| /*********************************************************** |
| Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, |
| The Netherlands. |
| |
| All Rights Reserved |
| |
| Permission to use, copy, modify, and distribute this software and its |
| documentation for any purpose and without fee is hereby granted, |
| provided that the above copyright notice appear in all copies and that |
| both that copyright notice and this permission notice appear in |
| supporting documentation, and that the names of Stichting Mathematisch |
| Centrum or CWI or Corporation for National Research Initiatives or |
| CNRI not be used in advertising or publicity pertaining to |
| distribution of the software without specific, written prior |
| permission. |
| |
| While CWI is the initial source for this software, a modified version |
| is made available by the Corporation for National Research Initiatives |
| (CNRI) at the Internet address ftp://ftp.python.org. |
| |
| STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH |
| REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF |
| MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH |
| CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL |
| DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR |
| PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER |
| TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR |
| PERFORMANCE OF THIS SOFTWARE. |
| |
| ******************************************************************/ |
| |
| /* Integer object implementation */ |
| |
| #include "allobjects.h" |
| #include "modsupport.h" |
| |
| #ifdef HAVE_LIMITS_H |
| #include <limits.h> |
| #endif |
| |
| #ifndef LONG_MAX |
| #define LONG_MAX 0X7FFFFFFFL |
| #endif |
| |
| #ifndef LONG_MIN |
| #define LONG_MIN (-LONG_MAX-1) |
| #endif |
| |
| #ifndef CHAR_BIT |
| #define CHAR_BIT 8 |
| #endif |
| |
| #ifndef LONG_BIT |
| #define LONG_BIT (CHAR_BIT * sizeof(long)) |
| #endif |
| |
| long |
| getmaxint() |
| { |
| return LONG_MAX; /* To initialize sys.maxint */ |
| } |
| |
| /* Standard Booleans */ |
| |
| intobject FalseObject = { |
| OB_HEAD_INIT(&Inttype) |
| 0 |
| }; |
| |
| intobject TrueObject = { |
| OB_HEAD_INIT(&Inttype) |
| 1 |
| }; |
| |
| static object * |
| err_ovf(msg) |
| char *msg; |
| { |
| err_setstr(OverflowError, msg); |
| return NULL; |
| } |
| |
| /* Integers are quite normal objects, to make object handling uniform. |
| (Using odd pointers to represent integers would save much space |
| but require extra checks for this special case throughout the code.) |
| Since, a typical Python program spends much of its time allocating |
| and deallocating integers, these operations should be very fast. |
| Therefore we use a dedicated allocation scheme with a much lower |
| overhead (in space and time) than straight malloc(): a simple |
| dedicated free list, filled when necessary with memory from malloc(). |
| */ |
| |
| #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */ |
| #define N_INTOBJECTS (BLOCK_SIZE / sizeof(intobject)) |
| |
| static intobject * |
| fill_free_list() |
| { |
| intobject *p, *q; |
| p = NEW(intobject, N_INTOBJECTS); |
| if (p == NULL) |
| return (intobject *)err_nomem(); |
| q = p + N_INTOBJECTS; |
| while (--q > p) |
| *(intobject **)q = q-1; |
| *(intobject **)q = NULL; |
| return p + N_INTOBJECTS - 1; |
| } |
| |
| static intobject *free_list = NULL; |
| #ifndef NSMALLPOSINTS |
| #define NSMALLPOSINTS 100 |
| #endif |
| #ifndef NSMALLNEGINTS |
| #define NSMALLNEGINTS 1 |
| #endif |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
