| /* regexpr.c |
| * |
| * Author: Tatu Ylonen <ylo@ngs.fi> |
| * |
| * Copyright (c) 1991 Tatu Ylonen, Espoo, Finland |
| * |
| * Permission to use, copy, modify, distribute, and sell this software |
| * and its documentation for any purpose is hereby granted without |
| * fee, provided that the above copyright notice appear in all copies. |
| * This software is provided "as is" without express or implied |
| * warranty. |
| * |
| * Created: Thu Sep 26 17:14:05 1991 ylo |
| * Last modified: Mon Nov 4 17:06:48 1991 ylo |
| * Ported to Think C: 19 Jan 1992 guido@cwi.nl |
| * |
| * This code draws many ideas from the regular expression packages by |
| * Henry Spencer of the University of Toronto and Richard Stallman of |
| * the Free Software Foundation. |
| * |
| * Emacs-specific code and syntax table code is almost directly borrowed |
| * from GNU regexp. |
| * |
| * Bugs fixed and lots of reorganization by Jeffrey C. Ollie, April |
| * 1997 Thanks for bug reports and ideas from Andrew Kuchling, Tim |
| * Peters, Guido van Rossum, Ka-Ping Yee, Sjoerd Mullender, and |
| * probably one or two others that I'm forgetting. |
| * |
| * $Id$ */ |
| |
| #include "Python.h" |
| #include "regexpr.h" |
| #include <assert.h> |
| |
| /* The original code blithely assumed that sizeof(short) == 2. Not |
| * always true. Original instances of "(short)x" were replaced by |
| * SHORT(x), where SHORT is #defined below. */ |
| |
| #define SHORT(x) ((x) & 0x8000 ? (x) - 0x10000 : (x)) |
| |
| /* The stack implementation is taken from an idea by Andrew Kuchling. |
| * It's a doubly linked list of arrays. The advantages of this over a |
| * simple linked list are that the number of mallocs required are |
| * reduced. It also makes it possible to statically allocate enough |
| * space so that small patterns don't ever need to call malloc. |
| * |
| * The advantages over a single array is that is periodically |
| * realloced when more space is needed is that we avoid ever copying |
| * the stack. */ |
| |
| /* item_t is the basic stack element. Defined as a union of |
| * structures so that both registers, failure points, and counters can |
| * be pushed/popped from the stack. There's nothing built into the |
| * item to keep track of whether a certain stack item is a register, a |
| * failure point, or a counter. */ |
| |
| typedef union item_t |
| { |
| struct |
| { |
| int num; |
| int level; |
| unsigned char *start; |
| unsigned char *end; |
| } reg; |
| struct |
| { |
| int count; |
| int level; |
| int phantom; |
| unsigned char *code; |
| unsigned char *text; |
| } fail; |
| struct |
| { |
| int num; |
| int level; |
| int count; |
| } cntr; |
| } item_t; |
| |
| #define STACK_PAGE_SIZE 256 |
| #define NUM_REGISTERS 256 |
| |
| /* A 'page' of stack items. */ |
| |
| typedef struct item_page_t |
| { |
| item_t items[STACK_PAGE_SIZE]; |
| struct item_page_t *prev; |
| struct item_page_t *next; |
| } item_page_t; |
| |
| |
| typedef struct match_state |
| { |
| /* The number of registers that have been pushed onto the stack |
| * since the last failure point. */ |
| |
| int count; |
| |
| /* Used to control when registers need to be pushed onto the |
| * stack. */ |
| |
| int level; |
| |
| /* The number of failure points on the stack. */ |
| |
| int point; |
| |
| /* Storage for the registers. Each register consists of two |
| * pointers to characters. So register N is represented as |
| * start[N] and end[N]. The pointers must be converted to |
| * offsets from the beginning of the string before returning the |
| * registers to the calling program. */ |
| |
| unsigned char *start[NUM_REGISTERS]; |
| unsigned char *end[NUM_REGISTERS]; |
| |
| /* Keeps track of whether a register has changed recently. */ |
| |
| int changed[NUM_REGISTERS]; |
| |
| /* Structure to encapsulate the stack. */ |
| struct |
| { |
| /* index into the curent page. If index == 0 and you need |
| * to pop an item, move to the previous page and set index |
| * = STACK_PAGE_SIZE - 1. Otherwise decrement index to |
| * push a page. If index == STACK_PAGE_SIZE and you need |
| * to push a page move to the next page and set index = |
| * 0. If there is no new next page, allocate a new page |
| * and link it in. Otherwise, increment index to push a |
| * page. */ |
| |
| int index; |
| item_page_t *current; /* Pointer to the current page. */ |
| item_page_t first; /* First page is statically allocated. */ |
| } stack; |
| } match_state; |
| |
| /* Initialize a state object */ |
| |
| /* #define NEW_STATE(state) \ */ |
| /* memset(&state, 0, (void *)(&state.stack) - (void *)(&state)); \ */ |
| /* state.stack.current = &state.stack.first; \ */ |
| /* state.stack.first.prev = NULL; \ */ |
| /* state.stack.first.next = NULL; \ */ |
| /* state.stack.index = 0; \ */ |
| /* state.level = 1 */ |
| |
| #define NEW_STATE(state, nregs) \ |
| { \ |
| int i; \ |
| for (i = 0; i < nregs; i++) \ |
| { \ |
| state.start[i] = NULL; \ |
| state.end[i] = NULL; \ |
| state.changed[i] = 0; \ |
| } \ |
| state.stack.current = &state.stack.first; \ |
| state.stack.first.prev = NULL; \ |
| state.stack.first.next = NULL; \ |
| state.stack.index = 0; \ |
| state.level = 1; \ |
| state.count = 0; \ |
| state.level = 0; \ |
| state.point = 0; \ |
| } |
| |
| /* Free any memory that might have been malloc'd */ |
| |
| #define FREE_STATE(state) \ |
| while(state.stack.first.next != NULL) \ |
| { \ |
| state.stack.current = state.stack.first.next; \ |
| state.stack.first.next = state.stack.current->next; \ |
| free(state.stack.current); \ |
| } |
| |
| /* Discard the top 'count' stack items. */ |
| |
| #define STACK_DISCARD(stack, count, on_error) \ |
| stack.index -= count; \ |
| while (stack.index < 0) \ |
| { \ |
| if (stack.current->prev == NULL) \ |
| on_error; \ |
| stack.current = stack.current->prev; \ |
| stack.index += STACK_PAGE_SIZE; \ |
| } |
| |
| /* Store a pointer to the previous item on the stack. Used to pop an |
| * item off of the stack. */ |
| |
| #define STACK_PREV(stack, top, on_error) \ |
| if (stack.index == 0) \ |
| { \ |
| if (stack.current->prev == NULL) \ |
| on_error; \ |
| stack.current = stack.current->prev; \ |
| stack.index = STACK_PAGE_SIZE - 1; \ |
| } \ |
| else \ |
| { \ |
| stack.index--; \ |
| } \ |
| top = &(stack.current->items[stack.index]) |
