| # Originally contributed by Sjoerd Mullender. |
| # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>. |
| |
| """Fraction, infinite-precision, real numbers.""" |
| |
| from decimal import Decimal |
| import math |
| import numbers |
| import operator |
| import re |
| import sys |
| |
| __all__ = ['Fraction'] |
| |
| |
| # Constants related to the hash implementation; hash(x) is based |
| # on the reduction of x modulo the prime _PyHASH_MODULUS. |
| _PyHASH_MODULUS = sys.hash_info.modulus |
| # Value to be used for rationals that reduce to infinity modulo |
| # _PyHASH_MODULUS. |
| _PyHASH_INF = sys.hash_info.inf |
| |
| _RATIONAL_FORMAT = re.compile(r""" |
| \A\s* # optional whitespace at the start, then |
| (?P<sign>[-+]?) # an optional sign, then |
| (?=\d|\.\d) # lookahead for digit or .digit |
| (?P<num>\d*) # numerator (possibly empty) |
| (?: # followed by |
| (?:/(?P<denom>\d+))? # an optional denominator |
| | # or |
| (?:\.(?P<decimal>\d*))? # an optional fractional part |
| (?:E(?P<exp>[-+]?\d+))? # and optional exponent |
| ) |
| \s*\Z # and optional whitespace to finish |
| """, re.VERBOSE | re.IGNORECASE) |
| |
| |
| class Fraction(numbers.Rational): |
| """This class implements rational numbers. |
| |
| In the two-argument form of the constructor, Fraction(8, 6) will |
| produce a rational number equivalent to 4/3. Both arguments must |
| be Rational. The numerator defaults to 0 and the denominator |
| defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. |
| |
| Fractions can also be constructed from: |
| |
| - numeric strings similar to those accepted by the |
| float constructor (for example, '-2.3' or '1e10') |
| |
| - strings of the form '123/456' |
| |
| - float and Decimal instances |
| |
| - other Rational instances (including integers) |
| |
| """ |
| |
| __slots__ = ('_numerator', '_denominator') |
| |
| # We're immutable, so use __new__ not __init__ |
| def __new__(cls, numerator=0, denominator=None, *, _normalize=True): |
| """Constructs a Rational. |
| |
| Takes a string like '3/2' or '1.5', another Rational instance, a |
| numerator/denominator pair, or a float. |
| |
| Examples |
| -------- |
| |
| >>> Fraction(10, -8) |
| Fraction(-5, 4) |
| >>> Fraction(Fraction(1, 7), 5) |
| Fraction(1, 35) |
| >>> Fraction(Fraction(1, 7), Fraction(2, 3)) |
| Fraction(3, 14) |
| >>> Fraction('314') |
| Fraction(314, 1) |
| >>> Fraction('-35/4') |
| Fraction(-35, 4) |
| >>> Fraction('3.1415') # conversion from numeric string |
| Fraction(6283, 2000) |
| >>> Fraction('-47e-2') # string may include a decimal exponent |
| Fraction(-47, 100) |
| >>> Fraction(1.47) # direct construction from float (exact conversion) |
| Fraction(6620291452234629, 4503599627370496) |
| >>> Fraction(2.25) |
| Fraction(9, 4) |
| >>> Fraction(Decimal('1.47')) |
| Fraction(147, 100) |
| |
| """ |
| self = super(Fraction, cls).__new__(cls) |
| |
| if denominator is None: |
| if type(numerator) is int: |
| self._numerator = numerator |
| self._denominator = 1 |
| return self |
| |
| elif isinstance(numerator, numbers.Rational): |
| self._numerator = numerator.numerator |
| self._denominator = numerator.denominator |
| return self |
| |
| elif isinstance(numerator, (float, Decimal)): |
| # Exact conversion |
| self._numerator, self._denominator = numerator.as_integer_ratio() |
| return self |
| |
| elif isinstance(numerator, str): |
| # Handle construction from strings. |
| m = _RATIONAL_FORMAT.match(numerator) |
| if m is None: |
| raise ValueError('Invalid literal for Fraction: %r' % |
| numerator) |
| numerator = int(m.group('num') or '0') |
| denom = m.group('denom') |
| if denom: |
| denominator = int(denom) |
| else: |
| denominator = 1 |
| decimal = m.group('decimal') |
| if decimal: |
| scale = 10**len(decimal) |
| numerator = numerator * scale + int(decimal) |
| denominator *= scale |
| exp = m.group('exp') |
| if exp: |
| exp = int(exp) |
| if exp >= 0: |
| numerator *= 10**exp |
| else: |
| denominator *= 10**-exp |
| if m.group('sign') == '-': |
| numerator = -numerator |
| |