| /* References to small integers are saved in this array so that they |
| can be shared. |
| The integers that are saved are those in the range |
| -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive). |
| */ |
| static intobject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS]; |
| #endif |
| #ifdef COUNT_ALLOCS |
| int quick_int_allocs, quick_neg_int_allocs; |
| #endif |
| |
| object * |
| newintobject(ival) |
| long ival; |
| { |
| register intobject *v; |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
| if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS && |
| (v = small_ints[ival + NSMALLNEGINTS]) != NULL) { |
| INCREF(v); |
| #ifdef COUNT_ALLOCS |
| if (ival >= 0) |
| quick_int_allocs++; |
| else |
| quick_neg_int_allocs++; |
| #endif |
| return (object *) v; |
| } |
| #endif |
| if (free_list == NULL) { |
| if ((free_list = fill_free_list()) == NULL) |
| return NULL; |
| } |
| v = free_list; |
| free_list = *(intobject **)free_list; |
| v->ob_type = &Inttype; |
| v->ob_ival = ival; |
| NEWREF(v); |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
| if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { |
| /* save this one for a following allocation */ |
| INCREF(v); |
| small_ints[ival + NSMALLNEGINTS] = v; |
| } |
| #endif |
| return (object *) v; |
| } |
| |
| static void |
| int_dealloc(v) |
| intobject *v; |
| { |
| *(intobject **)v = free_list; |
| free_list = v; |
| } |
| |
| long |
| getintvalue(op) |
| register object *op; |
| { |
| number_methods *nb; |
| intobject *io; |
| long val; |
| |
| if (op && is_intobject(op)) |
| return GETINTVALUE((intobject*) op); |
| |
| if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || |
| nb->nb_int == NULL) { |
| err_badarg(); |
| return -1; |
| } |
| |
| io = (intobject*) (*nb->nb_int) (op); |
| if (io == NULL) |
| return -1; |
| if (!is_intobject(io)) { |
| err_setstr(TypeError, "nb_int should return int object"); |
| return -1; |
| } |
| |
| val = GETINTVALUE(io); |
| DECREF(io); |
| |
| return val; |
| } |
| |
| /* Methods */ |
| |
| /* ARGSUSED */ |
| static int |
| int_print(v, fp, flags) |
| intobject *v; |
| FILE *fp; |
| int flags; /* Not used but required by interface */ |
| { |
| fprintf(fp, "%ld", v->ob_ival); |
| return 0; |
| } |
| |
| static object * |
| int_repr(v) |
| intobject *v; |
| { |
| char buf[20]; |
| sprintf(buf, "%ld", v->ob_ival); |
| return newstringobject(buf); |
| } |
| |
| static int |
| int_compare(v, w) |
| intobject *v, *w; |
| { |
| register long i = v->ob_ival; |
| register long j = w->ob_ival; |
| return (i < j) ? -1 : (i > j) ? 1 : 0; |
| } |
| |
| static long |
| int_hash(v) |
| intobject *v; |
| { |
| /* XXX If this is changed, you also need to change the way |
| Python's long, float and complex types are hashed. */ |
| long x = v -> ob_ival; |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| |
| static object * |
| int_add(v, w) |
| intobject *v; |
| intobject *w; |
| { |
| register long a, b, x; |
| a = v->ob_ival; |
| b = w->ob_ival; |
| x = a + b; |
| if ((x^a) < 0 && (x^b) < 0) |
| return err_ovf("integer addition"); |
| return newintobject(x); |
| } |
| |
| static object * |
| int_sub(v, w) |
| intobject *v; |
| intobject *w; |
| { |
| register long a, b, x; |
| a = v->ob_ival; |
| b = w->ob_ival; |
| x = a - b; |
| if ((x^a) < 0 && (x^~b) < 0) |
| return err_ovf("integer subtraction"); |
| return newintobject(x); |
| } |
| |
| /* |
| Integer overflow checking used to be done using a double, but on 64 |
| bit machines (where both long and double are 64 bit) this fails |