| |
| /* Store a pointer to the next item on the stack. Used to push an item |
| * on to the stack. */ |
| |
| #define STACK_NEXT(stack, top, on_error) \ |
| if (stack.index == STACK_PAGE_SIZE) \ |
| { \ |
| if (stack.current->next == NULL) \ |
| { \ |
| stack.current->next = (item_page_t *)malloc(sizeof(item_page_t)); \ |
| if (stack.current->next == NULL) \ |
| on_error; \ |
| stack.current->next->prev = stack.current; \ |
| stack.current->next->next = NULL; \ |
| } \ |
| stack.current = stack.current->next; \ |
| stack.index = 0; \ |
| } \ |
| top = &(stack.current->items[stack.index++]) |
| |
| /* Store a pointer to the item that is 'count' items back in the |
| * stack. STACK_BACK(stack, top, 1, on_error) is equivalent to |
| * STACK_TOP(stack, top, on_error). */ |
| |
| #define STACK_BACK(stack, top, count, on_error) \ |
| { \ |
| int index; \ |
| item_page_t *current; \ |
| current = stack.current; \ |
| index = stack.index - (count); \ |
| while (index < 0) \ |
| { \ |
| if (current->prev == NULL) \ |
| on_error; \ |
| current = current->prev; \ |
| index += STACK_PAGE_SIZE; \ |
| } \ |
| top = &(current->items[index]); \ |
| } |
| |
| /* Store a pointer to the top item on the stack. Execute the |
| * 'on_error' code if there are no items on the stack. */ |
| |
| #define STACK_TOP(stack, top, on_error) \ |
| if (stack.index == 0) \ |
| { \ |
| if (stack.current->prev == NULL) \ |
| on_error; \ |
| top = &(stack.current->prev->items[STACK_PAGE_SIZE - 1]); \ |
| } \ |
| else \ |
| { \ |
| top = &(stack.current->items[stack.index - 1]); \ |
| } |
| |
| /* Test to see if the stack is empty */ |
| |
| #define STACK_EMPTY(stack) ((stack.index == 0) && \ |
| (stack.current->prev == NULL)) |
| |
| /* Return the start of register 'reg' */ |
| |
| #define GET_REG_START(state, reg) (state.start[reg]) |
| |
| /* Return the end of register 'reg' */ |
| |
| #define GET_REG_END(state, reg) (state.end[reg]) |
| |
| /* Set the start of register 'reg'. If the state of the register needs |
| * saving, push it on the stack. */ |
| |
| #define SET_REG_START(state, reg, text, on_error) \ |
| if(state.changed[reg] < state.level) \ |
| { \ |
| item_t *item; \ |
| STACK_NEXT(state.stack, item, on_error); \ |
| item->reg.num = reg; \ |
| item->reg.start = state.start[reg]; \ |
| item->reg.end = state.end[reg]; \ |
| item->reg.level = state.changed[reg]; \ |
| state.changed[reg] = state.level; \ |
| state.count++; \ |
| } \ |
| state.start[reg] = text |
| |
| /* Set the end of register 'reg'. If the state of the register needs |
| * saving, push it on the stack. */ |
| |
| #define SET_REG_END(state, reg, text, on_error) \ |
| if(state.changed[reg] < state.level) \ |
| { \ |
| item_t *item; \ |
| STACK_NEXT(state.stack, item, on_error); \ |
| item->reg.num = reg; \ |
| item->reg.start = state.start[reg]; \ |
| item->reg.end = state.end[reg]; \ |
| item->reg.level = state.changed[reg]; \ |
| state.changed[reg] = state.level; \ |
| state.count++; \ |
| } \ |
| state.end[reg] = text |
| |
| #define PUSH_FAILURE(state, xcode, xtext, on_error) \ |
| { \ |
| item_t *item; \ |
| STACK_NEXT(state.stack, item, on_error); \ |
| item->fail.code = xcode; \ |
| item->fail.text = xtext; \ |
| item->fail.count = state.count; \ |
| item->fail.level = state.level; \ |
| item->fail.phantom = 0; \ |
| state.count = 0; \ |
| state.level++; \ |
| state.point++; \ |
| } |
| |
| /* Update the last failure point with a new position in the text. */ |
| |
| #define UPDATE_FAILURE(state, xtext, on_error) \ |
| { \ |
| item_t *item; \ |
| STACK_BACK(state.stack, item, state.count + 1, on_error); \ |
| if (!item->fail.phantom) \ |
| { \ |
| item_t *item2; \ |
| STACK_NEXT(state.stack, item2, on_error); \ |
| item2->fail.code = item->fail.code; \ |
| item2->fail.text = xtext; \ |
| item2->fail.count = state.count; \ |
| item2->fail.level = state.level; \ |
| item2->fail.phantom = 1; \ |
| state.count = 0; \ |
| state.level++; \ |
| state.point++; \ |
| } \ |
| else \ |
| { \ |
| STACK_DISCARD(state.stack, state.count, on_error); \ |
| STACK_TOP(state.stack, item, on_error); \ |
| item->fail.text = xtext; \ |
| state.count = 0; \ |
| state.level++; \ |
| } \ |
| } |
| |
| #define POP_FAILURE(state, xcode, xtext, on_empty, on_error) \ |
| { \ |
| item_t *item; \ |
| do \ |
| { \ |
| while(state.count > 0) \ |
| { \ |
| STACK_PREV(state.stack, item, on_error); \ |
| state.start[item->reg.num] = item->reg.start; \ |
| state.end[item->reg.num] = item->reg.end; \ |
| state.changed[item->reg.num] = item->reg.level; \ |
| state.count--; \ |
| } \ |
| STACK_PREV(state.stack, item, on_empty); \ |
| xcode = item->fail.code; \ |
| xtext = item->fail.text; \ |
| state.count = item->fail.count; \ |
| state.level = item->fail.level; \ |
| state.point--; \ |
| } \ |
| while (item->fail.text == NULL); \ |
| } |
| |
| enum regexp_compiled_ops /* opcodes for compiled regexp */ |
| { |
| Cend, /* end of pattern reached */ |
| Cbol, /* beginning of line */ |
| Ceol, /* end of line */ |
| Cset, /* character set. Followed by 32 bytes of set. */ |
| Cexact, /* followed by a byte to match */ |
| Canychar, /* matches any character except newline */ |
| Cstart_memory, /* set register start addr (followed by reg number) */ |
| Cend_memory, /* set register end addr (followed by reg number) */ |
| Cmatch_memory, /* match a duplicate of reg contents (regnum follows)*/ |
| Cjump, /* followed by two bytes (lsb,msb) of displacement. */ |
| Cstar_jump, /* will change to jump/update_failure_jump at runtime */ |
| Cfailure_jump, /* jump to addr on failure */ |
| Cupdate_failure_jump, /* update topmost failure point and jump */ |
| Cdummy_failure_jump, /* push a dummy failure point and jump */ |
| Cbegbuf, /* match at beginning of buffer */ |
| Cendbuf, /* match at end of buffer */ |
| Cwordbeg, /* match at beginning of word */ |
| Cwordend, /* match at end of word */ |
| Cwordbound, /* match if at word boundary */ |
| Cnotwordbound, /* match if not at word boundary */ |
| Csyntaxspec, /* matches syntax code (1 byte follows) */ |
| Cnotsyntaxspec, /* matches if syntax code does not match (1 byte follows) */ |
| Crepeat1 |
| }; |
| |
| enum regexp_syntax_op /* syntax codes for plain and quoted characters */ |
| { |
| Rend, /* special code for end of regexp */ |
| Rnormal, /* normal character */ |
