| |
| /* Float object implementation */ |
| |
| /* XXX There should be overflow checks here, but it's hard to check |
| for any kind of float exception without losing portability. */ |
| |
| #include "Python.h" |
| |
| #include <ctype.h> |
| #include <float.h> |
| |
| |
| /* Special free list |
| free_list is a singly-linked list of available PyFloatObjects, linked |
| via abuse of their ob_type members. |
| */ |
| |
| #ifndef PyFloat_MAXFREELIST |
| #define PyFloat_MAXFREELIST 100 |
| #endif |
| static int numfree = 0; |
| static PyFloatObject *free_list = NULL; |
| |
| double |
| PyFloat_GetMax(void) |
| { |
| return DBL_MAX; |
| } |
| |
| double |
| PyFloat_GetMin(void) |
| { |
| return DBL_MIN; |
| } |
| |
| static PyTypeObject FloatInfoType; |
| |
| PyDoc_STRVAR(floatinfo__doc__, |
| "sys.float_info\n\ |
| \n\ |
| A structseq holding information about the float type. It contains low level\n\ |
| information about the precision and internal representation. Please study\n\ |
| your system's :file:`float.h` for more information."); |
| |
| static PyStructSequence_Field floatinfo_fields[] = { |
| {"max", "DBL_MAX -- maximum representable finite float"}, |
| {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) " |
| "is representable"}, |
| {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e " |
| "is representable"}, |
| {"min", "DBL_MIN -- Minimum positive normalizer float"}, |
| {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) " |
| "is a normalized float"}, |
| {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is " |
| "a normalized"}, |
| {"dig", "DBL_DIG -- digits"}, |
| {"mant_dig", "DBL_MANT_DIG -- mantissa digits"}, |
| {"epsilon", "DBL_EPSILON -- Difference between 1 and the next " |
| "representable float"}, |
| {"radix", "FLT_RADIX -- radix of exponent"}, |
| {"rounds", "FLT_ROUNDS -- addition rounds"}, |
| {0} |
| }; |
| |
| static PyStructSequence_Desc floatinfo_desc = { |
| "sys.float_info", /* name */ |
| floatinfo__doc__, /* doc */ |
| floatinfo_fields, /* fields */ |
| 11 |
| }; |
| |
| PyObject * |
| PyFloat_GetInfo(void) |
| { |
| PyObject* floatinfo; |
| int pos = 0; |
| |
| floatinfo = PyStructSequence_New(&FloatInfoType); |
| if (floatinfo == NULL) { |
| return NULL; |
| } |
| |
| #define SetIntFlag(flag) \ |
| PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag)) |
| #define SetDblFlag(flag) \ |
| PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag)) |
| |
| SetDblFlag(DBL_MAX); |
| SetIntFlag(DBL_MAX_EXP); |
| SetIntFlag(DBL_MAX_10_EXP); |
| SetDblFlag(DBL_MIN); |
| SetIntFlag(DBL_MIN_EXP); |
| SetIntFlag(DBL_MIN_10_EXP); |
| SetIntFlag(DBL_DIG); |
| SetIntFlag(DBL_MANT_DIG); |
| SetDblFlag(DBL_EPSILON); |
| SetIntFlag(FLT_RADIX); |
| SetIntFlag(FLT_ROUNDS); |
| #undef SetIntFlag |
| #undef SetDblFlag |
| |
| if (PyErr_Occurred()) { |
| Py_CLEAR(floatinfo); |
| return NULL; |
| } |
| return floatinfo; |
| } |
| |
| PyObject * |
| PyFloat_FromDouble(double fval) |
| { |
| PyFloatObject *op = free_list; |
| if (op != NULL) { |
| free_list = (PyFloatObject *) Py_TYPE(op); |
| numfree--; |
| } else { |
| op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject)); |
| if (!op) |
| return PyErr_NoMemory(); |
| } |
| /* Inline PyObject_New */ |
| (void)PyObject_INIT(op, &PyFloat_Type); |
| op->ob_fval = fval; |
| return (PyObject *) op; |
| } |
| |
| static PyObject * |
| float_from_string_inner(const char *s, Py_ssize_t len, void *obj) |
| { |
| double x; |
| const char *end; |
| const char *last = s + len; |
| /* strip space */ |
| while (s < last && Py_ISSPACE(*s)) { |
| s++; |
| } |
| |
| while (s < last - 1 && Py_ISSPACE(last[-1])) { |
| last--; |
| } |
| |
| /* We don't care about overflow or underflow. If the platform |
| * supports them, infinities and signed zeroes (on underflow) are |
| * fine. */ |
| x = PyOS_string_to_double(s, (char **)&end, NULL); |
| if (end != last) { |
| PyErr_Format(PyExc_ValueError, |
| "could not convert string to float: " |
| "%R", obj); |
| return NULL; |
| } |
| else if (x == -1.0 && PyErr_Occurred()) { |
| return NULL; |
| } |
| else { |
| return PyFloat_FromDouble(x); |
| } |
| } |
| |
| PyObject * |
| PyFloat_FromString(PyObject *v) |
| { |
| const char *s; |
| PyObject *s_buffer = NULL; |
| Py_ssize_t len; |
| Py_buffer view = {NULL, NULL}; |
| PyObject *result = NULL; |
| |
| if (PyUnicode_Check(v)) { |
| s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v); |
| if (s_buffer == NULL) |
| return NULL; |
| s = PyUnicode_AsUTF8AndSize(s_buffer, &len); |
| if (s == NULL) { |
| Py_DECREF(s_buffer); |
| return NULL; |
| } |
| } |
| else if (PyBytes_Check(v)) { |
| s = PyBytes_AS_STRING(v); |
| len = PyBytes_GET_SIZE(v); |
| } |
| else if (PyByteArray_Check(v)) { |
| s = PyByteArray_AS_STRING(v); |
| len = PyByteArray_GET_SIZE(v); |
| } |
| else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) { |
| s = (const char *)view.buf; |
| len = view.len; |
| /* Copy to NUL-terminated buffer. */ |
| s_buffer = PyBytes_FromStringAndSize(s, len); |
| if (s_buffer == NULL) { |
| PyBuffer_Release(&view); |
| return NULL; |
| } |
| s = PyBytes_AS_STRING(s_buffer); |
| } |
| else { |
| PyErr_Format(PyExc_TypeError, |
| "float() argument must be a string or a number, not '%.200s'", |
| Py_TYPE(v)->tp_name); |
| return NULL; |
| } |
| result = _Py_string_to_number_with_underscores(s, len, "float", v, v, |
| float_from_string_inner); |
| PyBuffer_Release(&view); |
| Py_XDECREF(s_buffer); |
| return result; |
| } |
| |
| static void |
| float_dealloc(PyFloatObject *op) |
| { |
| if (PyFloat_CheckExact(op)) { |
| if (numfree >= PyFloat_MAXFREELIST) { |
| PyObject_FREE(op); |
| return; |
| } |
| numfree++; |
| Py_TYPE(op) = (struct _typeobject *)free_list; |
| free_list = op; |
| } |
| else |
| Py_TYPE(op)->tp_free((PyObject *)op); |
| } |
| |
| double |
| PyFloat_AsDouble(PyObject *op) |
| { |
| PyNumberMethods *nb; |
| PyObject *res; |
| double val; |
| |
| if (op == NULL) { |
| PyErr_BadArgument(); |
| return -1; |
| } |
| |
| if (PyFloat_Check(op)) { |
| return PyFloat_AS_DOUBLE(op); |
| } |
| |
| nb = Py_TYPE(op)->tp_as_number; |
| if (nb == NULL || nb->nb_float == NULL) { |
| PyErr_Format(PyExc_TypeError, "must be real number, not %.50s", |
| op->ob_type->tp_name); |
| return -1; |
| } |
| |
| res = (*nb->nb_float) (op); |
| if (res == NULL) { |
| return -1; |
| } |
| if (!PyFloat_CheckExact(res)) { |
| if (!PyFloat_Check(res)) { |
| PyErr_Format(PyExc_TypeError, |
| "%.50s.__float__ returned non-float (type %.50s)", |
| op->ob_type->tp_name, res->ob_type->tp_name); |
| Py_DECREF(res); |
| return -1; |
| } |
| if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, |
| "%.50s.__float__ returned non-float (type %.50s). " |
| "The ability to return an instance of a strict subclass of float " |
| "is deprecated, and may be removed in a future version of Python.", |
| op->ob_type->tp_name, res->ob_type->tp_name)) { |
| Py_DECREF(res); |
| return -1; |
| } |
| } |
| |
| val = PyFloat_AS_DOUBLE(res); |
| Py_DECREF(res); |
| return val; |
| } |
| |
| /* Macro and helper that convert PyObject obj to a C double and store |
| the value in dbl. If conversion to double raises an exception, obj is |
| set to NULL, and the function invoking this macro returns NULL. If |
| obj is not of float or int type, Py_NotImplemented is incref'ed, |
| stored in obj, and returned from the function invoking this macro. |
| */ |
| #define CONVERT_TO_DOUBLE(obj, dbl) \ |
| if (PyFloat_Check(obj)) \ |
| dbl = PyFloat_AS_DOUBLE(obj); \ |
| else if (convert_to_double(&(obj), &(dbl)) < 0) \ |
| return obj; |
| |
| /* Methods */ |
| |
| static int |
| convert_to_double(PyObject **v, double *dbl) |
| { |
| PyObject *obj = *v; |
| |
| if (PyLong_Check(obj)) { |
| *dbl = PyLong_AsDouble(obj); |
| if (*dbl == -1.0 && PyErr_Occurred()) { |
| *v = NULL; |
| return -1; |
| } |
| } |
| else { |
| Py_INCREF(Py_NotImplemented); |
| *v = Py_NotImplemented; |
| return -1; |
| } |
| return 0; |
| } |
| |
| static PyObject * |
| float_repr(PyFloatObject *v) |
| { |
| PyObject *result; |
| char *buf; |
| |
| buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v), |
