blob: cbb0b37d914fce4ba40fecf51c9189b6f6b70462 [file] [log] [blame]
from test.test_support import verify, verbose, TestFailed, fcmp
from string import join
from random import random, randint
# SHIFT should match the value in longintrepr.h for best testing.
SHIFT = 15
BASE = 2 ** SHIFT
MASK = BASE - 1
KARATSUBA_CUTOFF = 35 # from longobject.c
# Max number of base BASE digits to use in test cases. Doubling
# this will more than double the runtime.
MAXDIGITS = 15
# build some special values
special = map(long, [0, 1, 2, BASE, BASE >> 1])
special.append(0x5555555555555555L)
special.append(0xaaaaaaaaaaaaaaaaL)
# some solid strings of one bits
p2 = 4L # 0 and 1 already added
for i in range(2*SHIFT):
special.append(p2 - 1)
p2 = p2 << 1
del p2
# add complements & negations
special = special + map(lambda x: ~x, special) + \
map(lambda x: -x, special)
# ------------------------------------------------------------ utilities
# Use check instead of assert so the test still does something
# under -O.
def check(ok, *args):
if not ok:
raise TestFailed, join(map(str, args), " ")
# Get quasi-random long consisting of ndigits digits (in base BASE).
# quasi == the most-significant digit will not be 0, and the number
# is constructed to contain long strings of 0 and 1 bits. These are
# more likely than random bits to provoke digit-boundary errors.
# The sign of the number is also random.
def getran(ndigits):
verify(ndigits > 0)
nbits_hi = ndigits * SHIFT
nbits_lo = nbits_hi - SHIFT + 1
answer = 0L
nbits = 0
r = int(random() * (SHIFT * 2)) | 1 # force 1 bits to start
while nbits < nbits_lo:
bits = (r >> 1) + 1
bits = min(bits, nbits_hi - nbits)
verify(1 <= bits <= SHIFT)
nbits = nbits + bits
answer = answer << bits
if r & 1:
answer = answer | ((1 << bits) - 1)
r = int(random() * (SHIFT * 2))
verify(nbits_lo <= nbits <= nbits_hi)
if random() < 0.5:
answer = -answer
return answer
# Get random long consisting of ndigits random digits (relative to base
# BASE). The sign bit is also random.
def getran2(ndigits):
answer = 0L
for i in range(ndigits):
answer = (answer << SHIFT) | randint(0, MASK)
if random() < 0.5:
answer = -answer
return answer
# --------------------------------------------------------------- divmod
def test_division_2(x, y):
q, r = divmod(x, y)
q2, r2 = x//y, x%y
pab, pba = x*y, y*x
check(pab == pba, "multiplication does not commute for", x, y)
check(q == q2, "divmod returns different quotient than / for", x, y)
check(r == r2, "divmod returns different mod than % for", x, y)
check(x == q*y + r, "x != q*y + r after divmod on", x, y)
if y > 0:
check(0 <= r < y, "bad mod from divmod on", x, y)
else:
check(y < r <= 0, "bad mod from divmod on", x, y)
def test_division(maxdigits=MAXDIGITS):
if verbose:
print "long / * % divmod"
digits = range(1, maxdigits+1) + range(KARATSUBA_CUTOFF,
KARATSUBA_CUTOFF + 14)
digits.append(KARATSUBA_CUTOFF * 3)
for lenx in digits:
x = getran(lenx)
for leny in digits:
y = getran(leny) or 1L
test_division_2(x, y)
# ------------------------------------------------------------ karatsuba
def test_karatsuba():
if verbose:
print "Karatsuba"
digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10)
digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])
bits = [digit * SHIFT for digit in digits]
# Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
# 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
for abits in bits:
a = (1L << abits) - 1
for bbits in bits:
if bbits < abits:
continue
b = (1L << bbits) - 1
x = a * b
y = ((1L << (abits + bbits)) -
(1L << abits) -
(1L << bbits) +
1)
check(x == y, "bad result for", a, "*", b, x, y)