| Ranychar, /* any character except newline */ |
| Rquote, /* the quote character */ |
| Rbol, /* match beginning of line */ |
| Reol, /* match end of line */ |
| Roptional, /* match preceding expression optionally */ |
| Rstar, /* match preceding expr zero or more times */ |
| Rplus, /* match preceding expr one or more times */ |
| Ror, /* match either of alternatives */ |
| Ropenpar, /* opening parenthesis */ |
| Rclosepar, /* closing parenthesis */ |
| Rmemory, /* match memory register */ |
| Rextended_memory, /* \vnn to match registers 10-99 */ |
| Ropenset, /* open set. Internal syntax hard-coded below. */ |
| /* the following are gnu extensions to "normal" regexp syntax */ |
| Rbegbuf, /* beginning of buffer */ |
| Rendbuf, /* end of buffer */ |
| Rwordchar, /* word character */ |
| Rnotwordchar, /* not word character */ |
| Rwordbeg, /* beginning of word */ |
| Rwordend, /* end of word */ |
| Rwordbound, /* word bound */ |
| Rnotwordbound, /* not word bound */ |
| Rnum_ops |
| }; |
| |
| static int re_compile_initialized = 0; |
| static int regexp_syntax = 0; |
| int re_syntax = 0; /* Exported copy of regexp_syntax */ |
| static unsigned char regexp_plain_ops[256]; |
| static unsigned char regexp_quoted_ops[256]; |
| static unsigned char regexp_precedences[Rnum_ops]; |
| static int regexp_context_indep_ops; |
| static int regexp_ansi_sequences; |
| |
| #define NUM_LEVELS 5 /* number of precedence levels in use */ |
| #define MAX_NESTING 100 /* max nesting level of operators */ |
| |
| #define SYNTAX(ch) re_syntax_table[(unsigned char)(ch)] |
| |
| unsigned char re_syntax_table[256]; |
| |
| void re_compile_initialize() |
| { |
| int a; |
| |
| static int syntax_table_inited = 0; |
| |
| if (!syntax_table_inited) |
| { |
| syntax_table_inited = 1; |
| memset(re_syntax_table, 0, 256); |
| for (a = 'a'; a <= 'z'; a++) |
| re_syntax_table[a] = Sword; |
| for (a = 'A'; a <= 'Z'; a++) |
| re_syntax_table[a] = Sword; |
| for (a = '0'; a <= '9'; a++) |
| re_syntax_table[a] = Sword | Sdigit | Shexdigit; |
| for (a = '0'; a <= '7'; a++) |
| re_syntax_table[a] |= Soctaldigit; |
| for (a = 'A'; a <= 'F'; a++) |
| re_syntax_table[a] |= Shexdigit; |
| for (a = 'a'; a <= 'f'; a++) |
| re_syntax_table[a] |= Shexdigit; |
| re_syntax_table['_'] = Sword; |
| for (a = 9; a <= 13; a++) |
| re_syntax_table[a] = Swhitespace; |
| re_syntax_table[' '] = Swhitespace; |
| } |
| re_compile_initialized = 1; |
| for (a = 0; a < 256; a++) |
| { |
| regexp_plain_ops[a] = Rnormal; |
| regexp_quoted_ops[a] = Rnormal; |
| } |
| for (a = '0'; a <= '9'; a++) |
| regexp_quoted_ops[a] = Rmemory; |
| regexp_plain_ops['\134'] = Rquote; |
| if (regexp_syntax & RE_NO_BK_PARENS) |
| { |
| regexp_plain_ops['('] = Ropenpar; |
| regexp_plain_ops[')'] = Rclosepar; |
| } |
| else |
| { |
| regexp_quoted_ops['('] = Ropenpar; |
| regexp_quoted_ops[')'] = Rclosepar; |
| } |
| if (regexp_syntax & RE_NO_BK_VBAR) |
| regexp_plain_ops['\174'] = Ror; |
| else |
| regexp_quoted_ops['\174'] = Ror; |
| regexp_plain_ops['*'] = Rstar; |
| if (regexp_syntax & RE_BK_PLUS_QM) |
| { |
| regexp_quoted_ops['+'] = Rplus; |
| regexp_quoted_ops['?'] = Roptional; |
| } |
| else |
| { |
| regexp_plain_ops['+'] = Rplus; |
| regexp_plain_ops['?'] = Roptional; |
| } |
| if (regexp_syntax & RE_NEWLINE_OR) |
| regexp_plain_ops['\n'] = Ror; |
| regexp_plain_ops['\133'] = Ropenset; |
| regexp_plain_ops['\136'] = Rbol; |
| regexp_plain_ops['$'] = Reol; |
| regexp_plain_ops['.'] = Ranychar; |
| if (!(regexp_syntax & RE_NO_GNU_EXTENSIONS)) |
| { |
| regexp_quoted_ops['w'] = Rwordchar; |
| regexp_quoted_ops['W'] = Rnotwordchar; |
| regexp_quoted_ops['<'] = Rwordbeg; |
| regexp_quoted_ops['>'] = Rwordend; |
| regexp_quoted_ops['b'] = Rwordbound; |
| regexp_quoted_ops['B'] = Rnotwordbound; |
| regexp_quoted_ops['`'] = Rbegbuf; |
| regexp_quoted_ops['\''] = Rendbuf; |
| } |
| if (regexp_syntax & RE_ANSI_HEX) |
| regexp_quoted_ops['v'] = Rextended_memory; |
| for (a = 0; a < Rnum_ops; a++) |
| regexp_precedences[a] = 4; |
| if (regexp_syntax & RE_TIGHT_VBAR) |
| { |
| regexp_precedences[Ror] = 3; |
| regexp_precedences[Rbol] = 2; |
| regexp_precedences[Reol] = 2; |
| } |
| else |
| { |
| regexp_precedences[Ror] = 2; |
| regexp_precedences[Rbol] = 3; |
| regexp_precedences[Reol] = 3; |
| } |
| regexp_precedences[Rclosepar] = 1; |
| regexp_precedences[Rend] = 0; |
| regexp_context_indep_ops = (regexp_syntax & RE_CONTEXT_INDEP_OPS) != 0; |
| regexp_ansi_sequences = (regexp_syntax & RE_ANSI_HEX) != 0; |
| } |
| |
| int re_set_syntax(syntax) |
| int syntax; |
| { |
| int ret; |
| |
| ret = regexp_syntax; |
| regexp_syntax = syntax; |
| re_syntax = syntax; /* Exported copy */ |
| re_compile_initialize(); |
| return ret; |
| } |
| |
| static int hex_char_to_decimal(ch) |
| int ch; |
| { |
| if (ch >= '0' && ch <= '9') |
| return ch - '0'; |
| if (ch >= 'a' && ch <= 'f') |
| return ch - 'a' + 10; |
| if (ch >= 'A' && ch <= 'F') |
| return ch - 'A' + 10; |
| return 16; |
| } |
| |
| static void re_compile_fastmap_aux(code, |
| pos, |
| visited, |
| can_be_null, |
| fastmap) |
| unsigned char *code; |
| int pos; |
| unsigned char *visited; |
| unsigned char *can_be_null; |
| unsigned char *fastmap; |
| { |
| int a; |
| int b; |
| int syntaxcode; |
| |
| if (visited[pos]) |
| return; /* we have already been here */ |
| visited[pos] = 1; |
| for (;;) |
| switch (code[pos++]) { |
| case Cend: |
| { |
| *can_be_null = 1; |
| return; |
| } |
| case Cbol: |
| case Cbegbuf: |
| case Cendbuf: |
| case Cwordbeg: |
| case Cwordend: |
| case Cwordbound: |
| case Cnotwordbound: |
| { |
| for (a = 0; a < 256; a++) |
| fastmap[a] = 1; |
| break; |
| } |
| case Csyntaxspec: |
| { |
| syntaxcode = code[pos++]; |
| for (a = 0; a < 256; a++) |
| if (SYNTAX(a) & syntaxcode) |
| fastmap[a] = 1; |
| return; |
| } |
| case Cnotsyntaxspec: |
| { |
| syntaxcode = code[pos++]; |
| for (a = 0; a < 256; a++) |
| if (!(SYNTAX(a) & syntaxcode) ) |
| fastmap[a] = 1; |
| return; |
| } |
| case Ceol: |
| { |
| fastmap['\n'] = 1; |
| if (*can_be_null == 0) |
| *can_be_null = 2; /* can match null, but only at end of buffer*/ |
| return; |
| } |
| case Cset: |
| { |
| for (a = 0; a < 256/8; a++) |
| if (code[pos + a] != 0) |
| for (b = 0; b < 8; b++) |
| if (code[pos + a] & (1 << b)) |
| fastmap[(a << 3) + b] = 1; |
