| |
| /* Dictionary object implementation using a hash table */ |
| |
| #include "Python.h" |
| |
| |
| /* |
| * MINSIZE is the minimum size of a dictionary. This many slots are |
| * allocated directly in the dict object (in the ma_smalltable member). |
| * This must be a power of 2, and the first entry in the polys[] vector must |
| * match. |
| */ |
| #define MINSIZE 8 |
| |
| /* define this out if you don't want conversion statistics on exit */ |
| #undef SHOW_CONVERSION_COUNTS |
| |
| /* |
| Table of irreducible polynomials to efficiently cycle through |
| GF(2^n)-{0}, 2<=n<=30. A table size is always a power of 2. |
| For a table size of 2**i, the polys entry is 2**i + j for some j in 1 thru |
| 2**i-1 inclusive. The polys[] entries here happen to add in the smallest j |
| values "that work". Work means this: given any integer k in 1 thru 2**i-1 |
| inclusive, a poly works if & only if repeating this code: |
| print k |
| k <<= 1 |
| if k >= 2**i: |
| k ^= poly |
| prints every integer in 1 thru 2**i-1 inclusive exactly once before printing |
| k a second time. Theory can be used to find such polys efficiently, but the |
| operational defn. of "works" is sufficient to find them in reasonable time |
| via brute force program (hint: any poly that has an even number of 1 bits |
| cannot work; ditto any poly with low bit 0; exploit those). |
| */ |
| |
| static long polys[] = { |
| /* 4 + 3, */ /* first active entry if MINSIZE == 4 */ |
| 8 + 3, /* first active entry if MINSIZE == 8 */ |
| 16 + 3, |
| 32 + 5, |
| 64 + 3, |
| 128 + 3, |
| 256 + 29, |
| 512 + 17, |
| 1024 + 9, |
| 2048 + 5, |
| 4096 + 83, |
| 8192 + 27, |
| 16384 + 43, |
| 32768 + 3, |
| 65536 + 45, |
| 131072 + 9, |
| 262144 + 39, |
| 524288 + 39, |
| 1048576 + 9, |
| 2097152 + 5, |
| 4194304 + 3, |
| 8388608 + 33, |
| 16777216 + 27, |
| 33554432 + 9, |
| 67108864 + 71, |
| 134217728 + 39, |
| 268435456 + 9, |
| 536870912 + 5, |
| 1073741824 + 83 |
| /* 2147483648 + 9 -- if we ever boost this to unsigned long */ |
| }; |
| |
| /* Object used as dummy key to fill deleted entries */ |
| static PyObject *dummy; /* Initialized by first call to newdictobject() */ |
| |
| /* |
| There are three kinds of slots in the table: |
| |
| 1. Unused. me_key == me_value == NULL |
| Does not hold an active (key, value) pair now and never did. Unused can |
| transition to Active upon key insertion. This is the only case in which |
| me_key is NULL, and is each slot's initial state. |
| |
| 2. Active. me_key != NULL and me_key != dummy and me_value != NULL |
| Holds an active (key, value) pair. Active can transition to Dummy upon |
| key deletion. This is the only case in which me_value != NULL. |
| |
| 3. Dummy. me_key == dummy and me_value == NULL |
| Previously held an active (key, value) pair, but that was deleted and an |
| active pair has not yet overwritten the slot. Dummy can transition to |
| Active upon key insertion. Dummy slots cannot be made Unused again |
| (cannot have me_key set to NULL), else the probe sequence in case of |
| collision would have no way to know they were once active. |
| |
| Note: .popitem() abuses the me_hash field of an Unused or Dummy slot to |
| hold a search finger. The me_hash field of Unused or Dummy slots has no |
| meaning otherwise. |
| */ |
| typedef struct { |
| long me_hash; /* cached hash code of me_key */ |
| PyObject *me_key; |
| PyObject *me_value; |
| #ifdef USE_CACHE_ALIGNED |
| long aligner; |
| #endif |
| } dictentry; |
| |
| /* |
| To ensure the lookup algorithm terminates, there must be at least one Unused |
| slot (NULL key) in the table. |
| The value ma_fill is the number of non-NULL keys (sum of Active and Dummy); |
| ma_used is the number of non-NULL, non-dummy keys (== the number of non-NULL |
| values == the number of Active items). |
| To avoid slowing down lookups on a near-full table, we resize the table when |
| it's two-thirds full. |
| */ |
| typedef struct dictobject dictobject; |
| struct dictobject { |
| PyObject_HEAD |
| int ma_fill; /* # Active + # Dummy */ |
| int ma_used; /* # Active */ |
| int ma_size; /* total # slots in ma_table */ |
| int ma_poly; /* appopriate entry from polys vector */ |
| /* ma_table points to ma_smalltable for small tables, else to |
| * additional malloc'ed memory. ma_table is never NULL! This rule |
| * saves repeated runtime null-tests in the workhorse getitem and |
| * setitem calls. |
| */ |
| dictentry *ma_table; |
| dictentry *(*ma_lookup)(dictobject *mp, PyObject *key, long hash); |
| dictentry ma_smalltable[MINSIZE]; |
| }; |
| |
| /* forward declarations */ |
| static dictentry * |
| lookdict_string(dictobject *mp, PyObject *key, long hash); |
| |
| #ifdef SHOW_CONVERSION_COUNTS |
| static long created = 0L; |
| static long converted = 0L; |
| |
| static void |
| show_counts(void) |
| { |
| fprintf(stderr, "created %ld string dicts\n", created); |
| fprintf(stderr, "converted %ld to normal dicts\n", converted); |
| fprintf(stderr, "%.2f%% conversion rate\n", (100.0*converted)/created); |
| } |
| #endif |
| |
| /* Set dictobject* mp to empty but w/ MINSIZE slots, using ma_smalltable. */ |
| #define empty_to_minsize(mp) do { \ |
| memset((mp)->ma_smalltable, 0, sizeof((mp)->ma_smalltable)); \ |
| (mp)->ma_table = (mp)->ma_smalltable; \ |
| (mp)->ma_size = MINSIZE; \ |
| (mp)->ma_used = (mp)->ma_fill = 0; \ |
| (mp)->ma_poly = polys[0]; \ |
| assert(MINSIZE < (mp)->ma_poly && (mp)->ma_poly < MINSIZE*2); \ |
| } while(0) |
| |
| PyObject * |
| PyDict_New(void) |
| { |
| register dictobject *mp; |
| if (dummy == NULL) { /* Auto-initialize dummy */ |
| dummy = PyString_FromString("<dummy key>"); |
| if (dummy == NULL) |
| return NULL; |
| #ifdef SHOW_CONVERSION_COUNTS |
| Py_AtExit(show_counts); |
| #endif |
| } |
| mp = PyObject_NEW(dictobject, &PyDict_Type); |
| if (mp == NULL) |
| return NULL; |
| empty_to_minsize(mp); |
| mp->ma_lookup = lookdict_string; |
| #ifdef SHOW_CONVERSION_COUNTS |
| ++created; |