| because the double doesn't have enouvg precision. John Tromp suggests |
| the following algorithm: |
| |
| Suppose again we normalize a and b to be nonnegative. |
| Let ah and al (bh and bl) be the high and low 32 bits of a (b, resp.). |
| Now we test ah and bh against zero and get essentially 3 possible outcomes. |
| |
| 1) both ah and bh > 0 : then report overflow |
| |
| 2) both ah and bh = 0 : then compute a*b and report overflow if it comes out |
| negative |
| |
| 3) ah > 0 and bh = 0 : compute ah*bl and report overflow if it's >= 2^31 |
| compute al*bl and report overflow if it's negative |
| add (ah*bl)<<32 to al*bl and report overflow if |
| it's negative |
| |
| In case of no overflow the result is then negated if necessary. |
| |
| The majority of cases will be 2), in which case this method is the same as |
| what I suggested before. If multiplication is expensive enough, then the |
| other method is faster on case 3), but also more work to program, so I |
| guess the above is the preferred solution. |
| |
| */ |
| |
| static object * |
| int_mul(v, w) |
| intobject *v; |
| intobject *w; |
| { |
| long a, b, ah, bh, x, y; |
| int s = 1; |
| |
| a = v->ob_ival; |
| b = w->ob_ival; |
| ah = a >> (LONG_BIT/2); |
| bh = b >> (LONG_BIT/2); |
| |
| /* Quick test for common case: two small positive ints */ |
| |
| if (ah == 0 && bh == 0) { |
| x = a*b; |
| if (x < 0) |
| goto bad; |
| return newintobject(x); |
| } |
| |
| /* Arrange that a >= b >= 0 */ |
| |
| if (a < 0) { |
| a = -a; |
| if (a < 0) { |
| /* Largest negative */ |
| if (b == 0 || b == 1) { |
| x = a*b; |
| goto ok; |
| } |
| else |
| goto bad; |
| } |
| s = -s; |
| ah = a >> (LONG_BIT/2); |
| } |
| if (b < 0) { |
| b = -b; |
| if (b < 0) { |
| /* Largest negative */ |
| if (a == 0 || (a == 1 && s == 1)) { |
| x = a*b; |
| goto ok; |
| } |
| else |
| goto bad; |
| } |
| s = -s; |
| bh = b >> (LONG_BIT/2); |
| } |
| |
| /* 1) both ah and bh > 0 : then report overflow */ |
| |
| if (ah != 0 && bh != 0) |
| goto bad; |
| |
| /* 2) both ah and bh = 0 : then compute a*b and report |
| overflow if it comes out negative */ |
| |
| if (ah == 0 && bh == 0) { |
| x = a*b; |
| if (x < 0) |
| goto bad; |
| return newintobject(x*s); |
| } |
| |
| if (a < b) { |
| /* Swap */ |
| x = a; |
| a = b; |
| b = x; |
| ah = bh; |
| /* bh not used beyond this point */ |
| } |
| |
| /* 3) ah > 0 and bh = 0 : compute ah*bl and report overflow if |
| it's >= 2^31 |
| compute al*bl and report overflow if it's negative |
| add (ah*bl)<<32 to al*bl and report overflow if |
| it's negative |
| (NB b == bl in this case, and we make a = al) */ |
| |
| y = ah*b; |
| if (y >= (1L << (LONG_BIT/2 - 1))) |
| goto bad; |
| a &= (1L << (LONG_BIT/2)) - 1; |
| x = a*b; |
| if (x < 0) |
| goto bad; |
| x += y << (LONG_BIT/2); |
| if (x < 0) |
| goto bad; |
| ok: |
| return newintobject(x * s); |
| |
| bad: |
| return err_ovf("integer multiplication"); |
| } |
| |
| static int |
| i_divmod(x, y, p_xdivy, p_xmody) |
| register intobject *x, *y; |
| long *p_xdivy, *p_xmody; |
| { |
| long xi = x->ob_ival; |
| long yi = y->ob_ival; |
| long xdivy, xmody; |
| |
| if (yi == 0) { |
| err_setstr(ZeroDivisionError, "integer division or modulo"); |
| return -1; |
| } |
| if (yi < 0) { |
| if (xi < 0) |
| xdivy = -xi / -yi; |
| else |
| xdivy = - (xi / -yi); |
| } |
| else { |
| if (xi < 0) |
| xdivy = - (-xi / yi); |
| else |
| xdivy = xi / yi; |
| } |
| xmody = xi - xdivy*yi; |
| if ((xmody < 0 && yi > 0) || (xmody > 0 && yi < 0)) { |
| xmody += yi; |
| xdivy -= 1; |
| } |
| *p_xdivy = xdivy; |
| *p_xmody = xmody; |
| return 0; |
| } |
| |