| pos += 256/8; |
| return; |
| } |
| case Cexact: |
| { |
| fastmap[(unsigned char)code[pos]] = 1; |
| return; |
| } |
| case Canychar: |
| { |
| for (a = 0; a < 256; a++) |
| if (a != '\n') |
| fastmap[a] = 1; |
| return; |
| } |
| case Cstart_memory: |
| case Cend_memory: |
| { |
| pos++; |
| break; |
| } |
| case Cmatch_memory: |
| { |
| for (a = 0; a < 256; a++) |
| fastmap[a] = 1; |
| *can_be_null = 1; |
| return; |
| } |
| case Cjump: |
| case Cdummy_failure_jump: |
| case Cupdate_failure_jump: |
| case Cstar_jump: |
| { |
| a = (unsigned char)code[pos++]; |
| a |= (unsigned char)code[pos++] << 8; |
| pos += (int)SHORT(a); |
| if (visited[pos]) |
| { |
| /* argh... the regexp contains empty loops. This is not |
| good, as this may cause a failure stack overflow when |
| matching. Oh well. */ |
| /* this path leads nowhere; pursue other paths. */ |
| return; |
| } |
| visited[pos] = 1; |
| break; |
| } |
| case Cfailure_jump: |
| { |
| a = (unsigned char)code[pos++]; |
| a |= (unsigned char)code[pos++] << 8; |
| a = pos + (int)SHORT(a); |
| re_compile_fastmap_aux(code, a, visited, can_be_null, fastmap); |
| break; |
| } |
| case Crepeat1: |
| { |
| pos += 2; |
| break; |
| } |
| default: |
| { |
| PyErr_SetString(PyExc_SystemError, "Unknown regex opcode: memory corrupted?"); |
| return; |
| /*NOTREACHED*/ |
| } |
| } |
| } |
| |
| static int re_do_compile_fastmap(buffer, |
| used, |
| pos, |
| can_be_null, |
| fastmap) |
| unsigned char *buffer; |
| int used; |
| int pos; |
| unsigned char *can_be_null; |
| unsigned char *fastmap; |
| { |
| unsigned char small_visited[512], *visited; |
| |
| if (used <= sizeof(small_visited)) |
| visited = small_visited; |
| else |
| { |
| visited = malloc(used); |
| if (!visited) |
| return 0; |
| } |
| *can_be_null = 0; |
| memset(fastmap, 0, 256); |
| memset(visited, 0, used); |
| re_compile_fastmap_aux(buffer, pos, visited, can_be_null, fastmap); |
| if (visited != small_visited) |
| free(visited); |
| return 1; |
| } |
| |
| void re_compile_fastmap(bufp) |
| regexp_t bufp; |
| { |
| if (!bufp->fastmap || bufp->fastmap_accurate) |
| return; |
| assert(bufp->used > 0); |
| if (!re_do_compile_fastmap(bufp->buffer, |
| bufp->used, |
| 0, |
| &bufp->can_be_null, |
| bufp->fastmap)) |
| return; |
| if (PyErr_Occurred()) return; |
| if (bufp->buffer[0] == Cbol) |
| bufp->anchor = 1; /* begline */ |
| else |
| if (bufp->buffer[0] == Cbegbuf) |
| bufp->anchor = 2; /* begbuf */ |
| else |
| bufp->anchor = 0; /* none */ |
| bufp->fastmap_accurate = 1; |
| } |
| |
| /* |
| * star is coded as: |
| * 1: failure_jump 2 |
| * ... code for operand of star |
| * star_jump 1 |
| * 2: ... code after star |
| * |
| * We change the star_jump to update_failure_jump if we can determine |
| * that it is safe to do so; otherwise we change it to an ordinary |
| * jump. |
| * |
| * plus is coded as |
| * |
| * jump 2 |
| * 1: failure_jump 3 |
| * 2: ... code for operand of plus |
| * star_jump 1 |
| * 3: ... code after plus |
| * |
| * For star_jump considerations this is processed identically to star. |
| * |
| */ |
| |
| static int re_optimize_star_jump(bufp, code) |
| regexp_t bufp; |
| unsigned char *code; |
| { |
| unsigned char map[256]; |
| unsigned char can_be_null; |
| unsigned char *p1; |
| unsigned char *p2; |
| unsigned char ch; |
| int a; |
| int b; |
| int num_instructions = 0; |
| |
| a = (unsigned char)*code++; |
| a |= (unsigned char)*code++ << 8; |
| a = (int)SHORT(a); |
| |
| p1 = code + a + 3; /* skip the failure_jump */ |
| /* Check that the jump is within the pattern */ |
| if (p1<bufp->buffer || bufp->buffer+bufp->used<p1) |
| { |
| PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (failure_jump opt)"); |
| return 0; |
| } |
| |
| assert(p1[-3] == Cfailure_jump); |
| p2 = code; |
| /* p1 points inside loop, p2 points to after loop */ |
| if (!re_do_compile_fastmap(bufp->buffer, bufp->used, |
| p2 - bufp->buffer, &can_be_null, map)) |
| goto make_normal_jump; |
| |
| /* If we might introduce a new update point inside the |
| * loop, we can't optimize because then update_jump would |
| * update a wrong failure point. Thus we have to be |
| * quite careful here. |
| */ |
| |
| /* loop until we find something that consumes a character */ |
| loop_p1: |
| num_instructions++; |
| switch (*p1++) |
| { |
| case Cbol: |
| case Ceol: |
| case Cbegbuf: |
| case Cendbuf: |
| case Cwordbeg: |
| case Cwordend: |
| case Cwordbound: |
| case Cnotwordbound: |
| { |
| goto loop_p1; |
| } |
| case Cstart_memory: |
| case Cend_memory: |
| { |
| p1++; |
| goto loop_p1; |
| } |
| case Cexact: |
| { |
| ch = (unsigned char)*p1++; |
| if (map[(int)ch]) |
| goto make_normal_jump; |
| break; |
| } |
| case Canychar: |
| { |
| for (b = 0; b < 256; b++) |
| if (b != '\n' && map[b]) |
| goto make_normal_jump; |
| break; |
| } |
| case Cset: |
| { |
| for (b = 0; b < 256; b++) |
| if ((p1[b >> 3] & (1 << (b & 7))) && map[b]) |
| goto make_normal_jump; |
| p1 += 256/8; |
| break; |
| } |
| default: |
| { |
| goto make_normal_jump; |
| } |
| } |
| /* now we know that we can't backtrack. */ |
| while (p1 != p2 - 3) |
| { |
| num_instructions++; |
| switch (*p1++) |
| { |
| case Cend: |
| { |
| return 0; |
| } |
| case Cbol: |
| case Ceol: |
| case Canychar: |
| case Cbegbuf: |
| case Cendbuf: |
| case Cwordbeg: |
| case Cwordend: |
| case Cwordbound: |
| case Cnotwordbound: |
| { |
| break; |
| } |
| case Cset: |
| { |
| p1 += 256/8; |
| break; |
| } |
| case Cexact: |
| case Cstart_memory: |
| case Cend_memory: |
| case Cmatch_memory: |
| case Csyntaxspec: |
| case Cnotsyntaxspec: |
| { |
| p1++; |
| break; |
| } |
| case Cjump: |
| case Cstar_jump: |
| case Cfailure_jump: |
| case Cupdate_failure_jump: |
| case Cdummy_failure_jump: |
| { |
| goto make_normal_jump; |
| } |
| default: |
| { |
| return 0; |
| } |
| } |
| } |
| |
| /* make_update_jump: */ |
| code -= 3; |
| a += 3; /* jump to after the Cfailure_jump */ |
| code[0] = Cupdate_failure_jump; |
| code[1] = a & 0xff; |
| code[2] = a >> 8; |
| if (num_instructions > 1) |
| return 1; |
| assert(num_instructions == 1); |
| /* if the only instruction matches a single character, we can do |
| * better */ |
| p1 = code + 3 + a; /* start of sole instruction */ |
| if (*p1 == Cset || *p1 == Cexact || *p1 == Canychar || |