| 'r', 0, |
| Py_DTSF_ADD_DOT_0, |
| NULL); |
| if (!buf) |
| return PyErr_NoMemory(); |
| result = _PyUnicode_FromASCII(buf, strlen(buf)); |
| PyMem_Free(buf); |
| return result; |
| } |
| |
| /* Comparison is pretty much a nightmare. When comparing float to float, |
| * we do it as straightforwardly (and long-windedly) as conceivable, so |
| * that, e.g., Python x == y delivers the same result as the platform |
| * C x == y when x and/or y is a NaN. |
| * When mixing float with an integer type, there's no good *uniform* approach. |
| * Converting the double to an integer obviously doesn't work, since we |
| * may lose info from fractional bits. Converting the integer to a double |
| * also has two failure modes: (1) an int may trigger overflow (too |
| * large to fit in the dynamic range of a C double); (2) even a C long may have |
| * more bits than fit in a C double (e.g., on a 64-bit box long may have |
| * 63 bits of precision, but a C double probably has only 53), and then |
| * we can falsely claim equality when low-order integer bits are lost by |
| * coercion to double. So this part is painful too. |
| */ |
| |
| static PyObject* |
| float_richcompare(PyObject *v, PyObject *w, int op) |
| { |
| double i, j; |
| int r = 0; |
| |
| assert(PyFloat_Check(v)); |
| i = PyFloat_AS_DOUBLE(v); |
| |
| /* Switch on the type of w. Set i and j to doubles to be compared, |
| * and op to the richcomp to use. |
| */ |
| if (PyFloat_Check(w)) |
| j = PyFloat_AS_DOUBLE(w); |
| |
| else if (!Py_IS_FINITE(i)) { |
| if (PyLong_Check(w)) |
| /* If i is an infinity, its magnitude exceeds any |
| * finite integer, so it doesn't matter which int we |
| * compare i with. If i is a NaN, similarly. |
| */ |
| j = 0.0; |
| else |
| goto Unimplemented; |
| } |
| |
| else if (PyLong_Check(w)) { |
| int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1; |
| int wsign = _PyLong_Sign(w); |
| size_t nbits; |
| int exponent; |
| |
| if (vsign != wsign) { |
| /* Magnitudes are irrelevant -- the signs alone |
| * determine the outcome. |
| */ |
| i = (double)vsign; |
| j = (double)wsign; |
| goto Compare; |
| } |
| /* The signs are the same. */ |
| /* Convert w to a double if it fits. In particular, 0 fits. */ |
| nbits = _PyLong_NumBits(w); |
| if (nbits == (size_t)-1 && PyErr_Occurred()) { |
| /* This long is so large that size_t isn't big enough |
| * to hold the # of bits. Replace with little doubles |
| * that give the same outcome -- w is so large that |
| * its magnitude must exceed the magnitude of any |
| * finite float. |
| */ |
| PyErr_Clear(); |
| i = (double)vsign; |
| assert(wsign != 0); |
| j = wsign * 2.0; |
| goto Compare; |
| } |
| if (nbits <= 48) { |
| j = PyLong_AsDouble(w); |
| /* It's impossible that <= 48 bits overflowed. */ |
| assert(j != -1.0 || ! PyErr_Occurred()); |
| goto Compare; |
| } |
| assert(wsign != 0); /* else nbits was 0 */ |
| assert(vsign != 0); /* if vsign were 0, then since wsign is |
| * not 0, we would have taken the |
| * vsign != wsign branch at the start */ |
| /* We want to work with non-negative numbers. */ |
| if (vsign < 0) { |
| /* "Multiply both sides" by -1; this also swaps the |
| * comparator. |
| */ |
| i = -i; |
| op = _Py_SwappedOp[op]; |
| } |
| assert(i > 0.0); |
| (void) frexp(i, &exponent); |
| /* exponent is the # of bits in v before the radix point; |
| * we know that nbits (the # of bits in w) > 48 at this point |
| */ |
| if (exponent < 0 || (size_t)exponent < nbits) { |
| i = 1.0; |
| j = 2.0; |
| goto Compare; |
| } |
| if ((size_t)exponent > nbits) { |
| i = 2.0; |
| j = 1.0; |
| goto Compare; |
| } |
| /* v and w have the same number of bits before the radix |
| * point. Construct two ints that have the same comparison |
| * outcome. |
| */ |
| { |
| double fracpart; |
| double intpart; |
| PyObject *result = NULL; |
| PyObject *one = NULL; |
| PyObject *vv = NULL; |
| PyObject *ww = w; |
| |
| if (wsign < 0) { |
| ww = PyNumber_Negative(w); |
| if (ww == NULL) |
| goto Error; |
| } |
| else |
| Py_INCREF(ww); |
| |
| fracpart = modf(i, &intpart); |
| vv = PyLong_FromDouble(intpart); |
| if (vv == NULL) |
| goto Error; |
| |
| if (fracpart != 0.0) { |
| /* Shift left, and or a 1 bit into vv |
| * to represent the lost fraction. |
| */ |
| PyObject *temp; |
| |
| one = PyLong_FromLong(1); |
| if (one == NULL) |
| goto Error; |
| |
| temp = PyNumber_Lshift(ww, one); |
| if (temp == NULL) |
| goto Error; |
| Py_DECREF(ww); |
| ww = temp; |
| |
| temp = PyNumber_Lshift(vv, one); |
| if (temp == NULL) |
| goto Error; |
| Py_DECREF(vv); |
| vv = temp; |
| |
| temp = PyNumber_Or(vv, one); |
| if (temp == NULL) |
| goto Error; |
| Py_DECREF(vv); |
| vv = temp; |
| } |
| |
| r = PyObject_RichCompareBool(vv, ww, op); |
| if (r < 0) |
| goto Error; |
| result = PyBool_FromLong(r); |
| Error: |
| Py_XDECREF(vv); |
| Py_XDECREF(ww); |
| Py_XDECREF(one); |
| return result; |
| } |
| } /* else if (PyLong_Check(w)) */ |
| |
| else /* w isn't float or int */ |
| goto Unimplemented; |
| |
| Compare: |
| PyFPE_START_PROTECT("richcompare", return NULL) |
| switch (op) { |
| case Py_EQ: |
| r = i == j; |
| break; |
| case Py_NE: |
| r = i != j; |
| break; |
| case Py_LE: |
| r = i <= j; |
| break; |
| case Py_GE: |
| r = i >= j; |
| break; |
| case Py_LT: |
| r = i < j; |
| break; |
| case Py_GT: |
| r = i > j; |
| break; |
| } |
| PyFPE_END_PROTECT(r) |
| return PyBool_FromLong(r); |
| |
| Unimplemented: |
| Py_RETURN_NOTIMPLEMENTED; |
| } |
| |
| static Py_hash_t |
| float_hash(PyFloatObject *v) |
| { |
| return _Py_HashDouble(v->ob_fval); |
| } |
| |
| static PyObject * |
| float_add(PyObject *v, PyObject *w) |
| { |
| double a,b; |
| CONVERT_TO_DOUBLE(v, a); |
| CONVERT_TO_DOUBLE(w, b); |
| PyFPE_START_PROTECT("add", return 0) |
| a = a + b; |
| PyFPE_END_PROTECT(a) |
| return PyFloat_FromDouble(a); |
| } |
| |
| static PyObject * |
| float_sub(PyObject *v, PyObject *w) |
| { |
| double a,b; |
| CONVERT_TO_DOUBLE(v, a); |
| CONVERT_TO_DOUBLE(w, b); |
| PyFPE_START_PROTECT("subtract", return 0) |
| a = a - b; |
| PyFPE_END_PROTECT(a) |
| return PyFloat_FromDouble(a); |
| } |
| |
| static PyObject * |
| float_mul(PyObject *v, PyObject *w) |
| { |
| double a,b; |
| CONVERT_TO_DOUBLE(v, a); |
| CONVERT_TO_DOUBLE(w, b); |
| PyFPE_START_PROTECT("multiply", return 0) |
| a = a * b; |
| PyFPE_END_PROTECT(a) |
| return PyFloat_FromDouble(a); |
| } |
| |
| static PyObject * |
| float_div(PyObject *v, PyObject *w) |
| { |
| double a,b; |
| CONVERT_TO_DOUBLE(v, a); |
| CONVERT_TO_DOUBLE(w, b); |
| if (b == 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "float division by zero"); |
| return NULL; |
| } |
| PyFPE_START_PROTECT("divide", return 0) |
| a = a / b; |
| PyFPE_END_PROTECT(a) |
| return PyFloat_FromDouble(a); |
| } |
| |
| static PyObject * |
| float_rem(PyObject *v, PyObject *w) |
| { |
| double vx, wx; |
| double mod; |
| CONVERT_TO_DOUBLE(v, vx); |
| CONVERT_TO_DOUBLE(w, wx); |
| if (wx == 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "float modulo"); |
| return NULL; |
| } |
| PyFPE_START_PROTECT("modulo", return 0) |
| mod = fmod(vx, wx); |
| if (mod) { |
| /* ensure the remainder has the same sign as the denominator */ |
| if ((wx < 0) != (mod < 0)) { |
| mod += wx; |
| } |
| } |
| else { |
| /* the remainder is zero, and in the presence of signed zeroes |
| fmod returns different results across platforms; ensure |
| it has the same sign as the denominator. */ |
| mod = copysign(0.0, wx); |
| } |
| PyFPE_END_PROTECT(mod) |
| return PyFloat_FromDouble(mod); |
| } |
| |
| static PyObject * |
| float_divmod(PyObject *v, PyObject *w) |
| { |
| double vx, wx; |
| double div, mod, floordiv; |
| CONVERT_TO_DOUBLE(v, vx); |
| CONVERT_TO_DOUBLE(w, wx); |
| if (wx == 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); |
| return NULL; |
| } |
| PyFPE_START_PROTECT("divmod", return 0) |
| mod = fmod(vx, wx); |
| /* fmod is typically exact, so vx-mod is *mathematically* an |
| exact multiple of wx. But this is fp arithmetic, and fp |
| vx - mod is an approximation; the result is that div may |
| not be an exact integral value after the division, although |