| static object * |
| int_div(x, y) |
| intobject *x; |
| intobject *y; |
| { |
| long d, m; |
| if (i_divmod(x, y, &d, &m) < 0) |
| return NULL; |
| return newintobject(d); |
| } |
| |
| static object * |
| int_mod(x, y) |
| intobject *x; |
| intobject *y; |
| { |
| long d, m; |
| if (i_divmod(x, y, &d, &m) < 0) |
| return NULL; |
| return newintobject(m); |
| } |
| |
| static object * |
| int_divmod(x, y) |
| intobject *x; |
| intobject *y; |
| { |
| long d, m; |
| if (i_divmod(x, y, &d, &m) < 0) |
| return NULL; |
| return mkvalue("(ll)", d, m); |
| } |
| |
| static object * |
| int_pow(v, w, z) |
| intobject *v; |
| intobject *w; |
| intobject *z; |
| { |
| #if 1 |
| register long iv, iw, iz=0, ix, temp, prev; |
| iv = v->ob_ival; |
| iw = w->ob_ival; |
| if (iw < 0) { |
| err_setstr(ValueError, "integer to the negative power"); |
| return NULL; |
| } |
| if ((object *)z != None) { |
| iz = z->ob_ival; |
| if (iz == 0) { |
| err_setstr(ValueError, "pow(x, y, z) with z==0"); |
| return NULL; |
| } |
| } |
| /* |
| * XXX: The original exponentiation code stopped looping |
| * when temp hit zero; this code will continue onwards |
| * unnecessarily, but at least it won't cause any errors. |
| * Hopefully the speed improvement from the fast exponentiation |
| * will compensate for the slight inefficiency. |
| * XXX: Better handling of overflows is desperately needed. |
| */ |
| temp = iv; |
| ix = 1; |
| while (iw > 0) { |
| prev = ix; /* Save value for overflow check */ |
| if (iw & 1) { |
| ix = ix*temp; |
| if (temp == 0) |
| break; /* Avoid ix / 0 */ |
| if (ix / temp != prev) |
| return err_ovf("integer pow()"); |
| } |
| iw >>= 1; /* Shift exponent down by 1 bit */ |
| if (iw==0) break; |
| prev = temp; |
| temp *= temp; /* Square the value of temp */ |
| if (prev!=0 && temp/prev!=prev) |
| return err_ovf("integer pow()"); |
| if (iz) { |
| /* If we did a multiplication, perform a modulo */ |
| ix = ix % iz; |
| temp = temp % iz; |
| } |
| } |
| if (iz) { |
| object *t1, *t2; |
| long int div, mod; |
| t1=newintobject(ix); |
| t2=newintobject(iz); |
| if (t1==NULL || t2==NULL || |
| i_divmod((intobject *)t1, (intobject *)t2, &div, &mod)<0) { |
| XDECREF(t1); |
| XDECREF(t2); |
| return(NULL); |
| } |
| DECREF(t1); |
| DECREF(t2); |
| ix=mod; |
| } |
| return newintobject(ix); |
| #else |
| register long iv, iw, ix; |
| iv = v->ob_ival; |
| iw = w->ob_ival; |
| if (iw < 0) { |
| err_setstr(ValueError, "integer to the negative power"); |
| return NULL; |
| } |
| if ((object *)z != None) { |
| err_setstr(TypeError, "pow(int, int, int) not yet supported"); |
| return NULL; |
| } |
| ix = 1; |
| while (--iw >= 0) { |
| long prev = ix; |
| ix = ix * iv; |
| if (iv == 0) |
| break; /* 0 to some power -- avoid ix / 0 */ |
| if (ix / iv != prev) |
| return err_ovf("integer pow()"); |
| } |
| return newintobject(ix); |
| #endif |
| } |
| |
| static object * |
| int_neg(v) |
| intobject *v; |
| { |
| register long a, x; |
| a = v->ob_ival; |
| x = -a; |
| if (a < 0 && x < 0) |
| return err_ovf("integer negation"); |
| return newintobject(x); |
| } |
| |
| static object * |
| int_pos(v) |
| intobject *v; |
| { |
| INCREF(v); |
| return (object *)v; |
| } |
| |
| static object * |
| int_abs(v) |
| intobject *v; |
| { |
| if (v->ob_ival >= 0) |
| return int_pos(v); |
| else |
| return int_neg(v); |
| } |
| |
| static int |
| int_nonzero(v) |
| intobject *v; |
| { |
| return v->ob_ival != 0; |
| } |
| |
| static object * |
| int_invert(v) |
| intobject *v; |
| { |
| return newintobject(~v->ob_ival); |
| } |
| |
| static object * |
