| # Complex numbers |
| # --------------- |
| |
| # This module represents complex numbers as instances of the class Complex. |
| # A Complex instance z has two data attribues, z.re (the real part) and z.im |
| # (the imaginary part). In fact, z.re and z.im can have any value -- all |
| # arithmetic operators work regardless of the type of z.re and z.im (as long |
| # as they support numerical operations). |
| # |
| # The following functions exist (Complex is actually a class): |
| # Complex([re [,im]) -> creates a complex number from a real and an imaginary part |
| # IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes) |
| # Polar([r [,phi [,fullcircle]]]) -> |
| # the complex number z for which r == z.radius() and phi == z.angle(fullcircle) |
| # (r and phi default to 0) |
| # |
| # Complex numbers have the following methods: |
| # z.abs() -> absolute value of z |
| # z.radius() == z.abs() |
| # z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units |
| # z.phi([fullcircle]) == z.angle(fullcircle) |
| # |
| # These standard functions and unary operators accept complex arguments: |
| # abs(z) |
| # -z |
| # +z |
| # not z |
| # repr(z) == `z` |
| # str(z) |
| # hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero |
| # the result equals hash(z.re) |
| # Note that hex(z) and oct(z) are not defined. |
| # |
| # These conversions accept complex arguments only if their imaginary part is zero: |
| # int(z) |
| # long(z) |
| # float(z) |
| # |
| # The following operators accept two complex numbers, or one complex number |
| # and one real number (int, long or float): |
| # z1 + z2 |
| # z1 - z2 |
| # z1 * z2 |
| # z1 / z2 |
| # pow(z1, z2) |
| # cmp(z1, z2) |
| # Note that z1 % z2 and divmod(z1, z2) are not defined, |
| # nor are shift and mask operations. |
| # |
| # The standard module math does not support complex numbers. |
| # (I suppose it would be easy to implement a cmath module.) |
| # |
| # Idea: |
| # add a class Polar(r, phi) and mixed-mode arithmetic which |
| # chooses the most appropriate type for the result: |
| # Complex for +,-,cmp |
| # Polar for *,/,pow |
| |
| |
| import types, math |
| |
| if not hasattr(math, 'hypot'): |
| def hypot(x, y): |
| # XXX I know there's a way to compute this without possibly causing |
| # overflow, but I can't remember what it is right now... |
| return math.sqrt(x*x + y*y) |
| math.hypot = hypot |
| |
| twopi = math.pi*2.0 |
| halfpi = math.pi/2.0 |
| |
| def IsComplex(obj): |
| return hasattr(obj, 're') and hasattr(obj, 'im') |
| |
| def Polar(r = 0, phi = 0, fullcircle = twopi): |
| phi = phi * (twopi / fullcircle) |
| return Complex(math.cos(phi)*r, math.sin(phi)*r) |
| |
| class Complex: |
| |
| def __init__(self, re=0, im=0): |
| if IsComplex(re): |
| im = im + re.im |
| re = re.re |
| if IsComplex(im): |
| re = re - im.im |
| im = im.re |
| self.re = re |
| self.im = im |
| |
| def __setattr__(self, name, value): |
| if hasattr(self, name): |
| raise TypeError, "Complex numbers have set-once attributes" |
| self.__dict__[name] = value |
| |
| def __repr__(self): |
| if not self.im: |
| return 'Complex(%s)' % `self.re` |
| else: |
| return 'Complex(%s, %s)' % (`self.re`, `self.im`) |
| |
| def __str__(self): |
| if not self.im: |
| return `self.re` |
| else: |
| return 'Complex(%s, %s)' % (`self.re`, `self.im`) |
| |
| def __coerce__(self, other): |
| if IsComplex(other): |
| return self, other |
| return self, Complex(other) # May fail |
| |
| def __cmp__(self, other): |
| return cmp(self.re, other.re) or cmp(self.im, other.im) |
| |
| def __hash__(self): |
| if not self.im: return hash(self.re) |
| mod = sys.maxint + 1L |
| return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod) |
| |
| def __neg__(self): |
| return Complex(-self.re, -self.im) |
| |
| def __pos__(self): |
| return self |
| |
| def __abs__(self): |
| return math.hypot(self.re, self.im) |
| ##return math.sqrt(self.re*self.re + self.im*self.im) |
| |
| |
| def __int__(self): |
| if self.im: |