| #endif |
| PyObject_GC_Init(mp); |
| return (PyObject *)mp; |
| } |
| |
| /* |
| The basic lookup function used by all operations. |
| This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4. |
| Open addressing is preferred over chaining since the link overhead for |
| chaining would be substantial (100% with typical malloc overhead). |
| However, instead of going through the table at constant steps, we cycle |
| through the values of GF(2^n). This avoids modulo computations, being |
| much cheaper on RISC machines, without leading to clustering. |
| |
| The initial probe index is computed as hash mod the table size. |
| Subsequent probe indices use the values of x^i in GF(2^n)-{0} as an offset, |
| where x is a root. The initial offset is derived from hash, too. |
| |
| All arithmetic on hash should ignore overflow. |
| |
| (This version is due to Reimer Behrends, some ideas are also due to |
| Jyrki Alakuijala and Vladimir Marangozov.) |
| |
| This function must never return NULL; failures are indicated by returning |
| a dictentry* for which the me_value field is NULL. Exceptions are never |
| reported by this function, and outstanding exceptions are maintained. |
| */ |
| static dictentry * |
| lookdict(dictobject *mp, PyObject *key, register long hash) |
| { |
| register int i; |
| register unsigned incr; |
| register dictentry *freeslot; |
| register unsigned int mask = mp->ma_size-1; |
| dictentry *ep0 = mp->ma_table; |
| register dictentry *ep; |
| register int restore_error = 0; |
| register int checked_error = 0; |
| register int cmp; |
| PyObject *err_type, *err_value, *err_tb; |
| /* We must come up with (i, incr) such that 0 <= i < ma_size |
| and 0 < incr < ma_size and both are a function of hash. |
| i is the initial table index and incr the initial probe offset. */ |
| i = hash & mask; |
| ep = &ep0[i]; |
| if (ep->me_key == NULL || ep->me_key == key) |
| return ep; |
| if (ep->me_key == dummy) |
| freeslot = ep; |
| else { |
| if (ep->me_hash == hash) { |
| /* error can't have been checked yet */ |
| checked_error = 1; |
| if (PyErr_Occurred()) { |
| restore_error = 1; |
| PyErr_Fetch(&err_type, &err_value, &err_tb); |
| } |
| cmp = PyObject_RichCompareBool(ep->me_key, key, Py_EQ); |
| if (cmp > 0) { |
| if (restore_error) |
| PyErr_Restore(err_type, err_value, |
| err_tb); |
| return ep; |
| } |
| else if (cmp < 0) |
| PyErr_Clear(); |
| } |
| freeslot = NULL; |
| } |
| /* Derive incr from hash, just to make it more arbitrary. Note that |
| incr must not be 0, or we will get into an infinite loop.*/ |
| incr = (hash ^ ((unsigned long)hash >> 3)) & mask; |
| if (!incr) |
| incr = mask; |
| /* In the loop, me_key == dummy is by far (factor of 100s) the |
| least likely outcome, so test for that last. */ |
| for (;;) { |
| ep = &ep0[(i+incr)&mask]; |
| if (ep->me_key == NULL) { |
| if (restore_error) |
| PyErr_Restore(err_type, err_value, err_tb); |
| return freeslot == NULL ? ep : freeslot; |
| } |
| if (ep->me_key == key) { |
| if (restore_error) |
| PyErr_Restore(err_type, err_value, err_tb); |
| return ep; |
| } |
| else if (ep->me_hash == hash && ep->me_key != dummy) { |
| if (!checked_error) { |
| checked_error = 1; |
| if (PyErr_Occurred()) { |
| restore_error = 1; |
| PyErr_Fetch(&err_type, &err_value, |
| &err_tb); |
| } |
| } |
| cmp = PyObject_RichCompareBool(ep->me_key, key, Py_EQ); |
| if (cmp > 0) { |
| if (restore_error) |
| PyErr_Restore(err_type, err_value, |
| err_tb); |
| return ep; |
| } |
| else if (cmp < 0) |
| PyErr_Clear(); |
| } |
| else if (ep->me_key == dummy && freeslot == NULL) |
| freeslot = ep; |
| /* Cycle through GF(2^n)-{0} */ |
| incr <<= 1; |
| if (incr > mask) |
| incr ^= mp->ma_poly; /* clears the highest bit */ |
| } |
| } |
| |
| /* |
| * Hacked up version of lookdict which can assume keys are always strings; |
| * this assumption allows testing for errors during PyObject_Compare() to |
| * be dropped; string-string comparisons never raise exceptions. This also |
| * means we don't need to go through PyObject_Compare(); we can always use |
| * _PyString_Eq directly. |
| * |
| * This really only becomes meaningful if proper error handling in lookdict() |
| * is too expensive. |
| */ |
| static dictentry * |
| lookdict_string(dictobject *mp, PyObject *key, register long hash) |
| { |
| register int i; |
| register unsigned incr; |
| register dictentry *freeslot; |
| register unsigned int mask = mp->ma_size-1; |
| dictentry *ep0 = mp->ma_table; |
| register dictentry *ep; |
| |
| /* make sure this function doesn't have to handle non-string keys */ |
| if (!PyString_Check(key)) { |
| #ifdef SHOW_CONVERSION_COUNTS |
| ++converted; |
| #endif |
| mp->ma_lookup = lookdict; |
| return lookdict(mp, key, hash); |
| } |
| /* We must come up with (i, incr) such that 0 <= i < ma_size |
| and 0 < incr < ma_size and both are a function of hash */ |
| i = hash & mask; |
| ep = &ep0[i]; |
| if (ep->me_key == NULL || ep->me_key == key) |
| return ep; |
| if (ep->me_key == dummy) |
| freeslot = ep; |
| else { |
| if (ep->me_hash == hash |
| && _PyString_Eq(ep->me_key, key)) { |
| return ep; |
| } |
| freeslot = NULL; |
| } |
| /* Derive incr from hash, just to make it more arbitrary. Note that |
| incr must not be 0, or we will get into an infinite loop.*/ |
| incr = (hash ^ ((unsigned long)hash >> 3)) & mask; |
| if (!incr) |
| incr = mask; |
| /* In the loop, me_key == dummy is by far (factor of 100s) the |
| least likely outcome, so test for that last. */ |
| for (;;) { |
| ep = &ep0[(i+incr)&mask]; |
| if (ep->me_key == NULL) |
| return freeslot == NULL ? ep : freeslot; |
| if (ep->me_key == key |
| || (ep->me_hash == hash |
| && ep->me_key != dummy |
| && _PyString_Eq(ep->me_key, key))) |
| return ep; |
| if (ep->me_key == dummy && freeslot == NULL) |
| freeslot = ep; |
| /* Cycle through GF(2^n)-{0} */ |
| incr <<= 1; |
| if (incr > mask) |
| incr ^= mp->ma_poly; /* clears the highest bit */ |
| } |
| } |
| |
