 0.75 2.25 -1 |
| 3.0 0.0 2.25 1.0 1.83711730709 0 |
| 3.0 0.0 2.25 1.0 1.83711730709 1 |
| (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1 |
| 3/2 1 1.5 (1.5+0j) |
| |
| 7/2 -1/2 3 3/4 9/4 -1 |
| 3.0 0.0 2.25 1.0 1.83711730709 -1 |
| 3 0 9/4 1 1.83711730709 0 |
| (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1 |
| (1.5+1.5j) (1.5+1.5j) |
| |
| (3.5+1.5j) (-0.5+1.5j) (3+3j) (0.75+0.75j) 4.5j -1 |
| (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1 |
| (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1 |
| (3+3j) 0j 4.5j (1+0j) (-0.638110484918+0.705394566962j) 0 |
| ''' |
| print rat(-1L, 1) |
| print rat(1, -1) |
| a = rat(1, 10) |
| print int(a), long(a), float(a), complex(a) |
| b = rat(2, 5) |
| l = [a+b, a-b, a*b, a/b] |
| print l |
| l.sort() |
| print l |
| print rat(0, 1) |
| print a+1 |
| print a+1L |
| print a+1.0 |
| try: |
| print rat(1, 0) |
| raise SystemError, 'should have been ZeroDivisionError' |
| except ZeroDivisionError: |
| print 'OK' |
| print rat(2), rat(1.5), rat(3, 2), rat(1.5+1.5j), rat(31415926,10000000) |
| list = [2, 1.5, rat(3,2), 1.5+1.5j] |
| for i in list: |
| print i, |
| if type(i) is not ComplexType: |
| print int(i), float(i), |
| print complex(i) |
| print |
| for j in list: |
| print i + j, i - j, i * j, i / j, i ** j, cmp(i, j) |
| |
| if __name__ == '__main__': |
| test() |