| else: |
| raise TypeError("argument should be a string " |
| "or a Rational instance") |
| |
| elif type(numerator) is int is type(denominator): |
| pass # *very* normal case |
| |
| elif (isinstance(numerator, numbers.Rational) and |
| isinstance(denominator, numbers.Rational)): |
| numerator, denominator = ( |
| numerator.numerator * denominator.denominator, |
| denominator.numerator * numerator.denominator |
| ) |
| else: |
| raise TypeError("both arguments should be " |
| "Rational instances") |
| |
| if denominator == 0: |
| raise ZeroDivisionError('Fraction(%s, 0)' % numerator) |
| if _normalize: |
| g = math.gcd(numerator, denominator) |
| if denominator < 0: |
| g = -g |
| numerator //= g |
| denominator //= g |
| self._numerator = numerator |
| self._denominator = denominator |
| return self |
| |
| @classmethod |
| def from_float(cls, f): |
| """Converts a finite float to a rational number, exactly. |
| |
| Beware that Fraction.from_float(0.3) != Fraction(3, 10). |
| |
| """ |
| if isinstance(f, numbers.Integral): |
| return cls(f) |
| elif not isinstance(f, float): |
| raise TypeError("%s.from_float() only takes floats, not %r (%s)" % |
| (cls.__name__, f, type(f).__name__)) |
| return cls(*f.as_integer_ratio()) |
| |
| @classmethod |
| def from_decimal(cls, dec): |
| """Converts a finite Decimal instance to a rational number, exactly.""" |
| from decimal import Decimal |
| if isinstance(dec, numbers.Integral): |
| dec = Decimal(int(dec)) |
| elif not isinstance(dec, Decimal): |
| raise TypeError( |
| "%s.from_decimal() only takes Decimals, not %r (%s)" % |
| (cls.__name__, dec, type(dec).__name__)) |
| return cls(*dec.as_integer_ratio()) |
| |
| def as_integer_ratio(self): |
| """Return the integer ratio as a tuple. |
| |
| Return a tuple of two integers, whose ratio is equal to the |
| Fraction and with a positive denominator. |
| """ |
| return (self._numerator, self._denominator) |
| |
| def limit_denominator(self, max_denominator=1000000): |
| """Closest Fraction to self with denominator at most max_denominator. |
| |
| >>> Fraction('3.141592653589793').limit_denominator(10) |
| Fraction(22, 7) |
| >>> Fraction('3.141592653589793').limit_denominator(100) |
| Fraction(311, 99) |
| >>> Fraction(4321, 8765).limit_denominator(10000) |
| Fraction(4321, 8765) |
| |
| """ |
| # Algorithm notes: For any real number x, define a *best upper |
| # approximation* to x to be a rational number p/q such that: |
| # |
| # (1) p/q >= x, and |
| # (2) if p/q > r/s >= x then s > q, for any rational r/s. |
| # |
| # Define *best lower approximation* similarly. Then it can be |
| # proved that a rational number is a best upper or lower |
| # approximation to x if, and only if, it is a convergent or |
| # semiconvergent of the (unique shortest) continued fraction |
| # associated to x. |
| # |
| # To find a best rational approximation with denominator <= M, |
| # we find the best upper and lower approximations with |
| # denominator <= M and take whichever of these is closer to x. |
| # In the event of a tie, the bound with smaller denominator is |
| # chosen. If both denominators are equal (which can happen |
| # only when max_denominator == 1 and self is midway between |
| # two integers) the lower bound---i.e., the floor of self, is |
| # taken. |
| |
| if max_denominator < 1: |
| raise ValueError("max_denominator should be at least 1") |
| if self._denominator <= max_denominator: |
| return Fraction(self) |
| |
| p0, q0, p1, q1 = 0, 1, 1, 0 |
| n, d = self._numerator, self._denominator |
| while True: |
| a = n//d |
| q2 = q0+a*q1 |
| if q2 > max_denominator: |
| break |
| p0, q0, p1, q1 = p1, q1, p0+a*p1, q2 |
| n, d = d, n-a*d |
| |
| k = (max_denominator-q0)//q1 |
| bound1 = Fraction(p0+k*p1, q0+k*q1) |
| bound2 = Fraction(p1, q1) |
| if abs(bound2 - self) <= abs(bound1-self): |
| return bound2 |
| else: |
| return bound1 |
| |
| @property |
| def numerator(a): |
| return a._numerator |
| |
| @property |
| def denominator(a): |
| return a._denominator |
| |
| def __repr__(self): |