| /* |
| Internal routine to insert a new item into the table. |
| Used both by the internal resize routine and by the public insert routine. |
| Eats a reference to key and one to value. |
| */ |
| static void |
| insertdict(register dictobject *mp, PyObject *key, long hash, PyObject *value) |
| { |
| PyObject *old_value; |
| register dictentry *ep; |
| ep = (mp->ma_lookup)(mp, key, hash); |
| if (ep->me_value != NULL) { |
| old_value = ep->me_value; |
| ep->me_value = value; |
| Py_DECREF(old_value); /* which **CAN** re-enter */ |
| Py_DECREF(key); |
| } |
| else { |
| if (ep->me_key == NULL) |
| mp->ma_fill++; |
| else |
| Py_DECREF(ep->me_key); |
| ep->me_key = key; |
| ep->me_hash = hash; |
| ep->me_value = value; |
| mp->ma_used++; |
| } |
| } |
| |
| /* |
| Restructure the table by allocating a new table and reinserting all |
| items again. When entries have been deleted, the new table may |
| actually be smaller than the old one. |
| */ |
| static int |
| dictresize(dictobject *mp, int minused) |
| { |
| int newsize, newpoly; |
| dictentry *oldtable, *newtable, *ep; |
| int i; |
| int is_oldtable_malloced; |
| dictentry small_copy[MINSIZE]; |
| |
| assert(minused >= 0); |
| |
| /* Find the smallest table size > minused, and its poly[] entry. */ |
| newpoly = 0; |
| newsize = MINSIZE; |
| for (i = 0; i < sizeof(polys)/sizeof(polys[0]); ++i) { |
| if (newsize > minused) { |
| newpoly = polys[i]; |
| break; |
| } |
| newsize <<= 1; |
| if (newsize < 0) /* overflow */ |
| break; |
| } |
| if (newpoly == 0) { |
| /* Ran out of polynomials or newsize overflowed. */ |
| PyErr_NoMemory(); |
| return -1; |
| } |
| |
| /* Get space for a new table. */ |
| oldtable = mp->ma_table; |
| assert(oldtable != NULL); |
| is_oldtable_malloced = oldtable != mp->ma_smalltable; |
| |
| if (newsize == MINSIZE) { |
| /* A large table is shrinking, or we can't get any smaller. */ |
| newtable = mp->ma_smalltable; |
| if (newtable == oldtable) { |
| if (mp->ma_fill == mp->ma_used) { |
| /* No dummies, so no point doing anything. */ |
| return 0; |
| } |
| /* We're not going to resize it, but rebuild the |
| table anyway to purge old dummy entries. |
| Subtle: This is *necessary* if fill==size, |
| as lookdict needs at least one virgin slot to |
| terminate failing searches. If fill < size, it's |
| merely desirable, as dummies slow searches. */ |
| assert(mp->ma_fill > mp->ma_used); |
| memcpy(small_copy, oldtable, sizeof(small_copy)); |
| oldtable = small_copy; |
| } |
| } |
| else { |
| newtable = PyMem_NEW(dictentry, newsize); |
| if (newtable == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| } |
| |
| /* Make the dict empty, using the new table. */ |
| assert(newtable != oldtable); |
| mp->ma_table = newtable; |
| mp->ma_size = newsize; |
| memset(newtable, 0, sizeof(dictentry) * newsize); |
| mp->ma_poly = newpoly; |
| mp->ma_used = 0; |
| i = mp->ma_fill; |
| mp->ma_fill = 0; |
| |
| /* Copy the data over; this is refcount-neutral for active entries; |
| dummy entries aren't copied over, of course */ |
| for (ep = oldtable; i > 0; ep++) { |
| if (ep->me_value != NULL) { /* active entry */ |
| --i; |
| insertdict(mp, ep->me_key, ep->me_hash, ep->me_value); |
| } |
| else if (ep->me_key != NULL) { /* dummy entry */ |
| --i; |
| assert(ep->me_key == dummy); |
| Py_DECREF(ep->me_key); |
| } |
| /* else key == value == NULL: nothing to do */ |
| } |
| |
| if (is_oldtable_malloced) |
| PyMem_DEL(oldtable); |
| return 0; |
| } |
| |
| PyObject * |
| PyDict_GetItem(PyObject *op, PyObject *key) |
| { |
| long hash; |
| dictobject *mp = (dictobject *)op; |
| if (!PyDict_Check(op)) { |
| return NULL; |
| } |
| #ifdef CACHE_HASH |
| if (!PyString_Check(key) || |
| (hash = ((PyStringObject *) key)->ob_shash) == -1) |
| #endif |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) { |
| PyErr_Clear(); |
| return NULL; |
| } |
| } |
| return (mp->ma_lookup)(mp, key, hash)->me_value; |
| } |
| |
| /* CAUTION: PyDict_SetItem() must guarantee that it won't resize the |
| * dictionary if it is merely replacing the value for an existing key. |
| * This is means that it's safe to loop over a dictionary with |
| * PyDict_Next() and occasionally replace a value -- but you can't |
| * insert new keys or remove them. |
| */ |
| int |
| PyDict_SetItem(register PyObject *op, PyObject *key, PyObject *value) |
| { |
| register dictobject *mp; |
| register long hash; |
| register int n_used; |
| |
| if (!PyDict_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| mp = (dictobject *)op; |
| #ifdef CACHE_HASH |
| if (PyString_Check(key)) { |
| #ifdef INTERN_STRINGS |
| if (((PyStringObject *)key)->ob_sinterned != NULL) { |
| key = ((PyStringObject *)key)->ob_sinterned; |
| hash = ((PyStringObject *)key)->ob_shash; |
| } |
| else |
| #endif |
| { |
| hash = ((PyStringObject *)key)->ob_shash; |
| if (hash == -1) |
| hash = PyObject_Hash(key); |
| } |
| } |
| else |
| #endif |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return -1; |
| } |
| assert(mp->ma_fill < mp->ma_size); |
| n_used = mp->ma_used; |
| Py_INCREF(value); |
| Py_INCREF(key); |
| insertdict(mp, key, hash, value); |
| /* If we added a key, we can safely resize. Otherwise skip this! |
| * If fill >= 2/3 size, adjust size. Normally, this doubles the |
| * size, but it's also possible for the dict to shrink (if ma_fill is |
| * much larger than ma_used, meaning a lot of dict keys have been |
| * deleted). |
| */ |
| if (mp->ma_used > n_used && mp->ma_fill*3 >= mp->ma_size*2) { |
| if (dictresize(mp, mp->ma_used*2) != 0) |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| PyDict_DelItem(PyObject *op, PyObject *key) |
| { |
| register dictobject *mp; |
| register long hash; |
| register dictentry *ep; |
| PyObject *old_value, *old_key; |
| |
| if (!PyDict_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| #ifdef CACHE_HASH |
| if (!PyString_Check(key) || |
| (hash = ((PyStringObject *) key)->ob_shash) == -1) |