| *p1 == Csyntaxspec || *p1 == Cnotsyntaxspec) |
| code[0] = Crepeat1; |
| return 1; |
| |
| make_normal_jump: |
| code -= 3; |
| *code = Cjump; |
| return 1; |
| } |
| |
| static int re_optimize(bufp) |
| regexp_t bufp; |
| { |
| unsigned char *code; |
| |
| code = bufp->buffer; |
| |
| while(1) |
| { |
| switch (*code++) |
| { |
| case Cend: |
| { |
| return 1; |
| } |
| case Canychar: |
| case Cbol: |
| case Ceol: |
| case Cbegbuf: |
| case Cendbuf: |
| case Cwordbeg: |
| case Cwordend: |
| case Cwordbound: |
| case Cnotwordbound: |
| { |
| break; |
| } |
| case Cset: |
| { |
| code += 256/8; |
| break; |
| } |
| case Cexact: |
| case Cstart_memory: |
| case Cend_memory: |
| case Cmatch_memory: |
| case Csyntaxspec: |
| case Cnotsyntaxspec: |
| { |
| code++; |
| break; |
| } |
| case Cstar_jump: |
| { |
| if (!re_optimize_star_jump(bufp, code)) |
| { |
| return 0; |
| } |
| /* fall through */ |
| } |
| case Cupdate_failure_jump: |
| case Cjump: |
| case Cdummy_failure_jump: |
| case Cfailure_jump: |
| case Crepeat1: |
| { |
| code += 2; |
| break; |
| } |
| default: |
| { |
| return 0; |
| } |
| } |
| } |
| } |
| |
| #define NEXTCHAR(var) \ |
| { \ |
| if (pos >= size) \ |
| goto ends_prematurely; \ |
| (var) = regex[pos]; \ |
| pos++; \ |
| } |
| |
| #define ALLOC(amount) \ |
| { \ |
| if (pattern_offset+(amount) > alloc) \ |
| { \ |
| alloc += 256 + (amount); \ |
| pattern = realloc(pattern, alloc); \ |
| if (!pattern) \ |
| goto out_of_memory; \ |
| } \ |
| } |
| |
| #define STORE(ch) pattern[pattern_offset++] = (ch) |
| |
| #define CURRENT_LEVEL_START (starts[starts_base + current_level]) |
| |
| #define SET_LEVEL_START starts[starts_base + current_level] = pattern_offset |
| |
| #define PUSH_LEVEL_STARTS \ |
| if (starts_base < (MAX_NESTING-1)*NUM_LEVELS) \ |
| starts_base += NUM_LEVELS; \ |
| else \ |
| goto too_complex \ |
| |
| #define POP_LEVEL_STARTS starts_base -= NUM_LEVELS |
| |
| #define PUT_ADDR(offset,addr) \ |
| { \ |
| int disp = (addr) - (offset) - 2; \ |
| pattern[(offset)] = disp & 0xff; \ |
| pattern[(offset)+1] = (disp>>8) & 0xff; \ |
| } |
| |
| #define INSERT_JUMP(pos,type,addr) \ |
| { \ |
| int a, p = (pos), t = (type), ad = (addr); \ |
| for (a = pattern_offset - 1; a >= p; a--) \ |
| pattern[a + 3] = pattern[a]; \ |
| pattern[p] = t; \ |
| PUT_ADDR(p+1,ad); \ |
| pattern_offset += 3; \ |
| } |
| |
| #define SETBIT(buf,offset,bit) (buf)[(offset)+(bit)/8] |= (1<<((bit) & 7)) |
| |
| #define SET_FIELDS \ |
| { \ |
| bufp->allocated = alloc; \ |
| bufp->buffer = pattern; \ |
| bufp->used = pattern_offset; \ |
| } |
| |
| #define GETHEX(var) \ |
| { \ |
| unsigned char gethex_ch, gethex_value; \ |
| NEXTCHAR(gethex_ch); \ |
| gethex_value = hex_char_to_decimal(gethex_ch); \ |
| if (gethex_value == 16) \ |
| goto hex_error; \ |
| NEXTCHAR(gethex_ch); \ |
| gethex_ch = hex_char_to_decimal(gethex_ch); \ |
| if (gethex_ch == 16) \ |
| goto hex_error; \ |
| (var) = gethex_value * 16 + gethex_ch; \ |
| } |
| |
| #define ANSI_TRANSLATE(ch) \ |
| { \ |
| switch (ch) \ |
| { \ |
| case 'a': \ |
| case 'A': \ |
| { \ |
| ch = 7; /* audible bell */ \ |
| break; \ |
| } \ |
| case 'b': \ |
| case 'B': \ |
| { \ |
| ch = 8; /* backspace */ \ |
| break; \ |
| } \ |
| case 'f': \ |
| case 'F': \ |
| { \ |
| ch = 12; /* form feed */ \ |
| break; \ |
| } \ |
| case 'n': \ |
| case 'N': \ |
| { \ |
| ch = 10; /* line feed */ \ |
| break; \ |
| } \ |
| case 'r': \ |
| case 'R': \ |
| { \ |
| ch = 13; /* carriage return */ \ |
| break; \ |
| } \ |
| case 't': \ |
| case 'T': \ |
| { \ |
| ch = 9; /* tab */ \ |
| break; \ |
| } \ |
| case 'v': \ |
| case 'V': \ |
| { \ |
| ch = 11; /* vertical tab */ \ |
| break; \ |
| } \ |
| case 'x': /* hex code */ \ |
| case 'X': \ |
| { \ |
| GETHEX(ch); \ |
| break; \ |
| } \ |
| default: \ |
| { \ |
| /* other characters passed through */ \ |
| if (translate) \ |
| ch = translate[(unsigned char)ch]; \ |
| break; \ |
| } \ |
| } \ |
| } |
| |
| char *re_compile_pattern(regex, size, bufp) |
| unsigned char *regex; |
| int size; |
| regexp_t bufp; |
| { |
| int a; |
| int pos; |
| int op; |
| int current_level; |
| int level; |
| int opcode; |
| int pattern_offset = 0, alloc; |
| int starts[NUM_LEVELS * MAX_NESTING]; |
| int starts_base; |
| int future_jumps[MAX_NESTING]; |
| int num_jumps; |
| unsigned char ch = '\0'; |
| unsigned char *pattern; |
| unsigned char *translate; |
| int next_register; |
| int paren_depth; |
| int num_open_registers; |
| int open_registers[RE_NREGS]; |
| int beginning_context; |
| |
| if (!re_compile_initialized) |
| re_compile_initialize(); |
| bufp->used = 0; |
| bufp->fastmap_accurate = 0; |
| bufp->uses_registers = 1; |
| bufp->num_registers = 1; |
| translate = bufp->translate; |
| pattern = bufp->buffer; |
| alloc = bufp->allocated; |
| if (alloc == 0 || pattern == NULL) |
| { |
| alloc = 256; |
| pattern = malloc(alloc); |
| if (!pattern) |
| goto out_of_memory; |
| } |
| pattern_offset = 0; |
| starts_base = 0; |
| num_jumps = 0; |
| current_level = 0; |
| SET_LEVEL_START; |
| num_open_registers = 0; |
| next_register = 1; |
| paren_depth = 0; |
| beginning_context = 1; |
| op = -1; |
| /* we use Rend dummy to ensure that pending jumps are updated |
| (due to low priority of Rend) before exiting the loop. */ |
| pos = 0; |
| while (op != Rend) |
| { |
| if (pos >= size) |
| op = Rend; |
| else |
| { |
| NEXTCHAR(ch); |
| if (translate) |
| ch = translate[(unsigned char)ch]; |
| op = regexp_plain_ops[(unsigned char)ch]; |
| if (op == Rquote) |
| { |
| NEXTCHAR(ch); |
| op = regexp_quoted_ops[(unsigned char)ch]; |
| if (op == Rnormal && regexp_ansi_sequences) |
| ANSI_TRANSLATE(ch); |
| } |
| } |
| level = regexp_precedences[op]; |
| /* printf("ch='%c' op=%d level=%d current_level=%d |
| curlevstart=%d\n", ch, op, level, current_level, |
| CURRENT_LEVEL_START); */ |
| if (level > current_level) |
| { |
| for (current_level++; current_level < level; current_level++) |
| SET_LEVEL_START; |
| SET_LEVEL_START; |
| } |
| else |
| if (level < current_level) |
| { |
| current_level = level; |
| for (;num_jumps > 0 && |
| future_jumps[num_jumps-1] >= CURRENT_LEVEL_START; |
| num_jumps--) |
| PUT_ADDR(future_jumps[num_jumps-1], pattern_offset); |
| } |
| switch (op) |
| { |
| case Rend: |
| { |
| break; |
| } |
| case Rnormal: |
| { |
| normal_char: |