| """repr(self)""" |
| return '%s(%s, %s)' % (self.__class__.__name__, |
| self._numerator, self._denominator) |
| |
| def __str__(self): |
| """str(self)""" |
| if self._denominator == 1: |
| return str(self._numerator) |
| else: |
| return '%s/%s' % (self._numerator, self._denominator) |
| |
| def _operator_fallbacks(monomorphic_operator, fallback_operator): |
| """Generates forward and reverse operators given a purely-rational |
| operator and a function from the operator module. |
| |
| Use this like: |
| __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) |
| |
| In general, we want to implement the arithmetic operations so |
| that mixed-mode operations either call an implementation whose |
| author knew about the types of both arguments, or convert both |
| to the nearest built in type and do the operation there. In |
| Fraction, that means that we define __add__ and __radd__ as: |
| |
| def __add__(self, other): |
| # Both types have numerators/denominator attributes, |
| # so do the operation directly |
| if isinstance(other, (int, Fraction)): |
| return Fraction(self.numerator * other.denominator + |
| other.numerator * self.denominator, |
| self.denominator * other.denominator) |
| # float and complex don't have those operations, but we |
| # know about those types, so special case them. |
| elif isinstance(other, float): |
| return float(self) + other |
| elif isinstance(other, complex): |
| return complex(self) + other |
| # Let the other type take over. |
| return NotImplemented |
| |
| def __radd__(self, other): |
| # radd handles more types than add because there's |
| # nothing left to fall back to. |
| if isinstance(other, numbers.Rational): |
| return Fraction(self.numerator * other.denominator + |
| other.numerator * self.denominator, |
| self.denominator * other.denominator) |
| elif isinstance(other, Real): |
| return float(other) + float(self) |
| elif isinstance(other, Complex): |
| return complex(other) + complex(self) |
| return NotImplemented |
| |
| |
| There are 5 different cases for a mixed-type addition on |
| Fraction. I'll refer to all of the above code that doesn't |
| refer to Fraction, float, or complex as "boilerplate". 'r' |
| will be an instance of Fraction, which is a subtype of |
| Rational (r : Fraction <: Rational), and b : B <: |
| Complex. The first three involve 'r + b': |
| |
| 1. If B <: Fraction, int, float, or complex, we handle |
| that specially, and all is well. |
| 2. If Fraction falls back to the boilerplate code, and it |
| were to return a value from __add__, we'd miss the |
| possibility that B defines a more intelligent __radd__, |
| so the boilerplate should return NotImplemented from |
| __add__. In particular, we don't handle Rational |
| here, even though we could get an exact answer, in case |
| the other type wants to do something special. |
| 3. If B <: Fraction, Python tries B.__radd__ before |
| Fraction.__add__. This is ok, because it was |
| implemented with knowledge of Fraction, so it can |
| handle those instances before delegating to Real or |
| Complex. |
| |
| The next two situations describe 'b + r'. We assume that b |
| didn't know about Fraction in its implementation, and that it |
| uses similar boilerplate code: |
| |
| 4. If B <: Rational, then __radd_ converts both to the |
| builtin rational type (hey look, that's us) and |
| proceeds. |
| 5. Otherwise, __radd__ tries to find the nearest common |
| base ABC, and fall back to its builtin type. Since this |
| class doesn't subclass a concrete type, there's no |
| implementation to fall back to, so we need to try as |
| hard as possible to return an actual value, or the user |
| will get a TypeError. |
| |
| """ |
| def forward(a, b): |
| if isinstance(b, (int, Fraction)): |
| return monomorphic_operator(a, b) |
| elif isinstance(b, float): |
| return fallback_operator(float(a), b) |
| elif isinstance(b, complex): |
| return fallback_operator(complex(a), b) |
| else: |
| return NotImplemented |
| forward.__name__ = '__' + fallback_operator.__name__ + '__' |