| #endif |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return -1; |
| } |
| mp = (dictobject *)op; |
| ep = (mp->ma_lookup)(mp, key, hash); |
| if (ep->me_value == NULL) { |
| PyErr_SetObject(PyExc_KeyError, key); |
| return -1; |
| } |
| old_key = ep->me_key; |
| Py_INCREF(dummy); |
| ep->me_key = dummy; |
| old_value = ep->me_value; |
| ep->me_value = NULL; |
| mp->ma_used--; |
| Py_DECREF(old_value); |
| Py_DECREF(old_key); |
| return 0; |
| } |
| |
| void |
| PyDict_Clear(PyObject *op) |
| { |
| dictobject *mp; |
| dictentry *ep, *table; |
| int table_is_malloced; |
| int fill; |
| dictentry small_copy[MINSIZE]; |
| #ifdef Py_DEBUG |
| int i, n; |
| #endif |
| |
| if (!PyDict_Check(op)) |
| return; |
| mp = (dictobject *)op; |
| #ifdef Py_DEBUG |
| n = mp->ma_size; |
| i = 0; |
| #endif |
| |
| table = mp->ma_table; |
| assert(table != NULL); |
| table_is_malloced = table != mp->ma_smalltable; |
| |
| /* This is delicate. During the process of clearing the dict, |
| * decrefs can cause the dict to mutate. To avoid fatal confusion |
| * (voice of experience), we have to make the dict empty before |
| * clearing the slots, and never refer to anything via mp->xxx while |
| * clearing. |
| */ |
| fill = mp->ma_fill; |
| if (table_is_malloced) |
| empty_to_minsize(mp); |
| |
| else if (fill > 0) { |
| /* It's a small table with something that needs to be cleared. |
| * Afraid the only safe way is to copy the dict entries into |
| * another small table first. |
| */ |
| memcpy(small_copy, table, sizeof(small_copy)); |
| table = small_copy; |
| empty_to_minsize(mp); |
| } |
| /* else it's a small table that's already empty */ |
| |
| /* Now we can finally clear things. If C had refcounts, we could |
| * assert that the refcount on table is 1 now, i.e. that this function |
| * has unique access to it, so decref side-effects can't alter it. |
| */ |
| for (ep = table; fill > 0; ++ep) { |
| #ifdef Py_DEBUG |
| assert(i < n); |
| ++i; |
| #endif |
| if (ep->me_key) { |
| --fill; |
| Py_DECREF(ep->me_key); |
| Py_XDECREF(ep->me_value); |
| } |
| #ifdef Py_DEBUG |
| else |
| assert(ep->me_value == NULL); |
| #endif |
| } |
| |
| if (table_is_malloced) |
| PyMem_DEL(table); |
| } |
| |
| /* CAUTION: In general, it isn't safe to use PyDict_Next in a loop that |
| * mutates the dict. One exception: it is safe if the loop merely changes |
| * the values associated with the keys (but doesn't insert new keys or |
| * delete keys), via PyDict_SetItem(). |
| */ |
| int |
| PyDict_Next(PyObject *op, int *ppos, PyObject **pkey, PyObject **pvalue) |
| { |
| int i; |
| register dictobject *mp; |
| if (!PyDict_Check(op)) |
| return 0; |
| mp = (dictobject *)op; |
| i = *ppos; |
| if (i < 0) |
| return 0; |
| while (i < mp->ma_size && mp->ma_table[i].me_value == NULL) |
| i++; |
| *ppos = i+1; |
| if (i >= mp->ma_size) |
| return 0; |
| if (pkey) |
| *pkey = mp->ma_table[i].me_key; |
| if (pvalue) |
| *pvalue = mp->ma_table[i].me_value; |
| return 1; |
| } |
| |
| /* Methods */ |
| |
| static void |
| dict_dealloc(register dictobject *mp) |
| { |
| register dictentry *ep; |
| int fill = mp->ma_fill; |
| Py_TRASHCAN_SAFE_BEGIN(mp) |
| PyObject_GC_Fini(mp); |
| for (ep = mp->ma_table; fill > 0; ep++) { |
| if (ep->me_key) { |
| --fill; |
| Py_DECREF(ep->me_key); |
| Py_XDECREF(ep->me_value); |
| } |
| } |
| if (mp->ma_table != mp->ma_smalltable) |
| PyMem_DEL(mp->ma_table); |
| mp = (dictobject *) PyObject_AS_GC(mp); |
| PyObject_DEL(mp); |
| Py_TRASHCAN_SAFE_END(mp) |
| } |
| |
| static int |
| dict_print(register dictobject *mp, register FILE *fp, register int flags) |
| { |
| register int i; |
| register int any; |
| register dictentry *ep; |
| |
| i = Py_ReprEnter((PyObject*)mp); |
| if (i != 0) { |
| if (i < 0) |
| return i; |
| fprintf(fp, "{...}"); |
| return 0; |
| } |
| |
| fprintf(fp, "{"); |
| any = 0; |
| for (i = 0, ep = mp->ma_table; i < mp->ma_size; i++, ep++) { |
| if (ep->me_value != NULL) { |
| if (any++ > 0) |
| fprintf(fp, ", "); |
| if (PyObject_Print((PyObject *)ep->me_key, fp, 0)!=0) { |
| Py_ReprLeave((PyObject*)mp); |
| return -1; |
| } |
| fprintf(fp, ": "); |
| if (PyObject_Print(ep->me_value, fp, 0) != 0) { |
| Py_ReprLeave((PyObject*)mp); |
| return -1; |
| } |
| } |
| } |
| fprintf(fp, "}"); |
| Py_ReprLeave((PyObject*)mp); |
| return 0; |
| } |
| |
| static PyObject * |
| dict_repr(dictobject *mp) |
| { |
| auto PyObject *v; |
| PyObject *sepa, *colon; |
| register int i; |
| register int any; |
| register dictentry *ep; |
| |
| i = Py_ReprEnter((PyObject*)mp); |
| if (i != 0) { |
| if (i > 0) |
| return PyString_FromString("{...}"); |
| return NULL; |
| } |
| |
| v = PyString_FromString("{"); |
| sepa = PyString_FromString(", "); |
| colon = PyString_FromString(": "); |
| any = 0; |
| for (i = 0, ep = mp->ma_table; i < mp->ma_size && v; i++, ep++) { |
| if (ep->me_value != NULL) { |
| if (any++) |
| PyString_Concat(&v, sepa); |
| PyString_ConcatAndDel(&v, PyObject_Repr(ep->me_key)); |
| PyString_Concat(&v, colon); |
| PyString_ConcatAndDel(&v, PyObject_Repr(ep->me_value)); |
| } |
| } |
| PyString_ConcatAndDel(&v, PyString_FromString("}")); |
| Py_ReprLeave((PyObject*)mp); |
| Py_XDECREF(sepa); |
| Py_XDECREF(colon); |
| return v; |
| } |
| |
| static int |
| dict_length(dictobject *mp) |
| { |
| return mp->ma_used; |
| } |
| |
| static PyObject * |
| dict_subscript(dictobject *mp, register PyObject *key) |
| { |
| PyObject *v; |
| long hash; |
| assert(mp->ma_table != NULL); |
| #ifdef CACHE_HASH |
| if (!PyString_Check(key) || |
| (hash = ((PyStringObject *) key)->ob_shash) == -1) |
| #endif |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return NULL; |
| } |
| v = (mp->ma_lookup)(mp, key, hash) -> me_value; |
| if (v == NULL) |
| PyErr_SetObject(PyExc_KeyError, key); |
| else |
| Py_INCREF(v); |
| return v; |
| } |
| |
| static int |
| dict_ass_sub(dictobject *mp, PyObject *v, PyObject *w) |
| { |
| if (w == NULL) |
| return PyDict_DelItem((PyObject *)mp, v); |
