| import dis |
| import re |
| import sys |
| import textwrap |
| import unittest |
| |
| from test.bytecode_helper import BytecodeTestCase |
| |
| class TestTranforms(BytecodeTestCase): |
| |
| def test_unot(self): |
| # UNARY_NOT POP_JUMP_IF_FALSE --> POP_JUMP_IF_TRUE' |
| def unot(x): |
| if not x == 2: |
| del x |
| self.assertNotInBytecode(unot, 'UNARY_NOT') |
| self.assertNotInBytecode(unot, 'POP_JUMP_IF_FALSE') |
| self.assertInBytecode(unot, 'POP_JUMP_IF_TRUE') |
| |
| def test_elim_inversion_of_is_or_in(self): |
| for line, cmp_op in ( |
| ('not a is b', 'is not',), |
| ('not a in b', 'not in',), |
| ('not a is not b', 'is',), |
| ('not a not in b', 'in',), |
| ): |
| code = compile(line, '', 'single') |
| self.assertInBytecode(code, 'COMPARE_OP', cmp_op) |
| |
| def test_global_as_constant(self): |
| # LOAD_GLOBAL None/True/False --> LOAD_CONST None/True/False |
| def f(): |
| x = None |
| x = None |
| return x |
| def g(): |
| x = True |
| return x |
| def h(): |
| x = False |
| return x |
| |
| for func, elem in ((f, None), (g, True), (h, False)): |
| self.assertNotInBytecode(func, 'LOAD_GLOBAL') |
| self.assertInBytecode(func, 'LOAD_CONST', elem) |
| |
| def f(): |
| 'Adding a docstring made this test fail in Py2.5.0' |
| return None |
| |
| self.assertNotInBytecode(f, 'LOAD_GLOBAL') |
| self.assertInBytecode(f, 'LOAD_CONST', None) |
| |
| def test_while_one(self): |
| # Skip over: LOAD_CONST trueconst POP_JUMP_IF_FALSE xx |
| def f(): |
| while 1: |
| pass |
| return list |
| for elem in ('LOAD_CONST', 'POP_JUMP_IF_FALSE'): |
| self.assertNotInBytecode(f, elem) |
| for elem in ('JUMP_ABSOLUTE',): |
| self.assertInBytecode(f, elem) |
| |
| def test_pack_unpack(self): |
| for line, elem in ( |
| ('a, = a,', 'LOAD_CONST',), |
| ('a, b = a, b', 'ROT_TWO',), |
| ('a, b, c = a, b, c', 'ROT_THREE',), |
| ): |
| code = compile(line,'','single') |
| self.assertInBytecode(code, elem) |
| self.assertNotInBytecode(code, 'BUILD_TUPLE') |
| self.assertNotInBytecode(code, 'UNPACK_TUPLE') |
| |
| def test_folding_of_tuples_of_constants(self): |
| for line, elem in ( |
| ('a = 1,2,3', (1, 2, 3)), |
| ('("a","b","c")', ('a', 'b', 'c')), |
| ('a,b,c = 1,2,3', (1, 2, 3)), |
| ('(None, 1, None)', (None, 1, None)), |
| ('((1, 2), 3, 4)', ((1, 2), 3, 4)), |
| ): |
| code = compile(line,'','single') |
| self.assertInBytecode(code, 'LOAD_CONST', elem) |
| self.assertNotInBytecode(code, 'BUILD_TUPLE') |
| |
| # Long tuples should be folded too. |
| code = compile(repr(tuple(range(10000))),'','single') |
| self.assertNotInBytecode(code, 'BUILD_TUPLE') |
| # One LOAD_CONST for the tuple, one for the None return value |
| load_consts = [instr for instr in dis.get_instructions(code) |
| if instr.opname == 'LOAD_CONST'] |
| self.assertEqual(len(load_consts), 2) |
| |
| # Bug 1053819: Tuple of constants misidentified when presented with: |
| # . . . opcode_with_arg 100 unary_opcode BUILD_TUPLE 1 . . . |
| # The following would segfault upon compilation |
| def crater(): |
| (~[ |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, |
| ],) |
| |
| def test_folding_of_lists_of_constants(self): |
| for line, elem in ( |
| # in/not in constants with BUILD_LIST should be folded to a tuple: |
| ('a in [1,2,3]', (1, 2, 3)), |
| ('a not in ["a","b","c"]', ('a', 'b', 'c')), |
| ('a in [None, 1, None]', (None, 1, None)), |
| ('a not in [(1, 2), 3, 4]', ((1, 2), 3, 4)), |
| ): |
