| # Copyright 2007 Google, Inc. All Rights Reserved. |
| # Licensed to PSF under a Contributor Agreement. |
| |
| """Abstract Base Classes (ABCs) for numbers, according to PEP 3141. |
| |
| TODO: Fill out more detailed documentation on the operators.""" |
| |
| from abc import ABCMeta, abstractmethod, abstractproperty |
| |
| __all__ = ["Number", "Complex", "Real", "Rational", "Integral"] |
| |
| class Number(metaclass=ABCMeta): |
| """All numbers inherit from this class. |
| |
| If you just want to check if an argument x is a number, without |
| caring what kind, use isinstance(x, Number). |
| """ |
| __slots__ = () |
| |
| # Concrete numeric types must provide their own hash implementation |
| __hash__ = None |
| |
| |
| ## Notes on Decimal |
| ## ---------------- |
| ## Decimal has all of the methods specified by the Real abc, but it should |
| ## not be registered as a Real because decimals do not interoperate with |
| ## binary floats (i.e. Decimal('3.14') + 2.71828 is undefined). But, |
| ## abstract reals are expected to interoperate (i.e. R1 + R2 should be |
| ## expected to work if R1 and R2 are both Reals). |
| |
| class Complex(Number): |
| """Complex defines the operations that work on the builtin complex type. |
| |
| In short, those are: a conversion to complex, .real, .imag, +, -, |
| *, /, abs(), .conjugate, ==, and !=. |
| |
| If it is given heterogenous arguments, and doesn't have special |
| knowledge about them, it should fall back to the builtin complex |
| type as described below. |
| """ |
| |
| __slots__ = () |
| |
| @abstractmethod |
| def __complex__(self): |
| """Return a builtin complex instance. Called for complex(self).""" |
| |
| def __bool__(self): |
| """True if self != 0. Called for bool(self).""" |
| return self != 0 |
| |
| @abstractproperty |
| def real(self): |
| """Retrieve the real component of this number. |
| |
| This should subclass Real. |
| """ |
| raise NotImplementedError |
| |
| @abstractproperty |
| def imag(self): |
| """Retrieve the imaginary component of this number. |
| |
| This should subclass Real. |
| """ |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __add__(self, other): |
| """self + other""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __radd__(self, other): |
| """other + self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __neg__(self): |
| """-self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __pos__(self): |
| """+self""" |
| raise NotImplementedError |
| |
| def __sub__(self, other): |
| """self - other""" |
| return self + -other |
| |
| def __rsub__(self, other): |
| """other - self""" |
| return -self + other |
| |
| @abstractmethod |
| def __mul__(self, other): |
| """self * other""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rmul__(self, other): |
| """other * self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __truediv__(self, other): |
| """self / other: Should promote to float when necessary.""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rtruediv__(self, other): |
| """other / self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __pow__(self, exponent): |
| """self**exponent; should promote to float or complex when necessary.""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rpow__(self, base): |
| """base ** self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __abs__(self): |
| """Returns the Real distance from 0. Called for abs(self).""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def conjugate(self): |
| """(x+y*i).conjugate() returns (x-y*i).""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __eq__(self, other): |
| """self == other""" |
| raise NotImplementedError |
| |
| def __ne__(self, other): |
| """self != other""" |
| # The default __ne__ doesn't negate __eq__ until 3.0. |
| return not (self == other) |
| |
| Complex.register(complex) |
| |
| |
| class Real(Complex): |
| """To Complex, Real adds the operations that work on real numbers. |
| |
| In short, those are: a conversion to float, trunc(), divmod, |
| %, <, <=, >, and >=. |
| |
| Real also provides defaults for the derived operations. |
| """ |
| |
| __slots__ = () |
| |
| @abstractmethod |
| def __float__(self): |
| """Any Real can be converted to a native float object. |
| |
| Called for float(self).""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __trunc__(self): |
| """trunc(self): Truncates self to an Integral. |
| |
| Returns an Integral i such that: |
| * i>0 iff self>0; |
| * abs(i) <= abs(self); |
| * for any Integral j satisfying the first two conditions, |
| abs(i) >= abs(j) [i.e. i has "maximal" abs among those]. |
| i.e. "truncate towards 0". |
| """ |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __floor__(self): |
| """Finds the greatest Integral <= self.""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __ceil__(self): |