| else |
| return PyDict_SetItem((PyObject *)mp, v, w); |
| } |
| |
| static PyMappingMethods dict_as_mapping = { |
| (inquiry)dict_length, /*mp_length*/ |
| (binaryfunc)dict_subscript, /*mp_subscript*/ |
| (objobjargproc)dict_ass_sub, /*mp_ass_subscript*/ |
| }; |
| |
| static PyObject * |
| dict_keys(register dictobject *mp, PyObject *args) |
| { |
| register PyObject *v; |
| register int i, j, n; |
| |
| if (!PyArg_NoArgs(args)) |
| return NULL; |
| again: |
| n = mp->ma_used; |
| v = PyList_New(n); |
| if (v == NULL) |
| return NULL; |
| if (n != mp->ma_used) { |
| /* Durnit. The allocations caused the dict to resize. |
| * Just start over, this shouldn't normally happen. |
| */ |
| Py_DECREF(v); |
| goto again; |
| } |
| for (i = 0, j = 0; i < mp->ma_size; i++) { |
| if (mp->ma_table[i].me_value != NULL) { |
| PyObject *key = mp->ma_table[i].me_key; |
| Py_INCREF(key); |
| PyList_SET_ITEM(v, j, key); |
| j++; |
| } |
| } |
| return v; |
| } |
| |
| static PyObject * |
| dict_values(register dictobject *mp, PyObject *args) |
| { |
| register PyObject *v; |
| register int i, j, n; |
| |
| if (!PyArg_NoArgs(args)) |
| return NULL; |
| again: |
| n = mp->ma_used; |
| v = PyList_New(n); |
| if (v == NULL) |
| return NULL; |
| if (n != mp->ma_used) { |
| /* Durnit. The allocations caused the dict to resize. |
| * Just start over, this shouldn't normally happen. |
| */ |
| Py_DECREF(v); |
| goto again; |
| } |
| for (i = 0, j = 0; i < mp->ma_size; i++) { |
| if (mp->ma_table[i].me_value != NULL) { |
| PyObject *value = mp->ma_table[i].me_value; |
| Py_INCREF(value); |
| PyList_SET_ITEM(v, j, value); |
| j++; |
| } |
| } |
| return v; |
| } |
| |
| static PyObject * |
| dict_items(register dictobject *mp, PyObject *args) |
| { |
| register PyObject *v; |
| register int i, j, n; |
| PyObject *item, *key, *value; |
| |
| if (!PyArg_NoArgs(args)) |
| return NULL; |
| /* Preallocate the list of tuples, to avoid allocations during |
| * the loop over the items, which could trigger GC, which |
| * could resize the dict. :-( |
| */ |
| again: |
| n = mp->ma_used; |
| v = PyList_New(n); |
| if (v == NULL) |
| return NULL; |
| for (i = 0; i < n; i++) { |
| item = PyTuple_New(2); |
| if (item == NULL) { |
| Py_DECREF(v); |
| return NULL; |
| } |
| PyList_SET_ITEM(v, i, item); |
| } |
| if (n != mp->ma_used) { |
| /* Durnit. The allocations caused the dict to resize. |
| * Just start over, this shouldn't normally happen. |
| */ |
| Py_DECREF(v); |
| goto again; |
| } |
| /* Nothing we do below makes any function calls. */ |
| for (i = 0, j = 0; i < mp->ma_size; i++) { |
| if (mp->ma_table[i].me_value != NULL) { |
| key = mp->ma_table[i].me_key; |
| value = mp->ma_table[i].me_value; |
| item = PyList_GET_ITEM(v, j); |
| Py_INCREF(key); |
| PyTuple_SET_ITEM(item, 0, key); |
| Py_INCREF(value); |
| PyTuple_SET_ITEM(item, 1, value); |
| j++; |
| } |
| } |
| assert(j == n); |
| return v; |
| } |
| |
| static PyObject * |
| dict_update(register dictobject *mp, PyObject *args) |
| { |
| register int i; |
| dictobject *other; |
| dictentry *entry; |
| if (!PyArg_Parse(args, "O!", &PyDict_Type, &other)) |
| return NULL; |
| if (other == mp || other->ma_used == 0) |
| goto done; /* a.update(a) or a.update({}); nothing to do */ |
| /* Do one big resize at the start, rather than incrementally |
| resizing as we insert new items. Expect that there will be |
| no (or few) overlapping keys. */ |
| if ((mp->ma_fill + other->ma_used)*3 >= mp->ma_size*2) { |
| if (dictresize(mp, (mp->ma_used + other->ma_used)*3/2) != 0) |
| return NULL; |
| } |
| for (i = 0; i < other->ma_size; i++) { |
| entry = &other->ma_table[i]; |
| if (entry->me_value != NULL) { |
| Py_INCREF(entry->me_key); |
| Py_INCREF(entry->me_value); |
| insertdict(mp, entry->me_key, entry->me_hash, |
| entry->me_value); |
| } |
| } |
| done: |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| |
| static PyObject * |
| dict_copy(register dictobject *mp, PyObject *args) |
| { |
| if (!PyArg_Parse(args, "")) |
| return NULL; |
| return PyDict_Copy((PyObject*)mp); |
| } |
| |
| PyObject * |
| PyDict_Copy(PyObject *o) |
| { |
| register dictobject *mp; |
| register int i; |
| dictobject *copy; |
| dictentry *entry; |
| |
| if (o == NULL || !PyDict_Check(o)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| mp = (dictobject *)o; |
| copy = (dictobject *)PyDict_New(); |
| if (copy == NULL) |
| return NULL; |
| if (mp->ma_used > 0) { |
| if (dictresize(copy, mp->ma_used*3/2) != 0) |
| return NULL; |
| for (i = 0; i < mp->ma_size; i++) { |
| entry = &mp->ma_table[i]; |
| if (entry->me_value != NULL) { |
| Py_INCREF(entry->me_key); |
| Py_INCREF(entry->me_value); |
| insertdict(copy, entry->me_key, entry->me_hash, |
| entry->me_value); |
| } |
| } |
| } |
| return (PyObject *)copy; |
| } |
| |
| int |
| PyDict_Size(PyObject *mp) |
| { |
| if (mp == NULL || !PyDict_Check(mp)) { |
| PyErr_BadInternalCall(); |
| return 0; |
| } |
| return ((dictobject *)mp)->ma_used; |
| } |
| |
| PyObject * |
| PyDict_Keys(PyObject *mp) |
| { |
| if (mp == NULL || !PyDict_Check(mp)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return dict_keys((dictobject *)mp, (PyObject *)NULL); |
| } |
| |
| PyObject * |
| PyDict_Values(PyObject *mp) |
| { |
| if (mp == NULL || !PyDict_Check(mp)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return dict_values((dictobject *)mp, (PyObject *)NULL); |
| } |
| |
| PyObject * |
| PyDict_Items(PyObject *mp) |
| { |
| if (mp == NULL || !PyDict_Check(mp)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return dict_items((dictobject *)mp, (PyObject *)NULL); |
| } |
| |
| /* Subroutine which returns the smallest key in a for which b's value |
| is different or absent. The value is returned too, through the |
| pval argument. Both are NULL if no key in a is found for which b's status |
| differs. The refcounts on (and only on) non-NULL *pval and function return |