| code = compile(line, '', 'single') |
| self.assertInBytecode(code, 'LOAD_CONST', elem) |
| self.assertNotInBytecode(code, 'BUILD_LIST') |
| |
| def test_folding_of_sets_of_constants(self): |
| for line, elem in ( |
| # in/not in constants with BUILD_SET should be folded to a frozenset: |
| ('a in {1,2,3}', frozenset({1, 2, 3})), |
| ('a not in {"a","b","c"}', frozenset({'a', 'c', 'b'})), |
| ('a in {None, 1, None}', frozenset({1, None})), |
| ('a not in {(1, 2), 3, 4}', frozenset({(1, 2), 3, 4})), |
| ('a in {1, 2, 3, 3, 2, 1}', frozenset({1, 2, 3})), |
| ): |
| code = compile(line, '', 'single') |
| self.assertNotInBytecode(code, 'BUILD_SET') |
| self.assertInBytecode(code, 'LOAD_CONST', elem) |
| |
| # Ensure that the resulting code actually works: |
| def f(a): |
| return a in {1, 2, 3} |
| |
| def g(a): |
| return a not in {1, 2, 3} |
| |
| self.assertTrue(f(3)) |
| self.assertTrue(not f(4)) |
| |
| self.assertTrue(not g(3)) |
| self.assertTrue(g(4)) |
| |
| |
| def test_folding_of_binops_on_constants(self): |
| for line, elem in ( |
| ('a = 2+3+4', 9), # chained fold |
| ('"@"*4', '@@@@'), # check string ops |
| ('a="abc" + "def"', 'abcdef'), # check string ops |
| ('a = 3**4', 81), # binary power |
| ('a = 3*4', 12), # binary multiply |
| ('a = 13//4', 3), # binary floor divide |
| ('a = 14%4', 2), # binary modulo |
| ('a = 2+3', 5), # binary add |
| ('a = 13-4', 9), # binary subtract |
| ('a = (12,13)[1]', 13), # binary subscr |
| ('a = 13 << 2', 52), # binary lshift |
| ('a = 13 >> 2', 3), # binary rshift |
| ('a = 13 & 7', 5), # binary and |
| ('a = 13 ^ 7', 10), # binary xor |
| ('a = 13 | 7', 15), # binary or |
| ): |
| code = compile(line, '', 'single') |
| self.assertInBytecode(code, 'LOAD_CONST', elem) |
| for instr in dis.get_instructions(code): |
| self.assertFalse(instr.opname.startswith('BINARY_')) |
| |
| # Verify that unfoldables are skipped |
| code = compile('a=2+"b"', '', 'single') |
| self.assertInBytecode(code, 'LOAD_CONST', 2) |
| self.assertInBytecode(code, 'LOAD_CONST', 'b') |
| |
| # Verify that large sequences do not result from folding |
| code = compile('a="x"*1000', '', 'single') |
| self.assertInBytecode(code, 'LOAD_CONST', 1000) |
| |
| def test_binary_subscr_on_unicode(self): |
| # valid code get optimized |
| code = compile('"foo"[0]', '', 'single') |
| self.assertInBytecode(code, 'LOAD_CONST', 'f') |
| self.assertNotInBytecode(code, 'BINARY_SUBSCR') |
| code = compile('"\u0061\uffff"[1]', '', 'single') |
| self.assertInBytecode(code, 'LOAD_CONST', '\uffff') |
| self.assertNotInBytecode(code,'BINARY_SUBSCR') |
| |
| # With PEP 393, non-BMP char get optimized |
| code = compile('"\U00012345"[0]', '', 'single') |
| self.assertInBytecode(code, 'LOAD_CONST', '\U00012345') |
| self.assertNotInBytecode(code, 'BINARY_SUBSCR') |
| |
| # invalid code doesn't get optimized |
| # out of range |
| code = compile('"fuu"[10]', '', 'single') |
| self.assertInBytecode(code, 'BINARY_SUBSCR') |
| |
| def test_folding_of_unaryops_on_constants(self): |
| for line, elem in ( |
| ('-0.5', -0.5), # unary negative |
| ('-0.0', -0.0), # -0.0 |
| ('-(1.0-1.0)', -0.0), # -0.0 after folding |
| ('-0', 0), # -0 |
| ('~-2', 1), # unary invert |
| ('+1', 1), # unary positive |
| ): |
| code = compile(line, '', 'single') |
| self.assertInBytecode(code, 'LOAD_CONST', elem) |
| for instr in dis.get_instructions(code): |
| self.assertFalse(instr.opname.startswith('UNARY_')) |
| |