| opcode = Cexact; |
| store_opcode_and_arg: /* opcode & ch must be set */ |
| SET_LEVEL_START; |
| ALLOC(2); |
| STORE(opcode); |
| STORE(ch); |
| break; |
| } |
| case Ranychar: |
| { |
| opcode = Canychar; |
| store_opcode: |
| SET_LEVEL_START; |
| ALLOC(1); |
| STORE(opcode); |
| break; |
| } |
| case Rquote: |
| { |
| abort(); |
| /*NOTREACHED*/ |
| } |
| case Rbol: |
| { |
| if (!beginning_context) { |
| if (regexp_context_indep_ops) |
| goto op_error; |
| else |
| goto normal_char; |
| } |
| opcode = Cbol; |
| goto store_opcode; |
| } |
| case Reol: |
| { |
| if (!((pos >= size) || |
| ((regexp_syntax & RE_NO_BK_VBAR) ? |
| (regex[pos] == '\174') : |
| (pos+1 < size && regex[pos] == '\134' && |
| regex[pos+1] == '\174')) || |
| ((regexp_syntax & RE_NO_BK_PARENS)? |
| (regex[pos] == ')'): |
| (pos+1 < size && regex[pos] == '\134' && |
| regex[pos+1] == ')')))) { |
| if (regexp_context_indep_ops) |
| goto op_error; |
| else |
| goto normal_char; |
| } |
| opcode = Ceol; |
| goto store_opcode; |
| /* NOTREACHED */ |
| break; |
| } |
| case Roptional: |
| { |
| if (beginning_context) { |
| if (regexp_context_indep_ops) |
| goto op_error; |
| else |
| goto normal_char; |
| } |
| if (CURRENT_LEVEL_START == pattern_offset) |
| break; /* ignore empty patterns for ? */ |
| ALLOC(3); |
| INSERT_JUMP(CURRENT_LEVEL_START, Cfailure_jump, |
| pattern_offset + 3); |
| break; |
| } |
| case Rstar: |
| case Rplus: |
| { |
| if (beginning_context) { |
| if (regexp_context_indep_ops) |
| goto op_error; |
| else |
| goto normal_char; |
| } |
| if (CURRENT_LEVEL_START == pattern_offset) |
| break; /* ignore empty patterns for + and * */ |
| ALLOC(9); |
| INSERT_JUMP(CURRENT_LEVEL_START, Cfailure_jump, |
| pattern_offset + 6); |
| INSERT_JUMP(pattern_offset, Cstar_jump, CURRENT_LEVEL_START); |
| if (op == Rplus) /* jump over initial failure_jump */ |
| INSERT_JUMP(CURRENT_LEVEL_START, Cdummy_failure_jump, |
| CURRENT_LEVEL_START + 6); |
| break; |
| } |
| case Ror: |
| { |
| ALLOC(6); |
| INSERT_JUMP(CURRENT_LEVEL_START, Cfailure_jump, |
| pattern_offset + 6); |
| if (num_jumps >= MAX_NESTING) |
| goto too_complex; |
| STORE(Cjump); |
| future_jumps[num_jumps++] = pattern_offset; |
| STORE(0); |
| STORE(0); |
| SET_LEVEL_START; |
| break; |
| } |
| case Ropenpar: |
| { |
| SET_LEVEL_START; |
| if (next_register < RE_NREGS) |
| { |
| bufp->uses_registers = 1; |
| ALLOC(2); |
| STORE(Cstart_memory); |
| STORE(next_register); |
| open_registers[num_open_registers++] = next_register; |
| bufp->num_registers++; |
| next_register++; |
| } |
| paren_depth++; |
| PUSH_LEVEL_STARTS; |
| current_level = 0; |
| SET_LEVEL_START; |
| break; |
| } |
| case Rclosepar: |
| { |
| if (paren_depth <= 0) |
| goto parenthesis_error; |
| POP_LEVEL_STARTS; |
| current_level = regexp_precedences[Ropenpar]; |
| paren_depth--; |
| if (paren_depth < num_open_registers) |
| { |
| bufp->uses_registers = 1; |
| ALLOC(2); |
| STORE(Cend_memory); |
| num_open_registers--; |
| STORE(open_registers[num_open_registers]); |
| } |
| break; |
| } |
| case Rmemory: |
| { |
| if (ch == '0') |
| goto bad_match_register; |
| assert(ch >= '0' && ch <= '9'); |
| bufp->uses_registers = 1; |
| opcode = Cmatch_memory; |
| ch -= '0'; |
| goto store_opcode_and_arg; |
| } |
| case Rextended_memory: |
| { |
| NEXTCHAR(ch); |
| if (ch < '0' || ch > '9') |
| goto bad_match_register; |
| NEXTCHAR(a); |
| if (a < '0' || a > '9') |
| goto bad_match_register; |
| ch = 10 * (a - '0') + ch - '0'; |
| if (ch <= 0 || ch >= RE_NREGS) |
| goto bad_match_register; |
| bufp->uses_registers = 1; |
| opcode = Cmatch_memory; |
| goto store_opcode_and_arg; |
| } |
| case Ropenset: |
| { |
| int complement; |
| int prev; |
| int offset; |
| int range; |
| int firstchar; |
| |
| SET_LEVEL_START; |
| ALLOC(1+256/8); |
| STORE(Cset); |
| offset = pattern_offset; |
| for (a = 0; a < 256/8; a++) |
| STORE(0); |
| NEXTCHAR(ch); |
| if (translate) |
| ch = translate[(unsigned char)ch]; |
| if (ch == '\136') |
| { |
| complement = 1; |
| NEXTCHAR(ch); |
| if (translate) |
| ch = translate[(unsigned char)ch]; |
| } |
| else |
| complement = 0; |
| prev = -1; |
| range = 0; |
| firstchar = 1; |
| while (ch != '\135' || firstchar) |
| { |
| firstchar = 0; |
| if (regexp_ansi_sequences && ch == '\134') |
| { |
| NEXTCHAR(ch); |
| ANSI_TRANSLATE(ch); |
| } |
| if (range) |
| { |
| for (a = prev; a <= (int)ch; a++) |
| SETBIT(pattern, offset, a); |
| prev = -1; |
| range = 0; |
| } |
| else |
| if (prev != -1 && ch == '-') |
| range = 1; |
| else |
| { |
| SETBIT(pattern, offset, ch); |
| prev = ch; |
| } |
| NEXTCHAR(ch); |
| if (translate) |
| ch = translate[(unsigned char)ch]; |
| } |
| if (range) |
| SETBIT(pattern, offset, '-'); |
| if (complement) |
| { |
| for (a = 0; a < 256/8; a++) |
| pattern[offset+a] ^= 0xff; |
| } |
| break; |
| } |
| case Rbegbuf: |
| { |
| opcode = Cbegbuf; |
| goto store_opcode; |
| } |
| case Rendbuf: |
| { |
| opcode = Cendbuf; |
| goto store_opcode; |
| } |
| case Rwordchar: |
| { |
| opcode = Csyntaxspec; |
| ch = Sword; |
| goto store_opcode_and_arg; |
| } |
| case Rnotwordchar: |
| { |
| opcode = Cnotsyntaxspec; |
| ch = Sword; |
| goto store_opcode_and_arg; |
| } |
| case Rwordbeg: |
| { |
| opcode = Cwordbeg; |
| goto store_opcode; |
| } |
| case Rwordend: |
| { |
| opcode = Cwordend; |
| goto store_opcode; |
| } |
| case Rwordbound: |
| { |
| opcode = Cwordbound; |
| goto store_opcode; |
| } |
| case Rnotwordbound: |
| { |
| opcode = Cnotwordbound; |
| goto store_opcode; |
| } |
| default: |
| { |
| abort(); |
| } |
| } |
| beginning_context = (op == Ropenpar || op == Ror); |
| } |
| if (starts_base != 0) |
| goto parenthesis_error; |
| assert(num_jumps == 0); |
| ALLOC(1); |
| STORE(Cend); |
| SET_FIELDS; |
| if(!re_optimize(bufp)) |
| return "Optimization error"; |
| return NULL; |
| |
| op_error: |
| SET_FIELDS; |
| return "Badly placed special character"; |
| |
| bad_match_register: |
| SET_FIELDS; |
| return "Bad match register number"; |
| |
| hex_error: |
| SET_FIELDS; |
| return "Bad hexadecimal number"; |
| |
| parenthesis_error: |
| SET_FIELDS; |
| return "Badly placed parenthesis"; |
| |
| out_of_memory: |
| SET_FIELDS; |
| return "Out of memory"; |
| |
| ends_prematurely: |
| SET_FIELDS; |
| return "Regular expression ends prematurely"; |
| |
| too_complex: |