| forward.__doc__ = monomorphic_operator.__doc__ |
| |
| def reverse(b, a): |
| if isinstance(a, numbers.Rational): |
| # Includes ints. |
| return monomorphic_operator(a, b) |
| elif isinstance(a, numbers.Real): |
| return fallback_operator(float(a), float(b)) |
| elif isinstance(a, numbers.Complex): |
| return fallback_operator(complex(a), complex(b)) |
| else: |
| return NotImplemented |
| reverse.__name__ = '__r' + fallback_operator.__name__ + '__' |
| reverse.__doc__ = monomorphic_operator.__doc__ |
| |
| return forward, reverse |
| |
| # Rational arithmetic algorithms: Knuth, TAOCP, Volume 2, 4.5.1. |
| # |
| # Assume input fractions a and b are normalized. |
| # |
| # 1) Consider addition/subtraction. |
| # |
| # Let g = gcd(da, db). Then |
| # |
| # na nb na*db ± nb*da |
| # a ± b == -- ± -- == ------------- == |
| # da db da*db |
| # |
| # na*(db//g) ± nb*(da//g) t |
| # == ----------------------- == - |
| # (da*db)//g d |
| # |
| # Now, if g > 1, we're working with smaller integers. |
| # |
| # Note, that t, (da//g) and (db//g) are pairwise coprime. |
| # |
| # Indeed, (da//g) and (db//g) share no common factors (they were |
| # removed) and da is coprime with na (since input fractions are |
| # normalized), hence (da//g) and na are coprime. By symmetry, |
| # (db//g) and nb are coprime too. Then, |
| # |
| # gcd(t, da//g) == gcd(na*(db//g), da//g) == 1 |
| # gcd(t, db//g) == gcd(nb*(da//g), db//g) == 1 |
| # |
| # Above allows us optimize reduction of the result to lowest |
| # terms. Indeed, |
| # |
| # g2 = gcd(t, d) == gcd(t, (da//g)*(db//g)*g) == gcd(t, g) |
| # |
| # t//g2 t//g2 |
| # a ± b == ----------------------- == ---------------- |
| # (da//g)*(db//g)*(g//g2) (da//g)*(db//g2) |
| # |
| # is a normalized fraction. This is useful because the unnormalized |
| # denominator d could be much larger than g. |
| # |
| # We should special-case g == 1 (and g2 == 1), since 60.8% of |
| # randomly-chosen integers are coprime: |
| # https://en.wikipedia.org/wiki/Coprime_integers#Probability_of_coprimality |
| # Note, that g2 == 1 always for fractions, obtained from floats: here |
| # g is a power of 2 and the unnormalized numerator t is an odd integer. |
| # |
| # 2) Consider multiplication |
| # |
| # Let g1 = gcd(na, db) and g2 = gcd(nb, da), then |
| # |
| # na*nb na*nb (na//g1)*(nb//g2) |
| # a*b == ----- == ----- == ----------------- |
| # da*db db*da (db//g1)*(da//g2) |
| # |
| # Note, that after divisions we're multiplying smaller integers. |
| # |
| # Also, the resulting fraction is normalized, because each of |
| # two factors in the numerator is coprime to each of the two factors |
| # in the denominator. |
| # |
| # Indeed, pick (na//g1). It's coprime with (da//g2), because input |
| # fractions are normalized. It's also coprime with (db//g1), because |
| # common factors are removed by g1 == gcd(na, db). |
| # |
| # As for addition/subtraction, we should special-case g1 == 1 |
| # and g2 == 1 for same reason. That happens also for multiplying |
| # rationals, obtained from floats. |
| |
| def _add(a, b): |
| """a + b""" |
| na, da = a.numerator, a.denominator |
| nb, db = b.numerator, b.denominator |
| g = math.gcd(da, db) |
| if g == 1: |
| return Fraction(na * db + da * nb, da * db, _normalize=False) |
| s = da // g |
| t = na * (db // g) + nb * s |
| g2 = math.gcd(t, g) |
| if g2 == 1: |
| return Fraction(t, s * db, _normalize=False) |
| return Fraction(t // g2, s * (db // g2), _normalize=False) |
| |
| __add__, __radd__ = _operator_fallbacks(_add, operator.add) |
| |
| def _sub(a, b): |
| """a - b""" |
| na, da = a.numerator, a.denominator |
| nb, db = b.numerator, b.denominator |
| g = math.gcd(da, db) |
| if g == 1: |
| return Fraction(na * db - da * nb, da * db, _normalize=False) |
| s = da // g |
| t = na * (db // g) - nb * s |
| g2 = math.gcd(t, g) |
| if g2 == 1: |
| return Fraction(t, s * db, _normalize=False) |
| return Fraction(t // g2, s * (db // g2), _normalize=False) |
| |
| __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) |
| |
| def _mul(a, b): |