| int_lshift(v, w) |
| intobject *v; |
| intobject *w; |
| { |
| register long a, b; |
| a = v->ob_ival; |
| b = w->ob_ival; |
| if (b < 0) { |
| err_setstr(ValueError, "negative shift count"); |
| return NULL; |
| } |
| if (a == 0 || b == 0) { |
| INCREF(v); |
| return (object *) v; |
| } |
| if (b >= LONG_BIT) { |
| return newintobject(0L); |
| } |
| a = (unsigned long)a << b; |
| return newintobject(a); |
| } |
| |
| static object * |
| int_rshift(v, w) |
| intobject *v; |
| intobject *w; |
| { |
| register long a, b; |
| a = v->ob_ival; |
| b = w->ob_ival; |
| if (b < 0) { |
| err_setstr(ValueError, "negative shift count"); |
| return NULL; |
| } |
| if (a == 0 || b == 0) { |
| INCREF(v); |
| return (object *) v; |
| } |
| if (b >= LONG_BIT) { |
| if (a < 0) |
| a = -1; |
| else |
| a = 0; |
| } |
| else { |
| if (a < 0) |
| a = ~( ~(unsigned long)a >> b ); |
| else |
| a = (unsigned long)a >> b; |
| } |
| return newintobject(a); |
| } |
| |
| static object * |
| int_and(v, w) |
| intobject *v; |
| intobject *w; |
| { |
| register long a, b; |
| a = v->ob_ival; |
| b = w->ob_ival; |
| return newintobject(a & b); |
| } |
| |
| static object * |
| int_xor(v, w) |
| intobject *v; |
| intobject *w; |
| { |
| register long a, b; |
| a = v->ob_ival; |
| b = w->ob_ival; |
| return newintobject(a ^ b); |
| } |
| |
| static object * |
| int_or(v, w) |
| intobject *v; |
| intobject *w; |
| { |
| register long a, b; |
| a = v->ob_ival; |
| b = w->ob_ival; |
| return newintobject(a | b); |
| } |
| |
| static object * |
| int_int(v) |
| intobject *v; |
| { |
| INCREF(v); |
| return (object *)v; |
| } |
| |
| static object * |
| int_long(v) |
| intobject *v; |
| { |
| return newlongobject((v -> ob_ival)); |
| } |
| |
| static object * |
| int_float(v) |
| intobject *v; |
| { |
| return newfloatobject((double)(v -> ob_ival)); |
| } |
| |
| static object * |
| int_oct(v) |
| intobject *v; |
| { |
| char buf[100]; |
| long x = v -> ob_ival; |
| if (x == 0) |
| strcpy(buf, "0"); |
| else |
| sprintf(buf, "0%lo", x); |
| return newstringobject(buf); |
| } |
| |
| static object * |
| int_hex(v) |
| intobject *v; |
| { |
| char buf[100]; |
| long x = v -> ob_ival; |
| sprintf(buf, "0x%lx", x); |
| return newstringobject(buf); |
| } |
| |
| static number_methods int_as_number = { |
| (binaryfunc)int_add, /*nb_add*/ |
| (binaryfunc)int_sub, /*nb_subtract*/ |
| (binaryfunc)int_mul, /*nb_multiply*/ |
| (binaryfunc)int_div, /*nb_divide*/ |
| (binaryfunc)int_mod, /*nb_remainder*/ |
| (binaryfunc)int_divmod, /*nb_divmod*/ |
| (ternaryfunc)int_pow, /*nb_power*/ |
| (unaryfunc)int_neg, /*nb_negative*/ |
| (unaryfunc)int_pos, /*nb_positive*/ |
| (unaryfunc)int_abs, /*nb_absolute*/ |
| (inquiry)int_nonzero, /*nb_nonzero*/ |
| (unaryfunc)int_invert, /*nb_invert*/ |
| (binaryfunc)int_lshift, /*nb_lshift*/ |
| (binaryfunc)int_rshift, /*nb_rshift*/ |
| (binaryfunc)int_and, /*nb_and*/ |
| (binaryfunc)int_xor, /*nb_xor*/ |
| (binaryfunc)int_or, /*nb_or*/ |
| 0, /*nb_coerce*/ |
| (unaryfunc)int_int, /*nb_int*/ |
| (unaryfunc)int_long, /*nb_long*/ |
| (unaryfunc)int_float, /*nb_float*/ |
| (unaryfunc)int_oct, /*nb_oct*/ |
| (unaryfunc)int_hex, /*nb_hex*/ |
| }; |
| |
| typeobject Inttype = { |
| OB_HEAD_INIT(&Typetype) |
| 0, |
| "int", |
| sizeof(intobject), |
| 0, |
| (destructor)int_dealloc, /*tp_dealloc*/ |
| (printfunc)int_print, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| (cmpfunc)int_compare, /*tp_compare*/ |
| (reprfunc)int_repr, /*tp_repr*/ |
| &int_as_number, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| (hashfunc)int_hash, /*tp_hash*/ |
| }; |