| it will always be very close to one. |
| */ |
| div = (vx - mod) / wx; |
| if (mod) { |
| /* ensure the remainder has the same sign as the denominator */ |
| if ((wx < 0) != (mod < 0)) { |
| mod += wx; |
| div -= 1.0; |
| } |
| } |
| else { |
| /* the remainder is zero, and in the presence of signed zeroes |
| fmod returns different results across platforms; ensure |
| it has the same sign as the denominator. */ |
| mod = copysign(0.0, wx); |
| } |
| /* snap quotient to nearest integral value */ |
| if (div) { |
| floordiv = floor(div); |
| if (div - floordiv > 0.5) |
| floordiv += 1.0; |
| } |
| else { |
| /* div is zero - get the same sign as the true quotient */ |
| floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */ |
| } |
| PyFPE_END_PROTECT(floordiv) |
| return Py_BuildValue("(dd)", floordiv, mod); |
| } |
| |
| static PyObject * |
| float_floor_div(PyObject *v, PyObject *w) |
| { |
| PyObject *t, *r; |
| |
| t = float_divmod(v, w); |
| if (t == NULL || t == Py_NotImplemented) |
| return t; |
| assert(PyTuple_CheckExact(t)); |
| r = PyTuple_GET_ITEM(t, 0); |
| Py_INCREF(r); |
| Py_DECREF(t); |
| return r; |
| } |
| |
| /* determine whether x is an odd integer or not; assumes that |
| x is not an infinity or nan. */ |
| #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0) |
| |
| static PyObject * |
| float_pow(PyObject *v, PyObject *w, PyObject *z) |
| { |
| double iv, iw, ix; |
| int negate_result = 0; |
| |
| if ((PyObject *)z != Py_None) { |
| PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " |
| "allowed unless all arguments are integers"); |
| return NULL; |
| } |
| |
| CONVERT_TO_DOUBLE(v, iv); |
| CONVERT_TO_DOUBLE(w, iw); |
| |
| /* Sort out special cases here instead of relying on pow() */ |
| if (iw == 0) { /* v**0 is 1, even 0**0 */ |
| return PyFloat_FromDouble(1.0); |
| } |
| if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */ |
| return PyFloat_FromDouble(iv); |
| } |
| if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */ |
| return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw); |
| } |
| if (Py_IS_INFINITY(iw)) { |
| /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if |
| * abs(v) > 1 (including case where v infinite) |
| * |
| * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if |
| * abs(v) > 1 (including case where v infinite) |
| */ |
| iv = fabs(iv); |
| if (iv == 1.0) |
| return PyFloat_FromDouble(1.0); |
| else if ((iw > 0.0) == (iv > 1.0)) |
| return PyFloat_FromDouble(fabs(iw)); /* return inf */ |
| else |
| return PyFloat_FromDouble(0.0); |
| } |
| if (Py_IS_INFINITY(iv)) { |
| /* (+-inf)**w is: inf for w positive, 0 for w negative; in |
| * both cases, we need to add the appropriate sign if w is |
| * an odd integer. |
| */ |
| int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); |
| if (iw > 0.0) |
| return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv)); |
| else |
| return PyFloat_FromDouble(iw_is_odd ? |
| copysign(0.0, iv) : 0.0); |
| } |
| if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero |
| (already dealt with above), and an error |
| if w is negative. */ |
| int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); |
| if (iw < 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "0.0 cannot be raised to a " |
| "negative power"); |
| return NULL; |
| } |
| /* use correct sign if iw is odd */ |
| return PyFloat_FromDouble(iw_is_odd ? iv : 0.0); |
| } |
| |
| if (iv < 0.0) { |
| /* Whether this is an error is a mess, and bumps into libm |
| * bugs so we have to figure it out ourselves. |
| */ |
| if (iw != floor(iw)) { |
| /* Negative numbers raised to fractional powers |
| * become complex. |
| */ |
| return PyComplex_Type.tp_as_number->nb_power(v, w, z); |
| } |
| /* iw is an exact integer, albeit perhaps a very large |
| * one. Replace iv by its absolute value and remember |
| * to negate the pow result if iw is odd. |
| */ |
| iv = -iv; |
| negate_result = DOUBLE_IS_ODD_INTEGER(iw); |
| } |
| |
| if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */ |
| /* (-1) ** large_integer also ends up here. Here's an |
| * extract from the comments for the previous |
| * implementation explaining why this special case is |
| * necessary: |
| * |
| * -1 raised to an exact integer should never be exceptional. |
| * Alas, some libms (chiefly glibc as of early 2003) return |
| * NaN and set EDOM on pow(-1, large_int) if the int doesn't |
| * happen to be representable in a *C* integer. That's a |
| * bug. |
| */ |
| return PyFloat_FromDouble(negate_result ? -1.0 : 1.0); |
| } |
| |
| /* Now iv and iw are finite, iw is nonzero, and iv is |
| * positive and not equal to 1.0. We finally allow |
| * the platform pow to step in and do the rest. |
| */ |
| errno = 0; |
| PyFPE_START_PROTECT("pow", return NULL) |
| ix = pow(iv, iw); |
| PyFPE_END_PROTECT(ix) |
| Py_ADJUST_ERANGE1(ix); |
| if (negate_result) |
| ix = -ix; |
| |
| if (errno != 0) { |
| /* We don't expect any errno value other than ERANGE, but |
| * the range of libm bugs appears unbounded. |
| */ |
| PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : |
| PyExc_ValueError); |
| return NULL; |
| } |
| return PyFloat_FromDouble(ix); |
| } |
| |
| #undef DOUBLE_IS_ODD_INTEGER |
| |
| static PyObject * |
| float_neg(PyFloatObject *v) |
| { |
| return PyFloat_FromDouble(-v->ob_fval); |
| } |
| |
| static PyObject * |
| float_abs(PyFloatObject *v) |
| { |
| return PyFloat_FromDouble(fabs(v->ob_fval)); |
| } |
| |
| static int |
| float_bool(PyFloatObject *v) |
| { |
| return v->ob_fval != 0.0; |
| } |
| |
| static PyObject * |
| float_is_integer(PyObject *v) |
| { |
| double x = PyFloat_AsDouble(v); |
| PyObject *o; |
| |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| if (!Py_IS_FINITE(x)) |
| Py_RETURN_FALSE; |
| errno = 0; |
| PyFPE_START_PROTECT("is_integer", return NULL) |
| o = (floor(x) == x) ? Py_True : Py_False; |
| PyFPE_END_PROTECT(x) |
| if (errno != 0) { |
| PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : |
| PyExc_ValueError); |
| return NULL; |
| } |
| Py_INCREF(o); |
| return o; |
| } |
| |
| #if 0 |
| static PyObject * |
| float_is_inf(PyObject *v) |
| { |
| double x = PyFloat_AsDouble(v); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyBool_FromLong((long)Py_IS_INFINITY(x)); |
| } |
| |
| static PyObject * |
| float_is_nan(PyObject *v) |
| { |
| double x = PyFloat_AsDouble(v); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyBool_FromLong((long)Py_IS_NAN(x)); |
| } |
| |
| static PyObject * |
| float_is_finite(PyObject *v) |
| { |
| double x = PyFloat_AsDouble(v); |
| if (x == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyBool_FromLong((long)Py_IS_FINITE(x)); |
| } |
| #endif |
| |
| static PyObject * |
| float_trunc(PyObject *v) |
| { |
| double x = PyFloat_AsDouble(v); |
| double wholepart; /* integral portion of x, rounded toward 0 */ |
| |
| (void)modf(x, &wholepart); |
| /* Try to get out cheap if this fits in a Python int. The attempt |
| * to cast to long must be protected, as C doesn't define what |
| * happens if the double is too big to fit in a long. Some rare |
| * systems raise an exception then (RISCOS was mentioned as one, |
| * and someone using a non-default option on Sun also bumped into |
| * that). Note that checking for >= and <= LONG_{MIN,MAX} would |
| * still be vulnerable: if a long has more bits of precision than |
| * a double, casting MIN/MAX to double may yield an approximation, |
| * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would |
| * yield true from the C expression wholepart<=LONG_MAX, despite |
| * that wholepart is actually greater than LONG_MAX. |
| */ |
| if (LONG_MIN < wholepart && wholepart < LONG_MAX) { |
| const long aslong = (long)wholepart; |
| return PyLong_FromLong(aslong); |
| } |
| return PyLong_FromDouble(wholepart); |
| } |
| |
| /* double_round: rounds a finite double to the closest multiple of |
| 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <= |
| ndigits <= 323). Returns a Python float, or sets a Python error and |
| returns NULL on failure (OverflowError and memory errors are possible). */ |
| |
| #ifndef PY_NO_SHORT_FLOAT_REPR |