| """a * b""" |
| na, da = a.numerator, a.denominator |
| nb, db = b.numerator, b.denominator |
| g1 = math.gcd(na, db) |
| if g1 > 1: |
| na //= g1 |
| db //= g1 |
| g2 = math.gcd(nb, da) |
| if g2 > 1: |
| nb //= g2 |
| da //= g2 |
| return Fraction(na * nb, db * da, _normalize=False) |
| |
| __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) |
| |
| def _div(a, b): |
| """a / b""" |
| # Same as _mul(), with inversed b. |
| na, da = a.numerator, a.denominator |
| nb, db = b.numerator, b.denominator |
| g1 = math.gcd(na, nb) |
| if g1 > 1: |
| na //= g1 |
| nb //= g1 |
| g2 = math.gcd(db, da) |
| if g2 > 1: |
| da //= g2 |
| db //= g2 |
| n, d = na * db, nb * da |
| if d < 0: |
| n, d = -n, -d |
| return Fraction(n, d, _normalize=False) |
| |
| __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) |
| |
| def _floordiv(a, b): |
| """a // b""" |
| return (a.numerator * b.denominator) // (a.denominator * b.numerator) |
| |
| __floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv) |
| |
| def _divmod(a, b): |
| """(a // b, a % b)""" |
| da, db = a.denominator, b.denominator |
| div, n_mod = divmod(a.numerator * db, da * b.numerator) |
| return div, Fraction(n_mod, da * db) |
| |
| __divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod) |
| |
| def _mod(a, b): |
| """a % b""" |
| da, db = a.denominator, b.denominator |
| return Fraction((a.numerator * db) % (b.numerator * da), da * db) |
| |
| __mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod) |
| |
| def __pow__(a, b): |
| """a ** b |
| |
| If b is not an integer, the result will be a float or complex |
| since roots are generally irrational. If b is an integer, the |
| result will be rational. |
| |
| """ |
| if isinstance(b, numbers.Rational): |
| if b.denominator == 1: |
| power = b.numerator |
| if power >= 0: |
| return Fraction(a._numerator ** power, |
| a._denominator ** power, |
| _normalize=False) |
| elif a._numerator >= 0: |
| return Fraction(a._denominator ** -power, |
| a._numerator ** -power, |
| _normalize=False) |
| else: |
| return Fraction((-a._denominator) ** -power, |
| (-a._numerator) ** -power, |
| _normalize=False) |
| else: |
| # A fractional power will generally produce an |
| # irrational number. |
| return float(a) ** float(b) |
| else: |
| return float(a) ** b |
| |
| def __rpow__(b, a): |
| """a ** b""" |
| if b._denominator == 1 and b._numerator >= 0: |
| # If a is an int, keep it that way if possible. |
| return a ** b._numerator |
| |
| if isinstance(a, numbers.Rational): |
| return Fraction(a.numerator, a.denominator) ** b |
| |
| if b._denominator == 1: |
| return a ** b._numerator |
| |
| return a ** float(b) |
| |
| def __pos__(a): |
| """+a: Coerces a subclass instance to Fraction""" |
| return Fraction(a._numerator, a._denominator, _normalize=False) |
| |
| def __neg__(a): |
| """-a""" |
| return Fraction(-a._numerator, a._denominator, _normalize=False) |
| |
| def __abs__(a): |
| """abs(a)""" |
| return Fraction(abs(a._numerator), a._denominator, _normalize=False) |
| |
| def __trunc__(a): |
| """trunc(a)""" |
| if a._numerator < 0: |
| return -(-a._numerator // a._denominator) |
| else: |
| return a._numerator // a._denominator |
| |
| def __floor__(a): |
| """math.floor(a)""" |
| return a.numerator // a.denominator |
| |
| def __ceil__(a): |
| """math.ceil(a)""" |
| # The negations cleverly convince floordiv to return the ceiling. |
| return -(-a.numerator // a.denominator) |
| |
| def __round__(self, ndigits=None): |
| """round(self, ndigits) |
| |
| Rounds half toward even. |
| """ |
| if ndigits is None: |
| floor, remainder = divmod(self.numerator, self.denominator) |
| if remainder * 2 < self.denominator: |
| return floor |
| elif remainder * 2 > self.denominator: |
| return floor + 1 |
| # Deal with the half case: |
| elif floor % 2 == 0: |
| return floor |
| else: |
| return floor + 1 |
| shift = 10**abs(ndigits) |
| # See _operator_fallbacks.forward to check that the results of |
| # these operations will always be Fraction and therefore have |
| # round(). |