| values must be decremented by the caller (characterize() increments them |
| to ensure that mutating comparison and PyDict_GetItem calls can't delete |
| them before the caller is done looking at them). */ |
| |
| static PyObject * |
| characterize(dictobject *a, dictobject *b, PyObject **pval) |
| { |
| PyObject *akey = NULL; /* smallest key in a s.t. a[akey] != b[akey] */ |
| PyObject *aval = NULL; /* a[akey] */ |
| int i, cmp; |
| |
| for (i = 0; i < a->ma_size; i++) { |
| PyObject *thiskey, *thisaval, *thisbval; |
| if (a->ma_table[i].me_value == NULL) |
| continue; |
| thiskey = a->ma_table[i].me_key; |
| Py_INCREF(thiskey); /* keep alive across compares */ |
| if (akey != NULL) { |
| cmp = PyObject_RichCompareBool(akey, thiskey, Py_LT); |
| if (cmp < 0) { |
| Py_DECREF(thiskey); |
| goto Fail; |
| } |
| if (cmp > 0 || |
| i >= a->ma_size || |
| a->ma_table[i].me_value == NULL) |
| { |
| /* Not the *smallest* a key; or maybe it is |
| * but the compare shrunk the dict so we can't |
| * find its associated value anymore; or |
| * maybe it is but the compare deleted the |
| * a[thiskey] entry. |
| */ |
| Py_DECREF(thiskey); |
| continue; |
| } |
| } |
| |
| /* Compare a[thiskey] to b[thiskey]; cmp <- true iff equal. */ |
| thisaval = a->ma_table[i].me_value; |
| assert(thisaval); |
| Py_INCREF(thisaval); /* keep alive */ |
| thisbval = PyDict_GetItem((PyObject *)b, thiskey); |
| if (thisbval == NULL) |
| cmp = 0; |
| else { |
| /* both dicts have thiskey: same values? */ |
| cmp = PyObject_RichCompareBool( |
| thisaval, thisbval, Py_EQ); |
| if (cmp < 0) { |
| Py_DECREF(thiskey); |
| Py_DECREF(thisaval); |
| goto Fail; |
| } |
| } |
| if (cmp == 0) { |
| /* New winner. */ |
| Py_XDECREF(akey); |
| Py_XDECREF(aval); |
| akey = thiskey; |
| aval = thisaval; |
| } |
| else { |
| Py_DECREF(thiskey); |
| Py_DECREF(thisaval); |
| } |
| } |
| *pval = aval; |
| return akey; |
| |
| Fail: |
| Py_XDECREF(akey); |
| Py_XDECREF(aval); |
| *pval = NULL; |
| return NULL; |
| } |
| |
| static int |
| dict_compare(dictobject *a, dictobject *b) |
| { |
| PyObject *adiff, *bdiff, *aval, *bval; |
| int res; |
| |
| /* Compare lengths first */ |
| if (a->ma_used < b->ma_used) |
| return -1; /* a is shorter */ |
| else if (a->ma_used > b->ma_used) |
| return 1; /* b is shorter */ |
| |
| /* Same length -- check all keys */ |
| bdiff = bval = NULL; |
| adiff = characterize(a, b, &aval); |
| if (adiff == NULL) { |
| assert(!aval); |
| /* Either an error, or a is a subset with the same length so |
| * must be equal. |
| */ |
| res = PyErr_Occurred() ? -1 : 0; |
| goto Finished; |
| } |
| bdiff = characterize(b, a, &bval); |
| if (bdiff == NULL && PyErr_Occurred()) { |
| assert(!bval); |
| res = -1; |
| goto Finished; |
| } |
| res = 0; |
| if (bdiff) { |
| /* bdiff == NULL "should be" impossible now, but perhaps |
| * the last comparison done by the characterize() on a had |
| * the side effect of making the dicts equal! |
| */ |
| res = PyObject_Compare(adiff, bdiff); |
| } |
| if (res == 0 && bval != NULL) |
| res = PyObject_Compare(aval, bval); |
| |
| Finished: |
| Py_XDECREF(adiff); |
| Py_XDECREF(bdiff); |
| Py_XDECREF(aval); |
| Py_XDECREF(bval); |
| return res; |
| } |
| |
| /* Return 1 if dicts equal, 0 if not, -1 if error. |
| * Gets out as soon as any difference is detected. |
| * Uses only Py_EQ comparison. |
| */ |
| static int |
| dict_equal(dictobject *a, dictobject *b) |
| { |
| int i; |
| |
| if (a->ma_used != b->ma_used) |
| /* can't be equal if # of entries differ */ |
| return 0; |
| |
| /* Same # of entries -- check all of 'em. Exit early on any diff. */ |
| for (i = 0; i < a->ma_size; i++) { |
| PyObject *aval = a->ma_table[i].me_value; |
| if (aval != NULL) { |
| int cmp; |
| PyObject *bval; |
| PyObject *key = a->ma_table[i].me_key; |
| /* temporarily bump aval's refcount to ensure it stays |
| alive until we're done with it */ |
| Py_INCREF(aval); |
| bval = PyDict_GetItem((PyObject *)b, key); |
| if (bval == NULL) { |
| Py_DECREF(aval); |
| return 0; |
| } |
| cmp = PyObject_RichCompareBool(aval, bval, Py_EQ); |
| Py_DECREF(aval); |
| if (cmp <= 0) /* error or not equal */ |
| return cmp; |
| } |
| } |
| return 1; |
| } |
| |
| static PyObject * |
| dict_richcompare(PyObject *v, PyObject *w, int op) |
| { |
| int cmp; |
| PyObject *res; |
| |
| if (!PyDict_Check(v) || !PyDict_Check(w)) { |
| res = Py_NotImplemented; |
| } |
| else if (op == Py_EQ || op == Py_NE) { |
| cmp = dict_equal((dictobject *)v, (dictobject *)w); |
| if (cmp < 0) |
| return NULL; |
| res = (cmp == (op == Py_EQ)) ? Py_True : Py_False; |
| } |
| else |
| res = Py_NotImplemented; |
| Py_INCREF(res); |
| return res; |
| } |
| |
| static PyObject * |
| dict_has_key(register dictobject *mp, PyObject *args) |
| { |
| PyObject *key; |
| long hash; |
| register long ok; |
| if (!PyArg_ParseTuple(args, "O:has_key", &key)) |
| return NULL; |
| #ifdef CACHE_HASH |
| if (!PyString_Check(key) || |
| (hash = ((PyStringObject *) key)->ob_shash) == -1) |
| #endif |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return NULL; |
| } |
| ok = (mp->ma_lookup)(mp, key, hash)->me_value != NULL; |
| return PyInt_FromLong(ok); |
| } |
| |
| static PyObject * |
| dict_get(register dictobject *mp, PyObject *args) |
| { |
| PyObject *key; |
| PyObject *failobj = Py_None; |
| PyObject *val = NULL; |
| long hash; |
| |
| if (!PyArg_ParseTuple(args, "O|O:get", &key, &failobj)) |
| return NULL; |
| |
| #ifdef CACHE_HASH |
| if (!PyString_Check(key) || |
| (hash = ((PyStringObject *) key)->ob_shash) == -1) |
| #endif |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return NULL; |
| } |
| val = (mp->ma_lookup)(mp, key, hash)->me_value; |
| |
| if (val == NULL) |
| val = failobj; |
| Py_INCREF(val); |
| return val; |
| } |
| |
| |
| static PyObject * |
| dict_setdefault(register dictobject *mp, PyObject *args) |
| { |
| PyObject *key; |
| PyObject *failobj = Py_None; |
| PyObject *val = NULL; |
| long hash; |
| |