| /* version of double_round that uses the correctly-rounded string<->double |
| conversions from Python/dtoa.c */ |
| |
| static PyObject * |
| double_round(double x, int ndigits) { |
| |
| double rounded; |
| Py_ssize_t buflen, mybuflen=100; |
| char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf; |
| int decpt, sign; |
| PyObject *result = NULL; |
| _Py_SET_53BIT_PRECISION_HEADER; |
| |
| /* round to a decimal string */ |
| _Py_SET_53BIT_PRECISION_START; |
| buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end); |
| _Py_SET_53BIT_PRECISION_END; |
| if (buf == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| |
| /* Get new buffer if shortbuf is too small. Space needed <= buf_end - |
| buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */ |
| buflen = buf_end - buf; |
| if (buflen + 8 > mybuflen) { |
| mybuflen = buflen+8; |
| mybuf = (char *)PyMem_Malloc(mybuflen); |
| if (mybuf == NULL) { |
| PyErr_NoMemory(); |
| goto exit; |
| } |
| } |
| /* copy buf to mybuf, adding exponent, sign and leading 0 */ |
| PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""), |
| buf, decpt - (int)buflen); |
| |
| /* and convert the resulting string back to a double */ |
| errno = 0; |
| _Py_SET_53BIT_PRECISION_START; |
| rounded = _Py_dg_strtod(mybuf, NULL); |
| _Py_SET_53BIT_PRECISION_END; |
| if (errno == ERANGE && fabs(rounded) >= 1.) |
| PyErr_SetString(PyExc_OverflowError, |
| "rounded value too large to represent"); |
| else |
| result = PyFloat_FromDouble(rounded); |
| |
| /* done computing value; now clean up */ |
| if (mybuf != shortbuf) |
| PyMem_Free(mybuf); |
| exit: |
| _Py_dg_freedtoa(buf); |
| return result; |
| } |
| |
| #else /* PY_NO_SHORT_FLOAT_REPR */ |
| |
| /* fallback version, to be used when correctly rounded binary<->decimal |
| conversions aren't available */ |
| |
| static PyObject * |
| double_round(double x, int ndigits) { |
| double pow1, pow2, y, z; |
| if (ndigits >= 0) { |
| if (ndigits > 22) { |
| /* pow1 and pow2 are each safe from overflow, but |
| pow1*pow2 ~= pow(10.0, ndigits) might overflow */ |
| pow1 = pow(10.0, (double)(ndigits-22)); |
| pow2 = 1e22; |
| } |
| else { |
| pow1 = pow(10.0, (double)ndigits); |
| pow2 = 1.0; |
| } |
| y = (x*pow1)*pow2; |
| /* if y overflows, then rounded value is exactly x */ |
| if (!Py_IS_FINITE(y)) |
| return PyFloat_FromDouble(x); |
| } |
| else { |
| pow1 = pow(10.0, (double)-ndigits); |
| pow2 = 1.0; /* unused; silences a gcc compiler warning */ |
| y = x / pow1; |
| } |
| |
| z = round(y); |
| if (fabs(y-z) == 0.5) |
| /* halfway between two integers; use round-half-even */ |
| z = 2.0*round(y/2.0); |
| |
| if (ndigits >= 0) |
| z = (z / pow2) / pow1; |
| else |
| z *= pow1; |
| |
| /* if computation resulted in overflow, raise OverflowError */ |
| if (!Py_IS_FINITE(z)) { |
| PyErr_SetString(PyExc_OverflowError, |
| "overflow occurred during round"); |
| return NULL; |
| } |
| |
| return PyFloat_FromDouble(z); |
| } |
| |
| #endif /* PY_NO_SHORT_FLOAT_REPR */ |
| |
| /* round a Python float v to the closest multiple of 10**-ndigits */ |
| |
| static PyObject * |
| float_round(PyObject *v, PyObject *args) |
| { |
| double x, rounded; |
| PyObject *o_ndigits = NULL; |
| Py_ssize_t ndigits; |
| |
| x = PyFloat_AsDouble(v); |
| if (!PyArg_ParseTuple(args, "|O", &o_ndigits)) |
| return NULL; |
| if (o_ndigits == NULL || o_ndigits == Py_None) { |
| /* single-argument round or with None ndigits: |
| * round to nearest integer */ |
| rounded = round(x); |
| if (fabs(x-rounded) == 0.5) |
| /* halfway case: round to even */ |
| rounded = 2.0*round(x/2.0); |
| return PyLong_FromDouble(rounded); |
| } |
| |
| /* interpret second argument as a Py_ssize_t; clips on overflow */ |
| ndigits = PyNumber_AsSsize_t(o_ndigits, NULL); |
| if (ndigits == -1 && PyErr_Occurred()) |
| return NULL; |
| |
| /* nans and infinities round to themselves */ |
| if (!Py_IS_FINITE(x)) |
| return PyFloat_FromDouble(x); |
| |
| /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x |
| always rounds to itself. For ndigits < NDIGITS_MIN, x always |
| rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */ |
| #define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103)) |
| #define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103)) |
| if (ndigits > NDIGITS_MAX) |
| /* return x */ |
| return PyFloat_FromDouble(x); |
| else if (ndigits < NDIGITS_MIN) |
| /* return 0.0, but with sign of x */ |
| return PyFloat_FromDouble(0.0*x); |
| else |
| /* finite x, and ndigits is not unreasonably large */ |
| return double_round(x, (int)ndigits); |
| #undef NDIGITS_MAX |
| #undef NDIGITS_MIN |
| } |
| |
| static PyObject * |
| float_float(PyObject *v) |
| { |
| if (PyFloat_CheckExact(v)) |
| Py_INCREF(v); |
| else |
| v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval); |
| return v; |
| } |
| |
| /* turn ASCII hex characters into integer values and vice versa */ |
| |
| static char |
| char_from_hex(int x) |
| { |
| assert(0 <= x && x < 16); |
| return Py_hexdigits[x]; |
| } |
| |
| static int |
| hex_from_char(char c) { |
| int x; |
| switch(c) { |
| case '0': |
| x = 0; |
| break; |
| case '1': |
| x = 1; |
| break; |
| case '2': |
| x = 2; |
| break; |
| case '3': |
| x = 3; |
| break; |
| case '4': |
| x = 4; |
| break; |
| case '5': |
| x = 5; |
| break; |
| case '6': |
| x = 6; |
| break; |
| case '7': |
| x = 7; |
| break; |
| case '8': |
| x = 8; |
| break; |
| case '9': |
| x = 9; |
| break; |
| case 'a': |
| case 'A': |
| x = 10; |
| break; |
| case 'b': |
| case 'B': |
| x = 11; |
| break; |
| case 'c': |
| case 'C': |
| x = 12; |
| break; |
| case 'd': |
| case 'D': |
| x = 13; |
| break; |
| case 'e': |
| case 'E': |
| x = 14; |
| break; |
| case 'f': |
| case 'F': |
| x = 15; |
| break; |
| default: |
| x = -1; |
| break; |
| } |
| return x; |
| } |
| |
| /* convert a float to a hexadecimal string */ |
| |
| /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer |
| of the form 4k+1. */ |
| #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4 |
| |
| static PyObject * |
| float_hex(PyObject *v) |
| { |
| double x, m; |
| int e, shift, i, si, esign; |
| /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the |
| trailing NUL byte. */ |
| char s[(TOHEX_NBITS-1)/4+3]; |
| |
| CONVERT_TO_DOUBLE(v, x); |
| |
| if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) |
| return float_repr((PyFloatObject *)v); |
| |
| if (x == 0.0) { |
| if (copysign(1.0, x) == -1.0) |
| return PyUnicode_FromString("-0x0.0p+0"); |
| else |
| return PyUnicode_FromString("0x0.0p+0"); |
| } |
| |
| m = frexp(fabs(x), &e); |
| shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0); |
| m = ldexp(m, shift); |
| e -= shift; |
| |
| si = 0; |
| s[si] = char_from_hex((int)m); |
| si++; |
| m -= (int)m; |
| s[si] = '.'; |
| si++; |
| for (i=0; i < (TOHEX_NBITS-1)/4; i++) { |
| m *= 16.0; |
| s[si] = char_from_hex((int)m); |
| si++; |
| m -= (int)m; |
| } |
| s[si] = '\0'; |
| |
| if (e < 0) { |
| esign = (int)'-'; |
| e = -e; |
| } |
| else |
| esign = (int)'+'; |
| |
| if (x < 0.0) |
| return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e); |
| else |
| return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e); |
| } |
| |
| PyDoc_STRVAR(float_hex_doc, |
| "float.hex() -> string\n\ |
| \n\ |
| Return a hexadecimal representation of a floating-point number.\n\ |
| >>> (-0.1).hex()\n\ |
| '-0x1.999999999999ap-4'\n\ |
| >>> 3.14159.hex()\n\ |
| '0x1.921f9f01b866ep+1'"); |
| |
| /* Convert a hexadecimal string to a float. */ |
| |
| static PyObject * |
| float_fromhex(PyObject *cls, PyObject *arg) |
| { |
| PyObject *result; |
| double x; |
| long exp, top_exp, lsb, key_digit; |
| const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end; |
| int half_eps, digit, round_up, negate=0; |
| Py_ssize_t length, ndigits, fdigits, i; |
| |
| /* |
| * For the sake of simplicity and correctness, we impose an artificial |
| * limit on ndigits, the total number of hex digits in the coefficient |
| * The limit is chosen to ensure that, writing exp for the exponent, |
| * |
| * (1) if exp > LONG_MAX/2 then the value of the hex string is |