| SET_FIELDS; |
| return "Regular expression too complex"; |
| } |
| |
| #undef CHARAT |
| #undef NEXTCHAR |
| #undef GETHEX |
| #undef ALLOC |
| #undef STORE |
| #undef CURRENT_LEVEL_START |
| #undef SET_LEVEL_START |
| #undef PUSH_LEVEL_STARTS |
| #undef POP_LEVEL_STARTS |
| #undef PUT_ADDR |
| #undef INSERT_JUMP |
| #undef SETBIT |
| #undef SET_FIELDS |
| |
| #define PREFETCH if (text == textend) goto fail |
| |
| #define NEXTCHAR(var) \ |
| PREFETCH; \ |
| var = (unsigned char)*text++; \ |
| if (translate) \ |
| var = translate[var] |
| |
| int re_match(bufp, |
| string, |
| size, |
| pos, |
| old_regs) |
| regexp_t bufp; |
| unsigned char *string; |
| int size; |
| int pos; |
| regexp_registers_t old_regs; |
| { |
| unsigned char *code; |
| unsigned char *translate; |
| unsigned char *text; |
| unsigned char *textstart; |
| unsigned char *textend; |
| int a; |
| int b; |
| int ch; |
| int reg; |
| int match_end; |
| unsigned char *regstart; |
| unsigned char *regend; |
| int regsize; |
| match_state state; |
| |
| assert(pos >= 0 && size >= 0); |
| assert(pos <= size); |
| |
| text = string + pos; |
| textstart = string; |
| textend = string + size; |
| |
| code = bufp->buffer; |
| |
| translate = bufp->translate; |
| |
| NEW_STATE(state, bufp->num_registers); |
| |
| continue_matching: |
| switch (*code++) |
| { |
| case Cend: |
| { |
| match_end = text - textstart; |
| if (old_regs) |
| { |
| old_regs->start[0] = pos; |
| old_regs->end[0] = match_end; |
| if (!bufp->uses_registers) |
| { |
| for (a = 1; a < RE_NREGS; a++) |
| { |
| old_regs->start[a] = -1; |
| old_regs->end[a] = -1; |
| } |
| } |
| else |
| { |
| for (a = 1; a < bufp->num_registers; a++) |
| { |
| if ((GET_REG_START(state, a) == NULL) || |
| (GET_REG_END(state, a) == NULL)) |
| { |
| old_regs->start[a] = -1; |
| old_regs->end[a] = -1; |
| continue; |
| } |
| old_regs->start[a] = GET_REG_START(state, a) - textstart; |
| old_regs->end[a] = GET_REG_END(state, a) - textstart; |
| } |
| for (; a < RE_NREGS; a++) |
| { |
| old_regs->start[a] = -1; |
| old_regs->end[a] = -1; |
| } |
| } |
| } |
| FREE_STATE(state); |
| return match_end - pos; |
| } |
| case Cbol: |
| { |
| if (text == textstart || text[-1] == '\n') |
| goto continue_matching; |
| goto fail; |
| } |
| case Ceol: |
| { |
| if (text == textend || *text == '\n') |
| goto continue_matching; |
| goto fail; |
| } |
| case Cset: |
| { |
| NEXTCHAR(ch); |
| if (code[ch/8] & (1<<(ch & 7))) |
| { |
| code += 256/8; |
| goto continue_matching; |
| } |
| goto fail; |
| } |
| case Cexact: |
| { |
| NEXTCHAR(ch); |
| if (ch != (unsigned char)*code++) |
| goto fail; |
| goto continue_matching; |
| } |
| case Canychar: |
| { |
| NEXTCHAR(ch); |
| if (ch == '\n') |
| goto fail; |
| goto continue_matching; |
| } |
| case Cstart_memory: |
| { |
| reg = *code++; |
| SET_REG_START(state, reg, text, goto error); |
| goto continue_matching; |
| } |
| case Cend_memory: |
| { |
| reg = *code++; |
| SET_REG_END(state, reg, text, goto error); |
| goto continue_matching; |
| } |
| case Cmatch_memory: |
| { |
| reg = *code++; |
| regstart = GET_REG_START(state, reg); |
| regend = GET_REG_END(state, reg); |
| if ((regstart == NULL) || (regend == NULL)) |
| goto fail; /* or should we just match nothing? */ |
| regsize = regend - regstart; |
| |
| if (regsize > (textend - text)) |
| goto fail; |
| if(translate) |
| { |
| for (; regstart < regend; regstart++, text++) |
| if (translate[*regstart] != translate[*text]) |
| goto fail; |
| } |
| else |
| for (; regstart < regend; regstart++, text++) |
| if (*regstart != *text) |
| goto fail; |
| goto continue_matching; |
| } |
| case Cupdate_failure_jump: |
| { |
| UPDATE_FAILURE(state, text, goto error); |
| /* fall to next case */ |
| } |
| /* treat Cstar_jump just like Cjump if it hasn't been optimized */ |
| case Cstar_jump: |
| case Cjump: |
| { |
| a = (unsigned char)*code++; |
| a |= (unsigned char)*code++ << 8; |
| code += (int)SHORT(a); |
| if (code<bufp->buffer || bufp->buffer+bufp->used<code) { |
| PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Cjump)"); |
| FREE_STATE(state); |
| return -2; |
| } |
| goto continue_matching; |
| } |
| case Cdummy_failure_jump: |
| { |
| unsigned char *failuredest; |
| |
| a = (unsigned char)*code++; |
| a |= (unsigned char)*code++ << 8; |
| a = (int)SHORT(a); |
| assert(*code == Cfailure_jump); |
| b = (unsigned char)code[1]; |
| b |= (unsigned char)code[2] << 8; |
| failuredest = code + (int)SHORT(b) + 3; |
| if (failuredest<bufp->buffer || bufp->buffer+bufp->used < failuredest) { |
| PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Cdummy_failure_jump failuredest)"); |
| FREE_STATE(state); |
| return -2; |
| } |
| PUSH_FAILURE(state, failuredest, NULL, goto error); |
| code += a; |
| if (code<bufp->buffer || bufp->buffer+bufp->used < code) { |
| PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Cdummy_failure_jump code)"); |
| FREE_STATE(state); |
| return -2; |
| } |
| goto continue_matching; |
| } |
| case Cfailure_jump: |
| { |
| a = (unsigned char)*code++; |
| a |= (unsigned char)*code++ << 8; |
| a = (int)SHORT(a); |
| if (code+a<bufp->buffer || bufp->buffer+bufp->used < code+a) { |
| PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Cfailure_jump)"); |
| FREE_STATE(state); |
| return -2; |
| } |
| PUSH_FAILURE(state, code + a, text, goto error); |
| goto continue_matching; |
| } |
| case Crepeat1: |
| { |
| unsigned char *pinst; |
| a = (unsigned char)*code++; |
| a |= (unsigned char)*code++ << 8; |
| a = (int)SHORT(a); |
| pinst = code + a; |
| if (pinst<bufp->buffer || bufp->buffer+bufp->used<pinst) { |
| PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Crepeat1)"); |
| FREE_STATE(state); |
| return -2; |
| } |
| /* pinst is sole instruction in loop, and it matches a |
| * single character. Since Crepeat1 was originally a |
| * Cupdate_failure_jump, we also know that backtracking |
| * is useless: so long as the single-character |
| * expression matches, it must be used. Also, in the |
| * case of +, we've already matched one character, so + |
| * can't fail: nothing here can cause a failure. */ |
| switch (*pinst++) |
| { |
| case Cset: |
| { |
| if (translate) |
| { |
| while (text < textend) |
| { |
| ch = translate[(unsigned char)*text]; |
| if (pinst[ch/8] & (1<<(ch & 7))) |