| if ndigits > 0: |
| return Fraction(round(self * shift), shift) |
| else: |
| return Fraction(round(self / shift) * shift) |
| |
| def __hash__(self): |
| """hash(self)""" |
| |
| # To make sure that the hash of a Fraction agrees with the hash |
| # of a numerically equal integer, float or Decimal instance, we |
| # follow the rules for numeric hashes outlined in the |
| # documentation. (See library docs, 'Built-in Types'). |
| |
| try: |
| dinv = pow(self._denominator, -1, _PyHASH_MODULUS) |
| except ValueError: |
| # ValueError means there is no modular inverse. |
| hash_ = _PyHASH_INF |
| else: |
| # The general algorithm now specifies that the absolute value of |
| # the hash is |
| # (|N| * dinv) % P |
| # where N is self._numerator and P is _PyHASH_MODULUS. That's |
| # optimized here in two ways: first, for a non-negative int i, |
| # hash(i) == i % P, but the int hash implementation doesn't need |
| # to divide, and is faster than doing % P explicitly. So we do |
| # hash(|N| * dinv) |
| # instead. Second, N is unbounded, so its product with dinv may |
| # be arbitrarily expensive to compute. The final answer is the |
| # same if we use the bounded |N| % P instead, which can again |
| # be done with an int hash() call. If 0 <= i < P, hash(i) == i, |
| # so this nested hash() call wastes a bit of time making a |
| # redundant copy when |N| < P, but can save an arbitrarily large |
| # amount of computation for large |N|. |
| hash_ = hash(hash(abs(self._numerator)) * dinv) |
| result = hash_ if self._numerator >= 0 else -hash_ |
| return -2 if result == -1 else result |
| |
| def __eq__(a, b): |
| """a == b""" |
| if type(b) is int: |
| return a._numerator == b and a._denominator == 1 |
| if isinstance(b, numbers.Rational): |
| return (a._numerator == b.numerator and |
| a._denominator == b.denominator) |
| if isinstance(b, numbers.Complex) and b.imag == 0: |
| b = b.real |
| if isinstance(b, float): |
| if math.isnan(b) or math.isinf(b): |
| # comparisons with an infinity or nan should behave in |
| # the same way for any finite a, so treat a as zero. |
| return 0.0 == b |
| else: |
| return a == a.from_float(b) |
| else: |
| # Since a doesn't know how to compare with b, let's give b |
| # a chance to compare itself with a. |
| return NotImplemented |
| |
| def _richcmp(self, other, op): |
| """Helper for comparison operators, for internal use only. |
| |
| Implement comparison between a Rational instance `self`, and |
| either another Rational instance or a float `other`. If |
| `other` is not a Rational instance or a float, return |
| NotImplemented. `op` should be one of the six standard |
| comparison operators. |
| |
| """ |
| # convert other to a Rational instance where reasonable. |
| if isinstance(other, numbers.Rational): |
| return op(self._numerator * other.denominator, |
| self._denominator * other.numerator) |
| if isinstance(other, float): |
| if math.isnan(other) or math.isinf(other): |
| return op(0.0, other) |
| else: |
| return op(self, self.from_float(other)) |
| else: |
| return NotImplemented |
| |
| def __lt__(a, b): |
| """a < b""" |
| return a._richcmp(b, operator.lt) |
| |
| def __gt__(a, b): |
| """a > b""" |
| return a._richcmp(b, operator.gt) |
| |
| def __le__(a, b): |
| """a <= b""" |
| return a._richcmp(b, operator.le) |
| |
| def __ge__(a, b): |
| """a >= b""" |
| return a._richcmp(b, operator.ge) |
| |
| def __bool__(a): |
| """a != 0""" |
| # bpo-39274: Use bool() because (a._numerator != 0) can return an |
| # object which is not a bool. |
| return bool(a._numerator) |
| |
| # support for pickling, copy, and deepcopy |
| |
| def __reduce__(self): |
| return (self.__class__, (str(self),)) |
| |
| def __copy__(self): |
| if type(self) == Fraction: |
| return self # I'm immutable; therefore I am my own clone |
| return self.__class__(self._numerator, self._denominator) |
| |
| def __deepcopy__(self, memo): |
| if type(self) == Fraction: |
| return self # My components are also immutable |
| return self.__class__(self._numerator, self._denominator) |