| * guaranteed to overflow (provided it's nonzero) |
| * |
| * (2) if exp < LONG_MIN/2 then the value of the hex string is |
| * guaranteed to underflow to 0. |
| * |
| * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of |
| * overflow in the calculation of exp and top_exp below. |
| * |
| * More specifically, ndigits is assumed to satisfy the following |
| * inequalities: |
| * |
| * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2 |
| * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP |
| * |
| * If either of these inequalities is not satisfied, a ValueError is |
| * raised. Otherwise, write x for the value of the hex string, and |
| * assume x is nonzero. Then |
| * |
| * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits). |
| * |
| * Now if exp > LONG_MAX/2 then: |
| * |
| * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP) |
| * = DBL_MAX_EXP |
| * |
| * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C |
| * double, so overflows. If exp < LONG_MIN/2, then |
| * |
| * exp + 4*ndigits <= LONG_MIN/2 - 1 + ( |
| * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2) |
| * = DBL_MIN_EXP - DBL_MANT_DIG - 1 |
| * |
| * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0 |
| * when converted to a C double. |
| * |
| * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both |
| * exp+4*ndigits and exp-4*ndigits are within the range of a long. |
| */ |
| |
| s = PyUnicode_AsUTF8AndSize(arg, &length); |
| if (s == NULL) |
| return NULL; |
| s_end = s + length; |
| |
| /******************** |
| * Parse the string * |
| ********************/ |
| |
| /* leading whitespace */ |
| while (Py_ISSPACE(*s)) |
| s++; |
| |
| /* infinities and nans */ |
| x = _Py_parse_inf_or_nan(s, (char **)&coeff_end); |
| if (coeff_end != s) { |
| s = coeff_end; |
| goto finished; |
| } |
| |
| /* optional sign */ |
| if (*s == '-') { |
| s++; |
| negate = 1; |
| } |
| else if (*s == '+') |
| s++; |
| |
| /* [0x] */ |
| s_store = s; |
| if (*s == '0') { |
| s++; |
| if (*s == 'x' || *s == 'X') |
| s++; |
| else |
| s = s_store; |
| } |
| |
| /* coefficient: <integer> [. <fraction>] */ |
| coeff_start = s; |
| while (hex_from_char(*s) >= 0) |
| s++; |
| s_store = s; |
| if (*s == '.') { |
| s++; |
| while (hex_from_char(*s) >= 0) |
| s++; |
| coeff_end = s-1; |
| } |
| else |
| coeff_end = s; |
| |
| /* ndigits = total # of hex digits; fdigits = # after point */ |
| ndigits = coeff_end - coeff_start; |
| fdigits = coeff_end - s_store; |
| if (ndigits == 0) |
| goto parse_error; |
| if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2, |
| LONG_MAX/2 + 1 - DBL_MAX_EXP)/4) |
| goto insane_length_error; |
| |
| /* [p <exponent>] */ |
| if (*s == 'p' || *s == 'P') { |
| s++; |
| exp_start = s; |
| if (*s == '-' || *s == '+') |
| s++; |
| if (!('0' <= *s && *s <= '9')) |
| goto parse_error; |
| s++; |
| while ('0' <= *s && *s <= '9') |
| s++; |
| exp = strtol(exp_start, NULL, 10); |
| } |
| else |
| exp = 0; |
| |
| /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */ |
| #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \ |
| coeff_end-(j) : \ |
| coeff_end-1-(j))) |
| |
| /******************************************* |
| * Compute rounded value of the hex string * |
| *******************************************/ |
| |
| /* Discard leading zeros, and catch extreme overflow and underflow */ |
| while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0) |
| ndigits--; |
| if (ndigits == 0 || exp < LONG_MIN/2) { |
| x = 0.0; |
| goto finished; |
| } |
| if (exp > LONG_MAX/2) |
| goto overflow_error; |
| |
| /* Adjust exponent for fractional part. */ |
| exp = exp - 4*((long)fdigits); |
| |
| /* top_exp = 1 more than exponent of most sig. bit of coefficient */ |
| top_exp = exp + 4*((long)ndigits - 1); |
| for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2) |
| top_exp++; |
| |
| /* catch almost all nonextreme cases of overflow and underflow here */ |
| if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) { |
| x = 0.0; |
| goto finished; |
| } |
| if (top_exp > DBL_MAX_EXP) |
| goto overflow_error; |
| |
| /* lsb = exponent of least significant bit of the *rounded* value. |
| This is top_exp - DBL_MANT_DIG unless result is subnormal. */ |
| lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG; |
| |
| x = 0.0; |
| if (exp >= lsb) { |
| /* no rounding required */ |
| for (i = ndigits-1; i >= 0; i--) |
| x = 16.0*x + HEX_DIGIT(i); |
| x = ldexp(x, (int)(exp)); |
| goto finished; |
| } |
| /* rounding required. key_digit is the index of the hex digit |
| containing the first bit to be rounded away. */ |
| half_eps = 1 << (int)((lsb - exp - 1) % 4); |
| key_digit = (lsb - exp - 1) / 4; |
| for (i = ndigits-1; i > key_digit; i--) |
| x = 16.0*x + HEX_DIGIT(i); |
| digit = HEX_DIGIT(key_digit); |
| x = 16.0*x + (double)(digit & (16-2*half_eps)); |
| |
| /* round-half-even: round up if bit lsb-1 is 1 and at least one of |
| bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */ |
| if ((digit & half_eps) != 0) { |
| round_up = 0; |
| if ((digit & (3*half_eps-1)) != 0 || |
| (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0)) |
| round_up = 1; |
| else |
| for (i = key_digit-1; i >= 0; i--) |
| if (HEX_DIGIT(i) != 0) { |
| round_up = 1; |
| break; |
| } |
| if (round_up) { |
| x += 2*half_eps; |
| if (top_exp == DBL_MAX_EXP && |
| x == ldexp((double)(2*half_eps), DBL_MANT_DIG)) |
| /* overflow corner case: pre-rounded value < |
| 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */ |
| goto overflow_error; |
| } |
| } |
| x = ldexp(x, (int)(exp+4*key_digit)); |
| |
| finished: |
| /* optional trailing whitespace leading to the end of the string */ |
| while (Py_ISSPACE(*s)) |
| s++; |
| if (s != s_end) |
| goto parse_error; |
| result = PyFloat_FromDouble(negate ? -x : x); |
| if (cls != (PyObject *)&PyFloat_Type && result != NULL) { |
| Py_SETREF(result, PyObject_CallFunctionObjArgs(cls, result, NULL)); |
| } |
| return result; |
| |
| overflow_error: |
| PyErr_SetString(PyExc_OverflowError, |
| "hexadecimal value too large to represent as a float"); |
| return NULL; |
| |
| parse_error: |
| PyErr_SetString(PyExc_ValueError, |
| "invalid hexadecimal floating-point string"); |
| return NULL; |
| |
| insane_length_error: |
| PyErr_SetString(PyExc_ValueError, |
| "hexadecimal string too long to convert"); |
| return NULL; |
| } |
| |
| PyDoc_STRVAR(float_fromhex_doc, |
| "float.fromhex(string) -> float\n\ |
| \n\ |
| Create a floating-point number from a hexadecimal string.\n\ |
| >>> float.fromhex('0x1.ffffp10')\n\ |
| 2047.984375\n\ |
| >>> float.fromhex('-0x1p-1074')\n\ |
| -5e-324"); |
| |
| |
| static PyObject * |
| float_as_integer_ratio(PyObject *v, PyObject *unused) |
| { |
| double self; |
| double float_part; |
| int exponent; |
| int i; |
| |
| PyObject *py_exponent = NULL; |
| PyObject *numerator = NULL; |
| PyObject *denominator = NULL; |
| PyObject *result_pair = NULL; |
| PyNumberMethods *long_methods = PyLong_Type.tp_as_number; |
| |
| CONVERT_TO_DOUBLE(v, self); |
| |
| if (Py_IS_INFINITY(self)) { |
| PyErr_SetString(PyExc_OverflowError, |
| "cannot convert Infinity to integer ratio"); |
| return NULL; |
| } |
| if (Py_IS_NAN(self)) { |
| PyErr_SetString(PyExc_ValueError, |
| "cannot convert NaN to integer ratio"); |
| return NULL; |
| } |
| |
| PyFPE_START_PROTECT("as_integer_ratio", goto error); |
| float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */ |
| PyFPE_END_PROTECT(float_part); |
| |
| for (i=0; i<300 && float_part != floor(float_part) ; i++) { |
| float_part *= 2.0; |
| exponent--; |
| } |
| /* self == float_part * 2**exponent exactly and float_part is integral. |
| If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part |
| to be truncated by PyLong_FromDouble(). */ |
| |
| numerator = PyLong_FromDouble(float_part); |
| if (numerator == NULL) |
| goto error; |
| denominator = PyLong_FromLong(1); |
| if (denominator == NULL) |
| goto error; |
| py_exponent = PyLong_FromLong(Py_ABS(exponent)); |
| if (py_exponent == NULL) |
| goto error; |
| |
| /* fold in 2**exponent */ |
| if (exponent > 0) { |
| Py_SETREF(numerator, |
| long_methods->nb_lshift(numerator, py_exponent)); |