| """Finds the least Integral >= self.""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __round__(self, ndigits=None): |
| """Rounds self to ndigits decimal places, defaulting to 0. |
| |
| If ndigits is omitted or None, returns an Integral, otherwise |
| returns a Real. Rounds half toward even. |
| """ |
| raise NotImplementedError |
| |
| def __divmod__(self, other): |
| """divmod(self, other): The pair (self // other, self % other). |
| |
| Sometimes this can be computed faster than the pair of |
| operations. |
| """ |
| return (self // other, self % other) |
| |
| def __rdivmod__(self, other): |
| """divmod(other, self): The pair (self // other, self % other). |
| |
| Sometimes this can be computed faster than the pair of |
| operations. |
| """ |
| return (other // self, other % self) |
| |
| @abstractmethod |
| def __floordiv__(self, other): |
| """self // other: The floor() of self/other.""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rfloordiv__(self, other): |
| """other // self: The floor() of other/self.""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __mod__(self, other): |
| """self % other""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rmod__(self, other): |
| """other % self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __lt__(self, other): |
| """self < other |
| |
| < on Reals defines a total ordering, except perhaps for NaN.""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __le__(self, other): |
| """self <= other""" |
| raise NotImplementedError |
| |
| # Concrete implementations of Complex abstract methods. |
| def __complex__(self): |
| """complex(self) == complex(float(self), 0)""" |
| return complex(float(self)) |
| |
| @property |
| def real(self): |
| """Real numbers are their real component.""" |
| return +self |
| |
| @property |
| def imag(self): |
| """Real numbers have no imaginary component.""" |
| return 0 |
| |
| def conjugate(self): |
| """Conjugate is a no-op for Reals.""" |
| return +self |
| |
| Real.register(float) |
| |
| |
| class Rational(Real): |
| """.numerator and .denominator should be in lowest terms.""" |
| |
| __slots__ = () |
| |
| @abstractproperty |
| def numerator(self): |
| raise NotImplementedError |
| |
| @abstractproperty |
| def denominator(self): |
| raise NotImplementedError |
| |
| # Concrete implementation of Real's conversion to float. |
| def __float__(self): |
| """float(self) = self.numerator / self.denominator |
| |
| It's important that this conversion use the integer's "true" |
| division rather than casting one side to float before dividing |
| so that ratios of huge integers convert without overflowing. |
| |
| """ |
| return self.numerator / self.denominator |
| |
| |
| class Integral(Rational): |
| """Integral adds a conversion to int and the bit-string operations.""" |
| |
| __slots__ = () |
| |
| @abstractmethod |
| def __int__(self): |
| """int(self)""" |
| raise NotImplementedError |
| |
| def __index__(self): |
| """someobject[self]""" |
| return int(self) |
| |
| @abstractmethod |
| def __pow__(self, exponent, modulus=None): |
| """self ** exponent % modulus, but maybe faster. |
| |
| Accept the modulus argument if you want to support the |
| 3-argument version of pow(). Raise a TypeError if exponent < 0 |
| or any argument isn't Integral. Otherwise, just implement the |
| 2-argument version described in Complex. |
| """ |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __lshift__(self, other): |
| """self << other""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rlshift__(self, other): |
| """other << self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rshift__(self, other): |
| """self >> other""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rrshift__(self, other): |
| """other >> self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __and__(self, other): |
| """self & other""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rand__(self, other): |
| """other & self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __xor__(self, other): |
| """self ^ other""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __rxor__(self, other): |
| """other ^ self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __or__(self, other): |
| """self | other""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __ror__(self, other): |
| """other | self""" |
| raise NotImplementedError |
| |
| @abstractmethod |
| def __invert__(self): |
| """~self""" |
| raise NotImplementedError |
| |
| # Concrete implementations of Rational and Real abstract methods. |
| def __float__(self): |
| """float(self) == float(int(self))""" |
| return float(int(self)) |
| |
| @property |
| def numerator(self): |
| """Integers are their own numerators.""" |
| return +self |
| |
| @property |
| def denominator(self): |
| """Integers have a denominator of 1.""" |
| return 1 |
| |
| Integral.register(int) |