| if (!PyArg_ParseTuple(args, "O|O:setdefault", &key, &failobj)) |
| return NULL; |
| |
| #ifdef CACHE_HASH |
| if (!PyString_Check(key) || |
| (hash = ((PyStringObject *) key)->ob_shash) == -1) |
| #endif |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return NULL; |
| } |
| val = (mp->ma_lookup)(mp, key, hash)->me_value; |
| if (val == NULL) { |
| val = failobj; |
| if (PyDict_SetItem((PyObject*)mp, key, failobj)) |
| val = NULL; |
| } |
| Py_XINCREF(val); |
| return val; |
| } |
| |
| |
| static PyObject * |
| dict_clear(register dictobject *mp, PyObject *args) |
| { |
| if (!PyArg_NoArgs(args)) |
| return NULL; |
| PyDict_Clear((PyObject *)mp); |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| |
| static PyObject * |
| dict_popitem(dictobject *mp, PyObject *args) |
| { |
| int i = 0; |
| dictentry *ep; |
| PyObject *res; |
| |
| if (!PyArg_NoArgs(args)) |
| return NULL; |
| /* Allocate the result tuple first. Believe it or not, |
| * this allocation could trigger a garbage collection which |
| * could resize the dict, which would invalidate the pointer |
| * (ep) into the dict calculated below. |
| * So we have to do this first. |
| */ |
| res = PyTuple_New(2); |
| if (res == NULL) |
| return NULL; |
| if (mp->ma_used == 0) { |
| Py_DECREF(res); |
| PyErr_SetString(PyExc_KeyError, |
| "popitem(): dictionary is empty"); |
| return NULL; |
| } |
| /* Set ep to "the first" dict entry with a value. We abuse the hash |
| * field of slot 0 to hold a search finger: |
| * If slot 0 has a value, use slot 0. |
| * Else slot 0 is being used to hold a search finger, |
| * and we use its hash value as the first index to look. |
| */ |
| ep = &mp->ma_table[0]; |
| if (ep->me_value == NULL) { |
| i = (int)ep->me_hash; |
| /* The hash field may be a real hash value, or it may be a |
| * legit search finger, or it may be a once-legit search |
| * finger that's out of bounds now because it wrapped around |
| * or the table shrunk -- simply make sure it's in bounds now. |
| */ |
| if (i >= mp->ma_size || i < 1) |
| i = 1; /* skip slot 0 */ |
| while ((ep = &mp->ma_table[i])->me_value == NULL) { |
| i++; |
| if (i >= mp->ma_size) |
| i = 1; |
| } |
| } |
| PyTuple_SET_ITEM(res, 0, ep->me_key); |
| PyTuple_SET_ITEM(res, 1, ep->me_value); |
| Py_INCREF(dummy); |
| ep->me_key = dummy; |
| ep->me_value = NULL; |
| mp->ma_used--; |
| assert(mp->ma_table[0].me_value == NULL); |
| mp->ma_table[0].me_hash = i + 1; /* next place to start */ |
| return res; |
| } |
| |
| static int |
| dict_traverse(PyObject *op, visitproc visit, void *arg) |
| { |
| int i = 0, err; |
| PyObject *pk; |
| PyObject *pv; |
| |
| while (PyDict_Next(op, &i, &pk, &pv)) { |
| err = visit(pk, arg); |
| if (err) |
| return err; |
| err = visit(pv, arg); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| static int |
| dict_tp_clear(PyObject *op) |
| { |
| PyDict_Clear(op); |
| return 0; |
| } |
| |
| |
| staticforward PyObject *dictiter_new(dictobject *, binaryfunc); |
| |
| static PyObject * |
| select_key(PyObject *key, PyObject *value) |
| { |
| Py_INCREF(key); |
| return key; |
| } |
| |
| static PyObject * |
| select_value(PyObject *key, PyObject *value) |
| { |
| Py_INCREF(value); |
| return value; |
| } |
| |
| static PyObject * |
| select_item(PyObject *key, PyObject *value) |
| { |
| PyObject *res = PyTuple_New(2); |
| |
| if (res != NULL) { |
| Py_INCREF(key); |
| Py_INCREF(value); |
| PyTuple_SET_ITEM(res, 0, key); |
| PyTuple_SET_ITEM(res, 1, value); |
| } |
| return res; |
| } |
| |
| static PyObject * |
| dict_iterkeys(dictobject *dict, PyObject *args) |
| { |
| if (!PyArg_ParseTuple(args, "")) |
| return NULL; |
| return dictiter_new(dict, select_key); |
| } |
| |
| static PyObject * |
| dict_itervalues(dictobject *dict, PyObject *args) |
| { |
| if (!PyArg_ParseTuple(args, "")) |
| return NULL; |
| return dictiter_new(dict, select_value); |
| } |
| |
| static PyObject * |
| dict_iteritems(dictobject *dict, PyObject *args) |
| { |
| if (!PyArg_ParseTuple(args, "")) |
| return NULL; |
| return dictiter_new(dict, select_item); |
| } |
| |
| |
| static char has_key__doc__[] = |
| "D.has_key(k) -> 1 if D has a key k, else 0"; |
| |
| static char get__doc__[] = |
| "D.get(k[,d]) -> D[k] if D.has_key(k), else d. d defaults to None."; |
| |
| static char setdefault_doc__[] = |
| "D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if not D.has_key(k)"; |
| |
| static char popitem__doc__[] = |
| "D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\ |
| 2-tuple; but raise KeyError if D is empty"; |
| |
| static char keys__doc__[] = |
| "D.keys() -> list of D's keys"; |
| |
| static char items__doc__[] = |
| "D.items() -> list of D's (key, value) pairs, as 2-tuples"; |
| |
| static char values__doc__[] = |
| "D.values() -> list of D's values"; |
| |
| static char update__doc__[] = |
| "D.update(E) -> None. Update D from E: for k in E.keys(): D[k] = E[k]"; |
| |
| static char clear__doc__[] = |
| "D.clear() -> None. Remove all items from D."; |
| |
| static char copy__doc__[] = |
| "D.copy() -> a shallow copy of D"; |
| |
| static char iterkeys__doc__[] = |
| "D.iterkeys() -> an iterator over the keys of D"; |
| |
| static char itervalues__doc__[] = |
| "D.itervalues() -> an iterator over the values of D"; |
| |
| static char iteritems__doc__[] = |
| "D.iteritems() -> an iterator over the (key, value) items of D"; |
| |
| static PyMethodDef mapp_methods[] = { |
| {"has_key", (PyCFunction)dict_has_key, METH_VARARGS, |
| has_key__doc__}, |
| {"get", (PyCFunction)dict_get, METH_VARARGS, |
| get__doc__}, |
| {"setdefault", (PyCFunction)dict_setdefault, METH_VARARGS, |
| setdefault_doc__}, |
| {"popitem", (PyCFunction)dict_popitem, METH_OLDARGS, |
| popitem__doc__}, |
| {"keys", (PyCFunction)dict_keys, METH_OLDARGS, |
| keys__doc__}, |
| {"items", (PyCFunction)dict_items, METH_OLDARGS, |
| items__doc__}, |
| {"values", (PyCFunction)dict_values, METH_OLDARGS, |
| values__doc__}, |
| {"update", (PyCFunction)dict_update, METH_OLDARGS, |