| if (numerator == NULL) |
| goto error; |
| } |
| else { |
| Py_SETREF(denominator, |
| long_methods->nb_lshift(denominator, py_exponent)); |
| if (denominator == NULL) |
| goto error; |
| } |
| |
| result_pair = PyTuple_Pack(2, numerator, denominator); |
| |
| error: |
| Py_XDECREF(py_exponent); |
| Py_XDECREF(denominator); |
| Py_XDECREF(numerator); |
| return result_pair; |
| } |
| |
| PyDoc_STRVAR(float_as_integer_ratio_doc, |
| "float.as_integer_ratio() -> (int, int)\n" |
| "\n" |
| "Return a pair of integers, whose ratio is exactly equal to the original\n" |
| "float and with a positive denominator.\n" |
| "Raise OverflowError on infinities and a ValueError on NaNs.\n" |
| "\n" |
| ">>> (10.0).as_integer_ratio()\n" |
| "(10, 1)\n" |
| ">>> (0.0).as_integer_ratio()\n" |
| "(0, 1)\n" |
| ">>> (-.25).as_integer_ratio()\n" |
| "(-1, 4)"); |
| |
| |
| static PyObject * |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); |
| |
| static PyObject * |
| float_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyObject *x = Py_False; /* Integer zero */ |
| static char *kwlist[] = {"x", 0}; |
| |
| if (type != &PyFloat_Type) |
| return float_subtype_new(type, args, kwds); /* Wimp out */ |
| if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x)) |
| return NULL; |
| /* If it's a string, but not a string subclass, use |
| PyFloat_FromString. */ |
| if (PyUnicode_CheckExact(x)) |
| return PyFloat_FromString(x); |
| return PyNumber_Float(x); |
| } |
| |
| /* Wimpy, slow approach to tp_new calls for subtypes of float: |
| first create a regular float from whatever arguments we got, |
| then allocate a subtype instance and initialize its ob_fval |
| from the regular float. The regular float is then thrown away. |
| */ |
| static PyObject * |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyObject *tmp, *newobj; |
| |
| assert(PyType_IsSubtype(type, &PyFloat_Type)); |
| tmp = float_new(&PyFloat_Type, args, kwds); |
| if (tmp == NULL) |
| return NULL; |
| assert(PyFloat_Check(tmp)); |
| newobj = type->tp_alloc(type, 0); |
| if (newobj == NULL) { |
| Py_DECREF(tmp); |
| return NULL; |
| } |
| ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; |
| Py_DECREF(tmp); |
| return newobj; |
| } |
| |
| static PyObject * |
| float_getnewargs(PyFloatObject *v) |
| { |
| return Py_BuildValue("(d)", v->ob_fval); |
| } |
| |
| /* this is for the benefit of the pack/unpack routines below */ |
| |
| typedef enum { |
| unknown_format, ieee_big_endian_format, ieee_little_endian_format |
| } float_format_type; |
| |
| static float_format_type double_format, float_format; |
| static float_format_type detected_double_format, detected_float_format; |
| |
| static PyObject * |
| float_getformat(PyTypeObject *v, PyObject* arg) |
| { |
| const char *s; |
| float_format_type r; |
| |
| if (!PyUnicode_Check(arg)) { |
| PyErr_Format(PyExc_TypeError, |
| "__getformat__() argument must be string, not %.500s", |
| Py_TYPE(arg)->tp_name); |
| return NULL; |
| } |
| s = PyUnicode_AsUTF8(arg); |
| if (s == NULL) |
| return NULL; |
| if (strcmp(s, "double") == 0) { |
| r = double_format; |
| } |
| else if (strcmp(s, "float") == 0) { |
| r = float_format; |
| } |
| else { |
| PyErr_SetString(PyExc_ValueError, |
| "__getformat__() argument 1 must be " |
| "'double' or 'float'"); |
| return NULL; |
| } |
| |
| switch (r) { |
| case unknown_format: |
| return PyUnicode_FromString("unknown"); |
| case ieee_little_endian_format: |
| return PyUnicode_FromString("IEEE, little-endian"); |
| case ieee_big_endian_format: |
| return PyUnicode_FromString("IEEE, big-endian"); |
| default: |
| Py_FatalError("insane float_format or double_format"); |
| return NULL; |
| } |
| } |
| |
| PyDoc_STRVAR(float_getformat_doc, |
| "float.__getformat__(typestr) -> string\n" |
| "\n" |
| "You probably don't want to use this function. It exists mainly to be\n" |
| "used in Python's test suite.\n" |
| "\n" |
| "typestr must be 'double' or 'float'. This function returns whichever of\n" |
| "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n" |
| "format of floating point numbers used by the C type named by typestr."); |
| |
| static PyObject * |
| float_setformat(PyTypeObject *v, PyObject* args) |
| { |
| char* typestr; |
| char* format; |
| float_format_type f; |
| float_format_type detected; |
| float_format_type *p; |
| |
| if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format)) |
| return NULL; |
| |
| if (strcmp(typestr, "double") == 0) { |
| p = &double_format; |
| detected = detected_double_format; |
| } |
| else if (strcmp(typestr, "float") == 0) { |
| p = &float_format; |
| detected = detected_float_format; |
| } |
| else { |
| PyErr_SetString(PyExc_ValueError, |
| "__setformat__() argument 1 must " |
| "be 'double' or 'float'"); |
| return NULL; |
| } |
| |
| if (strcmp(format, "unknown") == 0) { |
| f = unknown_format; |
| } |
| else if (strcmp(format, "IEEE, little-endian") == 0) { |
| f = ieee_little_endian_format; |
| } |
| else if (strcmp(format, "IEEE, big-endian") == 0) { |
| f = ieee_big_endian_format; |
| } |
| else { |
| PyErr_SetString(PyExc_ValueError, |
| "__setformat__() argument 2 must be " |
| "'unknown', 'IEEE, little-endian' or " |
| "'IEEE, big-endian'"); |
| return NULL; |
| |
| } |
| |
| if (f != unknown_format && f != detected) { |
| PyErr_Format(PyExc_ValueError, |
| "can only set %s format to 'unknown' or the " |
| "detected platform value", typestr); |
| return NULL; |
| } |
| |
| *p = f; |
| Py_RETURN_NONE; |
| } |
| |
| PyDoc_STRVAR(float_setformat_doc, |
| "float.__setformat__(typestr, fmt) -> None\n" |
| "\n" |
| "You probably don't want to use this function. It exists mainly to be\n" |
| "used in Python's test suite.\n" |
| "\n" |
| "typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n" |
| "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n" |
| "one of the latter two if it appears to match the underlying C reality.\n" |
| "\n" |
| "Override the automatic determination of C-level floating point type.\n" |
| "This affects how floats are converted to and from binary strings."); |
| |
| static PyObject * |
| float_getzero(PyObject *v, void *closure) |
| { |
| return PyFloat_FromDouble(0.0); |
| } |
| |
| static PyObject * |
| float__format__(PyObject *self, PyObject *args) |
| { |
| PyObject *format_spec; |
| _PyUnicodeWriter writer; |
| int ret; |
| |
| if (!PyArg_ParseTuple(args, "U:__format__", &format_spec)) |
| return NULL; |
| |
| _PyUnicodeWriter_Init(&writer); |
| ret = _PyFloat_FormatAdvancedWriter( |
| &writer, |
| self, |
| format_spec, 0, PyUnicode_GET_LENGTH(format_spec)); |
| if (ret == -1) { |
| _PyUnicodeWriter_Dealloc(&writer); |
| return NULL; |
| } |
| return _PyUnicodeWriter_Finish(&writer); |
| } |
| |
| PyDoc_STRVAR(float__format__doc, |
| "float.__format__(format_spec) -> string\n" |
| "\n" |
| "Formats the float according to format_spec."); |
| |
| |
| static PyMethodDef float_methods[] = { |
| {"conjugate", (PyCFunction)float_float, METH_NOARGS, |
| "Return self, the complex conjugate of any float."}, |
| {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS, |
| "Return the Integral closest to x between 0 and x."}, |
| {"__round__", (PyCFunction)float_round, METH_VARARGS, |
| "Return the Integral closest to x, rounding half toward even.\n" |
| "When an argument is passed, work like built-in round(x, ndigits)."}, |
| {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS, |
| float_as_integer_ratio_doc}, |
| {"fromhex", (PyCFunction)float_fromhex, |
| METH_O|METH_CLASS, float_fromhex_doc}, |
| {"hex", (PyCFunction)float_hex, |
| METH_NOARGS, float_hex_doc}, |
| {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS, |
| "Return True if the float is an integer."}, |
| #if 0 |
| {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS, |
| "Return True if the float is positive or negative infinite."}, |
| {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS, |
| "Return True if the float is finite, neither infinite nor NaN."}, |
| {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS, |
| "Return True if the float is not a number (NaN)."}, |
| #endif |