| text++; |
| else |
| break; |
| } |
| } |
| else |
| { |
| while (text < textend) |
| { |
| ch = (unsigned char)*text; |
| if (pinst[ch/8] & (1<<(ch & 7))) |
| text++; |
| else |
| break; |
| } |
| } |
| break; |
| } |
| case Cexact: |
| { |
| ch = (unsigned char)*pinst; |
| if (translate) |
| { |
| while (text < textend && |
| translate[(unsigned char)*text] == ch) |
| text++; |
| } |
| else |
| { |
| while (text < textend && (unsigned char)*text == ch) |
| text++; |
| } |
| break; |
| } |
| case Canychar: |
| { |
| while (text < textend && (unsigned char)*text != '\n') |
| text++; |
| break; |
| } |
| case Csyntaxspec: |
| { |
| a = (unsigned char)*pinst; |
| if (translate) |
| { |
| while (text < textend && |
| (SYNTAX(translate[*text]) & a) ) |
| text++; |
| } |
| else |
| { |
| while (text < textend && (SYNTAX(*text) & a) ) |
| text++; |
| } |
| break; |
| } |
| case Cnotsyntaxspec: |
| { |
| a = (unsigned char)*pinst; |
| if (translate) |
| { |
| while (text < textend && |
| !(SYNTAX(translate[*text]) & a) ) |
| text++; |
| } |
| else |
| { |
| while (text < textend && !(SYNTAX(*text) & a) ) |
| text++; |
| } |
| break; |
| } |
| default: |
| { |
| FREE_STATE(state); |
| PyErr_SetString(PyExc_SystemError, "Unknown regex opcode: memory corrupted?"); |
| return -2; |
| /*NOTREACHED*/ |
| } |
| } |
| /* due to the funky way + and * are compiled, the top |
| * failure- stack entry at this point is actually a |
| * success entry -- update it & pop it */ |
| UPDATE_FAILURE(state, text, goto error); |
| goto fail; /* i.e., succeed <wink/sigh> */ |
| } |
| case Cbegbuf: |
| { |
| if (text == textstart) |
| goto continue_matching; |
| goto fail; |
| } |
| case Cendbuf: |
| { |
| if (text == textend) |
| goto continue_matching; |
| goto fail; |
| } |
| case Cwordbeg: |
| { |
| if (text == textend) |
| goto fail; |
| if (!(SYNTAX(*text) & Sword)) |
| goto fail; |
| if (text == textstart) |
| goto continue_matching; |
| if (!(SYNTAX(text[-1]) & Sword)) |
| goto continue_matching; |
| goto fail; |
| } |
| case Cwordend: |
| { |
| if (text == textstart) |
| goto fail; |
| if (!(SYNTAX(text[-1]) & Sword)) |
| goto fail; |
| if (text == textend) |
| goto continue_matching; |
| if (!(SYNTAX(*text) & Sword)) |
| goto continue_matching; |
| goto fail; |
| } |
| case Cwordbound: |
| { |
| /* Note: as in gnu regexp, this also matches at the |
| * beginning and end of buffer. */ |
| |
| if (text == textstart || text == textend) |
| goto continue_matching; |
| if ((SYNTAX(text[-1]) & Sword) ^ (SYNTAX(*text) & Sword)) |
| goto continue_matching; |
| goto fail; |
| } |
| case Cnotwordbound: |
| { |
| /* Note: as in gnu regexp, this never matches at the |
| * beginning and end of buffer. */ |
| if (text == textstart || text == textend) |
| goto fail; |
| if (!((SYNTAX(text[-1]) & Sword) ^ (SYNTAX(*text) & Sword))) |
| goto continue_matching; |
| goto fail; |
| } |
| case Csyntaxspec: |
| { |
| NEXTCHAR(ch); |
| if (!(SYNTAX(ch) & (unsigned char)*code++)) |
| goto fail; |
| goto continue_matching; |
| } |
| case Cnotsyntaxspec: |
| { |
| NEXTCHAR(ch); |
| if (SYNTAX(ch) & (unsigned char)*code++) |
| goto fail; |
| goto continue_matching; |
| } |
| default: |
| { |
| FREE_STATE(state); |
| PyErr_SetString(PyExc_SystemError, "Unknown regex opcode: memory corrupted?"); |
| return -2; |
| /*NOTREACHED*/ |
| } |
| } |
| |
| |
| |
| #if 0 /* This line is never reached --Guido */ |
| abort(); |
| #endif |
| /* |
| *NOTREACHED |
| */ |
| |
| /* Using "break;" in the above switch statement is equivalent to "goto fail;" */ |
| fail: |
| POP_FAILURE(state, code, text, goto done_matching, goto error); |
| goto continue_matching; |
| |
| done_matching: |
| /* if(translated != NULL) */ |
| /* free(translated); */ |
| FREE_STATE(state); |
| return -1; |
| |
| error: |
| /* if (translated != NULL) */ |
| /* free(translated); */ |
| FREE_STATE(state); |
| return -2; |
| } |
| |
| |
| #undef PREFETCH |
| #undef NEXTCHAR |
| |
| int re_search(bufp, |
| string, |
| size, |
| pos, |
| range, |
| regs) |
| regexp_t bufp; |
| unsigned char *string; |
| int size; |
| int pos; |
| int range; |
| regexp_registers_t regs; |
| { |
| unsigned char *fastmap; |
| unsigned char *translate; |
| unsigned char *text; |
| unsigned char *partstart; |
| unsigned char *partend; |
| int dir; |
| int ret; |
| unsigned char anchor; |
| |
| assert(size >= 0 && pos >= 0); |
| assert(pos + range >= 0 && pos + range <= size); /* Bugfix by ylo */ |
| |
| fastmap = bufp->fastmap; |
| translate = bufp->translate; |
| if (fastmap && !bufp->fastmap_accurate) { |
| re_compile_fastmap(bufp); |
| if (PyErr_Occurred()) return -2; |
| } |
| |
| anchor = bufp->anchor; |
| if (bufp->can_be_null == 1) /* can_be_null == 2: can match null at eob */ |
| fastmap = NULL; |
| |
| if (range < 0) |
| { |
| dir = -1; |
| range = -range; |
| } |
| else |
| dir = 1; |
| |
| if (anchor == 2) { |
| if (pos != 0) |
| return -1; |
| else |
| range = 0; |
| } |
| |
| for (; range >= 0; range--, pos += dir) |
| { |
| if (fastmap) |
| { |
| if (dir == 1) |
| { /* searching forwards */ |
| |
| text = string + pos; |
| partend = string + size; |
| partstart = text; |
| if (translate) |
| while (text != partend && |
| !fastmap[(unsigned char) translate[(unsigned char)*text]]) |
| text++; |
| else |
| while (text != partend && !fastmap[(unsigned char)*text]) |
| text++; |
| pos += text - partstart; |
| range -= text - partstart; |
| if (pos == size && bufp->can_be_null == 0) |
| return -1; |
| } |
| else |
| { /* searching backwards */ |
| text = string + pos; |
| partstart = string + pos - range; |
| partend = text; |
| if (translate) |
| while (text != partstart && |
| !fastmap[(unsigned char) |
| translate[(unsigned char)*text]]) |
| text--; |
| else |
| while (text != partstart && |
| !fastmap[(unsigned char)*text]) |
| text--; |
| pos -= partend - text; |
| range -= partend - text; |
| } |
| } |
| if (anchor == 1) |
| { /* anchored to begline */ |
| if (pos > 0 && (string[pos - 1] != '\n')) |
| continue; |
| } |
| assert(pos >= 0 && pos <= size); |
| ret = re_match(bufp, string, size, pos, regs); |
| if (ret >= 0) |
| return pos; |
| if (ret == -2) |
| return -2; |
| } |
| return -1; |
| } |
| |
| /* |
| ** Local Variables: |
| ** mode: c |
| ** c-file-style: "python" |
| ** End: |
| */ |