| raise ValueError, "can't convert Complex with nonzero im to int" |
| return int(self.re) |
| |
| def __long__(self): |
| if self.im: |
| raise ValueError, "can't convert Complex with nonzero im to long" |
| return long(self.re) |
| |
| def __float__(self): |
| if self.im: |
| raise ValueError, "can't convert Complex with nonzero im to float" |
| return float(self.re) |
| |
| def __nonzero__(self): |
| return not (self.re == self.im == 0) |
| |
| abs = radius = __abs__ |
| |
| def angle(self, fullcircle = twopi): |
| return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi) |
| |
| phi = angle |
| |
| def __add__(self, other): |
| return Complex(self.re + other.re, self.im + other.im) |
| |
| __radd__ = __add__ |
| |
| def __sub__(self, other): |
| return Complex(self.re - other.re, self.im - other.im) |
| |
| def __rsub__(self, other): |
| return Complex(other.re - self.re, other.im - self.im) |
| |
| def __mul__(self, other): |
| return Complex(self.re*other.re - self.im*other.im, |
| self.re*other.im + self.im*other.re) |
| |
| __rmul__ = __mul__ |
| |
| def __div__(self, other): |
| # Deviating from the general principle of not forcing re or im |
| # to be floats, we cast to float here, otherwise division |
| # of Complex numbers with integer re and im parts would use |
| # the (truncating) integer division |
| d = float(other.re*other.re + other.im*other.im) |
| if not d: raise ZeroDivisionError, 'Complex division' |
| return Complex((self.re*other.re + self.im*other.im) / d, |
| (self.im*other.re - self.re*other.im) / d) |
| |
| def __rdiv__(self, other): |
| return other / self |
| |
| def __pow__(self, n, z=None): |
| if z is not None: |
| raise TypeError, 'Complex does not support ternary pow()' |
| if IsComplex(n): |
| if n.im: raise TypeError, 'Complex to the Complex power' |
| n = n.re |
| r = pow(self.abs(), n) |
| phi = n*self.angle() |
| return Complex(math.cos(phi)*r, math.sin(phi)*r) |
| |
| def __rpow__(self, base): |
| return pow(base, self) |
| |
| |
| # Everything below this point is part of the test suite |
| |
| def checkop(expr, a, b, value, fuzz = 1e-6): |
| import sys |
| print ' ', a, 'and', b, |
| try: |
| result = eval(expr) |
| except: |
| result = sys.exc_type |
| print '->', result |
| if (type(result) == type('') or type(value) == type('')): |
| ok = result == value |
| else: |
| ok = abs(result - value) <= fuzz |
| if not ok: |
| print '!!\t!!\t!! should be', value, 'diff', abs(result - value) |
| |
| |
| def test(): |
| testsuite = { |
| 'a+b': [ |
| (1, 10, 11), |
| (1, Complex(0,10), Complex(1,10)), |
| (Complex(0,10), 1, Complex(1,10)), |
| (Complex(0,10), Complex(1), Complex(1,10)), |
| (Complex(1), Complex(0,10), Complex(1,10)), |
| ], |
| 'a-b': [ |
| (1, 10, -9), |
| (1, Complex(0,10), Complex(1,-10)), |
| (Complex(0,10), 1, Complex(-1,10)), |
| (Complex(0,10), Complex(1), Complex(-1,10)), |
| (Complex(1), Complex(0,10), Complex(1,-10)), |
| ], |
| 'a*b': [ |
| (1, 10, 10), |
| (1, Complex(0,10), Complex(0, 10)), |
| (Complex(0,10), 1, Complex(0,10)), |
| (Complex(0,10), Complex(1), Complex(0,10)), |
| (Complex(1), Complex(0,10), Complex(0,10)), |
| ], |
| 'a/b': [ |
| (1., 10, 0.1), |
| (1, Complex(0,10), Complex(0, -0.1)), |
| (Complex(0, 10), 1, Complex(0, 10)), |
| (Complex(0, 10), Complex(1), Complex(0, 10)), |
| (Complex(1), Complex(0,10), Complex(0, -0.1)), |
| ], |
| 'pow(a,b)': [ |
| (1, 10, 1), |
| (1, Complex(0,10), 'TypeError'), |
| (Complex(0,10), 1, Complex(0,10)), |
| (Complex(0,10), Complex(1), Complex(0,10)), |
| (Complex(1), Complex(0,10), 'TypeError'), |
| (2, Complex(4,0), 16), |
| ], |
| 'cmp(a,b)': [ |
| (1, 10, -1), |
| (1, Complex(0,10), 1), |
| (Complex(0,10), 1, -1), |
| (Complex(0,10), Complex(1), -1), |
| (Complex(1), Complex(0,10), 1), |
| ], |
| } |
| exprs = testsuite.keys() |
| exprs.sort() |
| for expr in exprs: |
| print expr + ':' |
| t = (expr,) |
| for item in testsuite[expr]: |
| apply(checkop, t+item) |
| |
| |
| if __name__ == '__main__': |
| test() |