| {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS}, |
| {"__getformat__", (PyCFunction)float_getformat, |
| METH_O|METH_CLASS, float_getformat_doc}, |
| {"__setformat__", (PyCFunction)float_setformat, |
| METH_VARARGS|METH_CLASS, float_setformat_doc}, |
| {"__format__", (PyCFunction)float__format__, |
| METH_VARARGS, float__format__doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyGetSetDef float_getset[] = { |
| {"real", |
| (getter)float_float, (setter)NULL, |
| "the real part of a complex number", |
| NULL}, |
| {"imag", |
| (getter)float_getzero, (setter)NULL, |
| "the imaginary part of a complex number", |
| NULL}, |
| {NULL} /* Sentinel */ |
| }; |
| |
| PyDoc_STRVAR(float_doc, |
| "float(x) -> floating point number\n\ |
| \n\ |
| Convert a string or number to a floating point number, if possible."); |
| |
| |
| static PyNumberMethods float_as_number = { |
| float_add, /*nb_add*/ |
| float_sub, /*nb_subtract*/ |
| float_mul, /*nb_multiply*/ |
| float_rem, /*nb_remainder*/ |
| float_divmod, /*nb_divmod*/ |
| float_pow, /*nb_power*/ |
| (unaryfunc)float_neg, /*nb_negative*/ |
| (unaryfunc)float_float, /*nb_positive*/ |
| (unaryfunc)float_abs, /*nb_absolute*/ |
| (inquiry)float_bool, /*nb_bool*/ |
| 0, /*nb_invert*/ |
| 0, /*nb_lshift*/ |
| 0, /*nb_rshift*/ |
| 0, /*nb_and*/ |
| 0, /*nb_xor*/ |
| 0, /*nb_or*/ |
| float_trunc, /*nb_int*/ |
| 0, /*nb_reserved*/ |
| float_float, /*nb_float*/ |
| 0, /* nb_inplace_add */ |
| 0, /* nb_inplace_subtract */ |
| 0, /* nb_inplace_multiply */ |
| 0, /* nb_inplace_remainder */ |
| 0, /* nb_inplace_power */ |
| 0, /* nb_inplace_lshift */ |
| 0, /* nb_inplace_rshift */ |
| 0, /* nb_inplace_and */ |
| 0, /* nb_inplace_xor */ |
| 0, /* nb_inplace_or */ |
| float_floor_div, /* nb_floor_divide */ |
| float_div, /* nb_true_divide */ |
| 0, /* nb_inplace_floor_divide */ |
| 0, /* nb_inplace_true_divide */ |
| }; |
| |
| PyTypeObject PyFloat_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "float", |
| sizeof(PyFloatObject), |
| 0, |
| (destructor)float_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)float_repr, /* tp_repr */ |
| &float_as_number, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)float_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| (reprfunc)float_repr, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| float_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| float_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| float_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| float_getset, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| float_new, /* tp_new */ |
| }; |
| |
| int |
| _PyFloat_Init(void) |
| { |
| /* We attempt to determine if this machine is using IEEE |
| floating point formats by peering at the bits of some |
| carefully chosen values. If it looks like we are on an |
| IEEE platform, the float packing/unpacking routines can |
| just copy bits, if not they resort to arithmetic & shifts |
| and masks. The shifts & masks approach works on all finite |
| values, but what happens to infinities, NaNs and signed |
| zeroes on packing is an accident, and attempting to unpack |
| a NaN or an infinity will raise an exception. |
| |
| Note that if we're on some whacked-out platform which uses |
| IEEE formats but isn't strictly little-endian or big- |
| endian, we will fall back to the portable shifts & masks |
| method. */ |
| |
| #if SIZEOF_DOUBLE == 8 |
| { |
| double x = 9006104071832581.0; |
| if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0) |
| detected_double_format = ieee_big_endian_format; |
| else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0) |
| detected_double_format = ieee_little_endian_format; |
| else |
| detected_double_format = unknown_format; |
| } |
| #else |
| detected_double_format = unknown_format; |
| #endif |
| |
| #if SIZEOF_FLOAT == 4 |
| { |
| float y = 16711938.0; |
| if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0) |
| detected_float_format = ieee_big_endian_format; |
| else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0) |
| detected_float_format = ieee_little_endian_format; |
| else |
| detected_float_format = unknown_format; |
| } |
| #else |
| detected_float_format = unknown_format; |
| #endif |
| |
| double_format = detected_double_format; |
| float_format = detected_float_format; |
| |
| /* Init float info */ |
| if (FloatInfoType.tp_name == NULL) { |
| if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) |
| return 0; |
| } |
| return 1; |
| } |
| |
| int |
| PyFloat_ClearFreeList(void) |
| { |
| PyFloatObject *f = free_list, *next; |
| int i = numfree; |
| while (f) { |
| next = (PyFloatObject*) Py_TYPE(f); |
| PyObject_FREE(f); |
| f = next; |
| } |
| free_list = NULL; |
| numfree = 0; |
| return i; |
| } |
| |
| void |
| PyFloat_Fini(void) |
| { |
| (void)PyFloat_ClearFreeList(); |
| } |
| |
| /* Print summary info about the state of the optimized allocator */ |
| void |
| _PyFloat_DebugMallocStats(FILE *out) |
| { |
| _PyDebugAllocatorStats(out, |
| "free PyFloatObject", |
| numfree, sizeof(PyFloatObject)); |
| } |
| |
| |
| /*---------------------------------------------------------------------------- |
| * _PyFloat_{Pack,Unpack}{2,4,8}. See floatobject.h. |
| * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in: |
| * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c |
| * We use: |
| * bits = (unsigned short)f; Note the truncation |
| * if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) { |
| * bits++; |
| * } |
| */ |
| |
| int |
| _PyFloat_Pack2(double x, unsigned char *p, int le) |
| { |
| unsigned char sign; |
| int e; |
| double f; |
| unsigned short bits; |
| int incr = 1; |
| |
| if (x == 0.0) { |
| sign = (copysign(1.0, x) == -1.0); |
| e = 0; |
| bits = 0; |
| } |
| else if (Py_IS_INFINITY(x)) { |
| sign = (x < 0.0); |
| e = 0x1f; |
| bits = 0; |
| } |
| else if (Py_IS_NAN(x)) { |
| /* There are 2046 distinct half-precision NaNs (1022 signaling and |
| 1024 quiet), but there are only two quiet NaNs that don't arise by |
| quieting a signaling NaN; we get those by setting the topmost bit |
| of the fraction field and clearing all other fraction bits. We |
| choose the one with the appropriate sign. */ |
| sign = (copysign(1.0, x) == -1.0); |
| e = 0x1f; |
| bits = 512; |
| } |
| else { |
| sign = (x < 0.0); |
| if (sign) { |
| x = -x; |
| } |
| |
| f = frexp(x, &e); |
| if (f < 0.5 || f >= 1.0) { |
| PyErr_SetString(PyExc_SystemError, |
| "frexp() result out of range"); |
| return -1; |
| } |
| |
| /* Normalize f to be in the range [1.0, 2.0) */ |
| f *= 2.0; |
| e--; |
| |
| if (e >= 16) { |
| goto Overflow; |
| } |
| else if (e < -25) { |
| /* |x| < 2**-25. Underflow to zero. */ |
| f = 0.0; |
| e = 0; |
| } |
| else if (e < -14) { |
| /* |x| < 2**-14. Gradual underflow */ |
| f = ldexp(f, 14 + e); |
| e = 0; |
| } |
| else /* if (!(e == 0 && f == 0.0)) */ { |
| e += 15; |
| f -= 1.0; /* Get rid of leading 1 */ |
| } |
| |
| f *= 1024.0; /* 2**10 */ |
| /* Round to even */ |
| bits = (unsigned short)f; /* Note the truncation */ |
| assert(bits < 1024); |
| assert(e < 31); |
| if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) { |
| ++bits; |
| if (bits == 1024) { |
| /* The carry propagated out of a string of 10 1 bits. */ |
| bits = 0; |
| ++e; |
| if (e == 31) |
| goto Overflow; |
| } |
| } |
| } |
| |
| bits |= (e << 10) | (sign << 15); |
| |
| /* Write out result. */ |
| if (le) { |
| p += 1; |
| incr = -1; |
| } |
| |
| /* First byte */ |
| *p = (unsigned char)((bits >> 8) & 0xFF); |
| p += incr; |
| |
| /* Second byte */ |
| *p = (unsigned char)(bits & 0xFF); |
| |
| return 0; |
| |
| Overflow: |
| PyErr_SetString(PyExc_OverflowError, |
| "float too large to pack with e format"); |
| return -1; |
| } |
| |
| int |
| _PyFloat_Pack4(double x, unsigned char *p, int le) |
| { |
| if (float_format == unknown_format) { |
| unsigned char sign; |
| int e; |
| double f; |
| unsigned int fbits; |
| int incr = 1; |
| |
| if (le) { |
| p += 3; |
| incr = -1; |
| } |
| |
| if (x < 0) { |
| sign = 1; |
| x = -x; |
| } |
| else |
| sign = 0; |
| |
| f = frexp(x, &e); |
| |
| /* Normalize f to be in the range [1.0, 2.0) */ |