| update__doc__}, |
| {"clear", (PyCFunction)dict_clear, METH_OLDARGS, |
| clear__doc__}, |
| {"copy", (PyCFunction)dict_copy, METH_OLDARGS, |
| copy__doc__}, |
| {"iterkeys", (PyCFunction)dict_iterkeys, METH_VARARGS, |
| iterkeys__doc__}, |
| {"itervalues", (PyCFunction)dict_itervalues, METH_VARARGS, |
| itervalues__doc__}, |
| {"iteritems", (PyCFunction)dict_iteritems, METH_VARARGS, |
| iteritems__doc__}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyObject * |
| dict_getattr(dictobject *mp, char *name) |
| { |
| return Py_FindMethod(mapp_methods, (PyObject *)mp, name); |
| } |
| |
| static int |
| dict_contains(dictobject *mp, PyObject *key) |
| { |
| long hash; |
| |
| #ifdef CACHE_HASH |
| if (!PyString_Check(key) || |
| (hash = ((PyStringObject *) key)->ob_shash) == -1) |
| #endif |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return -1; |
| } |
| return (mp->ma_lookup)(mp, key, hash)->me_value != NULL; |
| } |
| |
| /* Hack to implement "key in dict" */ |
| static PySequenceMethods dict_as_sequence = { |
| 0, /* sq_length */ |
| 0, /* sq_concat */ |
| 0, /* sq_repeat */ |
| 0, /* sq_item */ |
| 0, /* sq_slice */ |
| 0, /* sq_ass_item */ |
| 0, /* sq_ass_slice */ |
| (objobjproc)dict_contains, /* sq_contains */ |
| 0, /* sq_inplace_concat */ |
| 0, /* sq_inplace_repeat */ |
| }; |
| |
| static PyObject * |
| dict_iter(dictobject *dict) |
| { |
| return dictiter_new(dict, select_key); |
| } |
| |
| PyTypeObject PyDict_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, |
| "dictionary", |
| sizeof(dictobject) + PyGC_HEAD_SIZE, |
| 0, |
| (destructor)dict_dealloc, /* tp_dealloc */ |
| (printfunc)dict_print, /* tp_print */ |
| (getattrfunc)dict_getattr, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| (cmpfunc)dict_compare, /* tp_compare */ |
| (reprfunc)dict_repr, /* tp_repr */ |
| 0, /* tp_as_number */ |
| &dict_as_sequence, /* tp_as_sequence */ |
| &dict_as_mapping, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| 0, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_GC, /* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)dict_traverse, /* tp_traverse */ |
| (inquiry)dict_tp_clear, /* tp_clear */ |
| dict_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| (getiterfunc)dict_iter, /* tp_iter */ |
| 0, /* tp_iternext */ |
| }; |
| |
| /* For backward compatibility with old dictionary interface */ |
| |
| PyObject * |
| PyDict_GetItemString(PyObject *v, char *key) |
| { |
| PyObject *kv, *rv; |
| kv = PyString_FromString(key); |
| if (kv == NULL) |
| return NULL; |
| rv = PyDict_GetItem(v, kv); |
| Py_DECREF(kv); |
| return rv; |
| } |
| |
| int |
| PyDict_SetItemString(PyObject *v, char *key, PyObject *item) |
| { |
| PyObject *kv; |
| int err; |
| kv = PyString_FromString(key); |
| if (kv == NULL) |
| return -1; |
| PyString_InternInPlace(&kv); /* XXX Should we really? */ |
| err = PyDict_SetItem(v, kv, item); |
| Py_DECREF(kv); |
| return err; |
| } |
| |
| int |
| PyDict_DelItemString(PyObject *v, char *key) |
| { |
| PyObject *kv; |
| int err; |
| kv = PyString_FromString(key); |
| if (kv == NULL) |
| return -1; |
| err = PyDict_DelItem(v, kv); |
| Py_DECREF(kv); |
| return err; |
| } |
| |
| /* Dictionary iterator type */ |
| |
| extern PyTypeObject PyDictIter_Type; /* Forward */ |
| |
| typedef struct { |
| PyObject_HEAD |
| dictobject *di_dict; |
| int di_used; |
| int di_pos; |
| binaryfunc di_select; |
| } dictiterobject; |
| |
| static PyObject * |
| dictiter_new(dictobject *dict, binaryfunc select) |
| { |
| dictiterobject *di; |
| di = PyObject_NEW(dictiterobject, &PyDictIter_Type); |
| if (di == NULL) |
| return NULL; |
| Py_INCREF(dict); |
| di->di_dict = dict; |
| di->di_used = dict->ma_used; |
| di->di_pos = 0; |
| di->di_select = select; |
| return (PyObject *)di; |
| } |
| |
| static void |
| dictiter_dealloc(dictiterobject *di) |
| { |
| Py_DECREF(di->di_dict); |
| PyObject_DEL(di); |
| } |
| |
| static PyObject * |
| dictiter_next(dictiterobject *di, PyObject *args) |
| { |
| PyObject *key, *value; |
| |
| if (di->di_used != di->di_dict->ma_used) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "dictionary changed size during iteration"); |
| return NULL; |
| } |
| if (PyDict_Next((PyObject *)(di->di_dict), &di->di_pos, &key, &value)) { |
| return (*di->di_select)(key, value); |
| } |
| PyErr_SetObject(PyExc_StopIteration, Py_None); |
| return NULL; |
| } |
| |
| static PyObject * |
| dictiter_getiter(PyObject *it) |
| { |
| Py_INCREF(it); |
| return it; |
| } |
| |
| static PyMethodDef dictiter_methods[] = { |
| {"next", (PyCFunction)dictiter_next, METH_VARARGS, |
| "it.next() -- get the next value, or raise StopIteration"}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyObject * |
| dictiter_getattr(dictiterobject *di, char *name) |
| { |
| return Py_FindMethod(dictiter_methods, (PyObject *)di, name); |
| } |
| |
| static PyObject *dictiter_iternext(dictiterobject *di) |
| { |
| PyObject *key, *value; |
| |
| if (di->di_used != di->di_dict->ma_used) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "dictionary changed size during iteration"); |
| return NULL; |
| } |
| if (PyDict_Next((PyObject *)(di->di_dict), &di->di_pos, &key, &value)) { |
| return (*di->di_select)(key, value); |
| } |
| return NULL; |
| } |
| |
| PyTypeObject PyDictIter_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, /* ob_size */ |
| "dictionary-iterator", /* tp_name */ |
| sizeof(dictiterobject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)dictiter_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| (getattrfunc)dictiter_getattr, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_compare */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| 0, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT, /* tp_flags */ |
| 0, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| (getiterfunc)dictiter_getiter, /* tp_iter */ |
| (iternextfunc)dictiter_iternext, /* tp_iternext */ |
| }; |