| # Check that -0.0 works after marshaling |
| def negzero(): |
| return -(1.0-1.0) |
| |
| for instr in dis.get_instructions(code): |
| self.assertFalse(instr.opname.startswith('UNARY_')) |
| |
| # Verify that unfoldables are skipped |
| for line, elem, opname in ( |
| ('-"abc"', 'abc', 'UNARY_NEGATIVE'), |
| ('~"abc"', 'abc', 'UNARY_INVERT'), |
| ): |
| code = compile(line, '', 'single') |
| self.assertInBytecode(code, 'LOAD_CONST', elem) |
| self.assertInBytecode(code, opname) |
| |
| def test_elim_extra_return(self): |
| # RETURN LOAD_CONST None RETURN --> RETURN |
| def f(x): |
| return x |
| self.assertNotInBytecode(f, 'LOAD_CONST', None) |
| returns = [instr for instr in dis.get_instructions(f) |
| if instr.opname == 'RETURN_VALUE'] |
| self.assertEqual(len(returns), 1) |
| |
| def test_elim_jump_to_return(self): |
| # JUMP_FORWARD to RETURN --> RETURN |
| def f(cond, true_value, false_value): |
| return true_value if cond else false_value |
| self.assertNotInBytecode(f, 'JUMP_FORWARD') |
| self.assertNotInBytecode(f, 'JUMP_ABSOLUTE') |
| returns = [instr for instr in dis.get_instructions(f) |
| if instr.opname == 'RETURN_VALUE'] |
| self.assertEqual(len(returns), 2) |
| |
| def test_elim_jump_after_return1(self): |
| # Eliminate dead code: jumps immediately after returns can't be reached |
| def f(cond1, cond2): |
| if cond1: return 1 |
| if cond2: return 2 |
| while 1: |
| return 3 |
| while 1: |
| if cond1: return 4 |
| return 5 |
| return 6 |
| self.assertNotInBytecode(f, 'JUMP_FORWARD') |
| self.assertNotInBytecode(f, 'JUMP_ABSOLUTE') |
| returns = [instr for instr in dis.get_instructions(f) |
| if instr.opname == 'RETURN_VALUE'] |
| self.assertEqual(len(returns), 6) |
| |
| def test_elim_jump_after_return2(self): |
| # Eliminate dead code: jumps immediately after returns can't be reached |
| def f(cond1, cond2): |
| while 1: |
| if cond1: return 4 |
| self.assertNotInBytecode(f, 'JUMP_FORWARD') |
| # There should be one jump for the while loop. |
| returns = [instr for instr in dis.get_instructions(f) |
| if instr.opname == 'JUMP_ABSOLUTE'] |
| self.assertEqual(len(returns), 1) |
| returns = [instr for instr in dis.get_instructions(f) |
| if instr.opname == 'RETURN_VALUE'] |
| self.assertEqual(len(returns), 2) |
| |
| def test_make_function_doesnt_bail(self): |
| def f(): |
| def g()->1+1: |
| pass |
| return g |
| self.assertNotInBytecode(f, 'BINARY_ADD') |
| |
| def test_constant_folding(self): |
| # Issue #11244: aggressive constant folding. |
| exprs = [ |
| '3 * -5', |
| '-3 * 5', |
| '2 * (3 * 4)', |
| '(2 * 3) * 4', |
| '(-1, 2, 3)', |
| '(1, -2, 3)', |
| '(1, 2, -3)', |
| '(1, 2, -3) * 6', |
| 'lambda x: x in {(3 * -5) + (-1 - 6), (1, -2, 3) * 2, None}', |
| ] |
| for e in exprs: |
| code = compile(e, '', 'single') |
| for instr in dis.get_instructions(code): |
| self.assertFalse(instr.opname.startswith('UNARY_')) |
| self.assertFalse(instr.opname.startswith('BINARY_')) |
| self.assertFalse(instr.opname.startswith('BUILD_')) |
| |
| |
| class TestBuglets(unittest.TestCase): |
| |
| def test_bug_11510(self): |
| # folded constant set optimization was commingled with the tuple |
| # unpacking optimization which would fail if the set had duplicate |
| # elements so that the set length was unexpected |
| def f(): |
| x, y = {1, 1} |
| return x, y |
| with self.assertRaises(ValueError): |
| f() |
| |
| |
| if __name__ == "__main__": |
| unittest.main() |