| if (0.5 <= f && f < 1.0) { |
| f *= 2.0; |
| e--; |
| } |
| else if (f == 0.0) |
| e = 0; |
| else { |
| PyErr_SetString(PyExc_SystemError, |
| "frexp() result out of range"); |
| return -1; |
| } |
| |
| if (e >= 128) |
| goto Overflow; |
| else if (e < -126) { |
| /* Gradual underflow */ |
| f = ldexp(f, 126 + e); |
| e = 0; |
| } |
| else if (!(e == 0 && f == 0.0)) { |
| e += 127; |
| f -= 1.0; /* Get rid of leading 1 */ |
| } |
| |
| f *= 8388608.0; /* 2**23 */ |
| fbits = (unsigned int)(f + 0.5); /* Round */ |
| assert(fbits <= 8388608); |
| if (fbits >> 23) { |
| /* The carry propagated out of a string of 23 1 bits. */ |
| fbits = 0; |
| ++e; |
| if (e >= 255) |
| goto Overflow; |
| } |
| |
| /* First byte */ |
| *p = (sign << 7) | (e >> 1); |
| p += incr; |
| |
| /* Second byte */ |
| *p = (char) (((e & 1) << 7) | (fbits >> 16)); |
| p += incr; |
| |
| /* Third byte */ |
| *p = (fbits >> 8) & 0xFF; |
| p += incr; |
| |
| /* Fourth byte */ |
| *p = fbits & 0xFF; |
| |
| /* Done */ |
| return 0; |
| |
| } |
| else { |
| float y = (float)x; |
| const unsigned char *s = (unsigned char*)&y; |
| int i, incr = 1; |
| |
| if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x)) |
| goto Overflow; |
| |
| if ((float_format == ieee_little_endian_format && !le) |
| || (float_format == ieee_big_endian_format && le)) { |
| p += 3; |
| incr = -1; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| *p = *s++; |
| p += incr; |
| } |
| return 0; |
| } |
| Overflow: |
| PyErr_SetString(PyExc_OverflowError, |
| "float too large to pack with f format"); |
| return -1; |
| } |
| |
| int |
| _PyFloat_Pack8(double x, unsigned char *p, int le) |
| { |
| if (double_format == unknown_format) { |
| unsigned char sign; |
| int e; |
| double f; |
| unsigned int fhi, flo; |
| int incr = 1; |
| |
| if (le) { |
| p += 7; |
| incr = -1; |
| } |
| |
| if (x < 0) { |
| sign = 1; |
| x = -x; |
| } |
| else |
| sign = 0; |
| |
| f = frexp(x, &e); |
| |
| /* Normalize f to be in the range [1.0, 2.0) */ |
| if (0.5 <= f && f < 1.0) { |
| f *= 2.0; |
| e--; |
| } |
| else if (f == 0.0) |
| e = 0; |
| else { |
| PyErr_SetString(PyExc_SystemError, |
| "frexp() result out of range"); |
| return -1; |
| } |
| |
| if (e >= 1024) |
| goto Overflow; |
| else if (e < -1022) { |
| /* Gradual underflow */ |
| f = ldexp(f, 1022 + e); |
| e = 0; |
| } |
| else if (!(e == 0 && f == 0.0)) { |
| e += 1023; |
| f -= 1.0; /* Get rid of leading 1 */ |
| } |
| |
| /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */ |
| f *= 268435456.0; /* 2**28 */ |
| fhi = (unsigned int)f; /* Truncate */ |
| assert(fhi < 268435456); |
| |
| f -= (double)fhi; |
| f *= 16777216.0; /* 2**24 */ |
| flo = (unsigned int)(f + 0.5); /* Round */ |
| assert(flo <= 16777216); |
| if (flo >> 24) { |
| /* The carry propagated out of a string of 24 1 bits. */ |
| flo = 0; |
| ++fhi; |
| if (fhi >> 28) { |
| /* And it also progagated out of the next 28 bits. */ |
| fhi = 0; |
| ++e; |
| if (e >= 2047) |
| goto Overflow; |
| } |
| } |
| |
| /* First byte */ |
| *p = (sign << 7) | (e >> 4); |
| p += incr; |
| |
| /* Second byte */ |
| *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24)); |
| p += incr; |
| |
| /* Third byte */ |
| *p = (fhi >> 16) & 0xFF; |
| p += incr; |
| |
| /* Fourth byte */ |
| *p = (fhi >> 8) & 0xFF; |
| p += incr; |
| |
| /* Fifth byte */ |
| *p = fhi & 0xFF; |
| p += incr; |
| |
| /* Sixth byte */ |
| *p = (flo >> 16) & 0xFF; |
| p += incr; |
| |
| /* Seventh byte */ |
| *p = (flo >> 8) & 0xFF; |
| p += incr; |
| |
| /* Eighth byte */ |
| *p = flo & 0xFF; |
| /* p += incr; */ |
| |
| /* Done */ |
| return 0; |
| |
| Overflow: |
| PyErr_SetString(PyExc_OverflowError, |
| "float too large to pack with d format"); |
| return -1; |
| } |
| else { |
| const unsigned char *s = (unsigned char*)&x; |
| int i, incr = 1; |
| |
| if ((double_format == ieee_little_endian_format && !le) |
| || (double_format == ieee_big_endian_format && le)) { |
| p += 7; |
| incr = -1; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| *p = *s++; |
| p += incr; |
| } |
| return 0; |
| } |
| } |
| |
| double |
| _PyFloat_Unpack2(const unsigned char *p, int le) |
| { |
| unsigned char sign; |
| int e; |
| unsigned int f; |
| double x; |
| int incr = 1; |
| |
| if (le) { |
| p += 1; |
| incr = -1; |
| } |
| |
| /* First byte */ |
| sign = (*p >> 7) & 1; |
| e = (*p & 0x7C) >> 2; |
| f = (*p & 0x03) << 8; |
| p += incr; |
| |
| /* Second byte */ |
| f |= *p; |
| |
| if (e == 0x1f) { |
| #ifdef PY_NO_SHORT_FLOAT_REPR |
| if (f == 0) { |
| /* Infinity */ |
| return sign ? -Py_HUGE_VAL : Py_HUGE_VAL; |
| } |
| else { |
| /* NaN */ |
| #ifdef Py_NAN |
| return sign ? -Py_NAN : Py_NAN; |
| #else |
| PyErr_SetString( |
| PyExc_ValueError, |
| "can't unpack IEEE 754 NaN " |
| "on platform that does not support NaNs"); |
| return -1; |
| #endif /* #ifdef Py_NAN */ |
| } |
| #else |
| if (f == 0) { |
| /* Infinity */ |
| return _Py_dg_infinity(sign); |
| } |
| else { |
| /* NaN */ |
| return _Py_dg_stdnan(sign); |
| } |
| #endif /* #ifdef PY_NO_SHORT_FLOAT_REPR */ |
| } |
| |
| x = (double)f / 1024.0; |
| |
| if (e == 0) { |
| e = -14; |
| } |
| else { |
| x += 1.0; |
| e -= 15; |
| } |
| x = ldexp(x, e); |
| |
| if (sign) |
| x = -x; |
| |
| return x; |
| } |
| |
| double |
| _PyFloat_Unpack4(const unsigned char *p, int le) |
| { |
| if (float_format == unknown_format) { |
| unsigned char sign; |
| int e; |
| unsigned int f; |
| double x; |
| int incr = 1; |
| |
| if (le) { |
| p += 3; |
| incr = -1; |
| } |
| |
| /* First byte */ |
| sign = (*p >> 7) & 1; |
| e = (*p & 0x7F) << 1; |
| p += incr; |
| |
| /* Second byte */ |
| e |= (*p >> 7) & 1; |
| f = (*p & 0x7F) << 16; |
| p += incr; |
| |
| if (e == 255) { |
| PyErr_SetString( |
| PyExc_ValueError, |
| "can't unpack IEEE 754 special value " |
| "on non-IEEE platform"); |
| return -1; |
| } |
| |
| /* Third byte */ |
| f |= *p << 8; |
| p += incr; |
| |
| /* Fourth byte */ |
| f |= *p; |
| |
| x = (double)f / 8388608.0; |
| |
| /* XXX This sadly ignores Inf/NaN issues */ |
| if (e == 0) |
| e = -126; |
| else { |
| x += 1.0; |
| e -= 127; |
| } |
| x = ldexp(x, e); |
| |
| if (sign) |
| x = -x; |
| |
| return x; |
| } |
| else { |
| float x; |
| |
| if ((float_format == ieee_little_endian_format && !le) |
| || (float_format == ieee_big_endian_format && le)) { |
| char buf[4]; |
| char *d = &buf[3]; |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| *d-- = *p++; |
| } |
| memcpy(&x, buf, 4); |
| } |
| else { |
| memcpy(&x, p, 4); |
| } |
| |
| return x; |
| } |
| } |
| |
| double |
| _PyFloat_Unpack8(const unsigned char *p, int le) |
| { |
| if (double_format == unknown_format) { |
| unsigned char sign; |
| int e; |
| unsigned int fhi, flo; |
| double x; |
| int incr = 1; |
| |
| if (le) { |
| p += 7; |
| incr = -1; |
| } |
| |
| /* First byte */ |
| sign = (*p >> 7) & 1; |
| e = (*p & 0x7F) << 4; |
| |
| p += incr; |
| |
| /* Second byte */ |
| e |= (*p >> 4) & 0xF; |
| fhi = (*p & 0xF) << 24; |
| p += incr; |
| |
| if (e == 2047) { |
| PyErr_SetString( |
| PyExc_ValueError, |
| "can't unpack IEEE 754 special value " |
| "on non-IEEE platform"); |
| return -1.0; |
| } |
| |
| /* Third byte */ |
| fhi |= *p << 16; |
| p += incr; |
| |
| /* Fourth byte */ |
| fhi |= *p << 8; |
| p += incr; |
| |
| /* Fifth byte */ |
| fhi |= *p; |
| p += incr; |
| |
| /* Sixth byte */ |
| flo = *p << 16; |
| p += incr; |
| |
| /* Seventh byte */ |
| flo |= *p << 8; |
| p += incr; |
| |
| /* Eighth byte */ |
| flo |= *p; |
| |
| x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */ |
| x /= 268435456.0; /* 2**28 */ |
| |
| if (e == 0) |
| e = -1022; |
| else { |
| x += 1.0; |
| e -= 1023; |
| } |
| x = ldexp(x, e); |
| |
| if (sign) |
| x = -x; |
| |
| return x; |
| } |
| else { |
| double x; |
| |
| if ((double_format == ieee_little_endian_format && !le) |
| || (double_format == ieee_big_endian_format && le)) { |
| char buf[8]; |
| char *d = &buf[7]; |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| *d-- = *p++; |
| } |
| memcpy(&x, buf, 8); |
| } |
| else { |
| memcpy(&x, p, 8); |
| } |
| |
| return x; |
| } |
| } |