# -------------------------------------------------------------- ~ & | ^
def test_bitop_identities_1(x):
check(x & 0 == 0, "x & 0 != 0 for", x)
check(x | 0 == x, "x | 0 != x for", x)
check(x ^ 0 == x, "x ^ 0 != x for", x)
check(x & -1 == x, "x & -1 != x for", x)
check(x | -1 == -1, "x | -1 != -1 for", x)
check(x ^ -1 == ~x, "x ^ -1 != ~x for", x)
check(x == ~~x, "x != ~~x for", x)
check(x & x == x, "x & x != x for", x)
check(x | x == x, "x | x != x for", x)
check(x ^ x == 0, "x ^ x != 0 for", x)
check(x & ~x == 0, "x & ~x != 0 for", x)
check(x | ~x == -1, "x | ~x != -1 for", x)
check(x ^ ~x == -1, "x ^ ~x != -1 for", x)
check(-x == 1 + ~x == ~(x-1), "not -x == 1 + ~x == ~(x-1) for", x)
for n in range(2*SHIFT):
p2 = 2L ** n
check(x << n >> n == x, "x << n >> n != x for", x, n)
check(x // p2 == x >> n, "x // p2 != x >> n for x n p2", x, n, p2)
check(x * p2 == x << n, "x * p2 != x << n for x n p2", x, n, p2)
check(x & -p2 == x >> n << n == x & ~(p2 - 1),
"not x & -p2 == x >> n << n == x & ~(p2 - 1) for x n p2",
x, n, p2)
def test_bitop_identities_2(x, y):
check(x & y == y & x, "x & y != y & x for", x, y)
check(x | y == y | x, "x | y != y | x for", x, y)
check(x ^ y == y ^ x, "x ^ y != y ^ x for", x, y)
check(x ^ y ^ x == y, "x ^ y ^ x != y for", x, y)
check(x & y == ~(~x | ~y), "x & y != ~(~x | ~y) for", x, y)
check(x | y == ~(~x & ~y), "x | y != ~(~x & ~y) for", x, y)
check(x ^ y == (x | y) & ~(x & y),
"x ^ y != (x | y) & ~(x & y) for", x, y)
check(x ^ y == (x & ~y) | (~x & y),
"x ^ y == (x & ~y) | (~x & y) for", x, y)
check(x ^ y == (x | y) & (~x | ~y),
"x ^ y == (x | y) & (~x | ~y) for", x, y)
def test_bitop_identities_3(x, y, z):
check((x & y) & z == x & (y & z),
"(x & y) & z != x & (y & z) for", x, y, z)
check((x | y) | z == x | (y | z),
"(x | y) | z != x | (y | z) for", x, y, z)
check((x ^ y) ^ z == x ^ (y ^ z),
"(x ^ y) ^ z != x ^ (y ^ z) for", x, y, z)
check(x & (y | z) == (x & y) | (x & z),
"x & (y | z) != (x & y) | (x & z) for", x, y, z)
check(x | (y & z) == (x | y) & (x | z),
"x | (y & z) != (x | y) & (x | z) for", x, y, z)
def test_bitop_identities(maxdigits=MAXDIGITS):
if verbose:
print "long bit-operation identities"
for x in special:
test_bitop_identities_1(x)
digits = range(1, maxdigits+1)
for lenx in digits:
x = getran(lenx)
test_bitop_identities_1(x)
for leny in digits:
y = getran(leny)
test_bitop_identities_2(x, y)
test_bitop_identities_3(x, y, getran((lenx + leny)//2))
# ------------------------------------------------- hex oct repr str atol
def slow_format(x, base):
if (x, base) == (0, 8):
# this is an oddball!
return "0L"
digits = []
sign = 0
if x < 0:
sign, x = 1, -x
while x:
x, r = divmod(x, base)
digits.append(int(r))
digits.reverse()
digits = digits or [0]
return '-'[:sign] + \
{8: '0', 10: '', 16: '0x'}[base] + \
join(map(lambda i: "0123456789ABCDEF"[i], digits), '') + \
"L"
def test_format_1(x):
from string import atol
for base, mapper in (8, oct), (10, repr), (16, hex):
got = mapper(x)
expected = slow_format(x, base)
check(got == expected, mapper.__name__, "returned",
got, "but expected", expected, "for", x)
check(atol(got, 0) == x, 'atol("%s", 0) !=' % got, x)
# str() has to be checked a little differently since there's no
# trailing "L"
got = str(x)
expected = slow_format(x, 10)[:-1]
check(got == expected, mapper.__name__, "returned",
got, "but expected", expected, "for", x)
def test_format(maxdigits=MAXDIGITS):
if verbose:
print "long str/hex/oct/atol"
for x in special:
test_format_1(x)
for i in range(10):
for lenx in range(1, maxdigits+1):
x = getran(lenx)
test_format_1(x)
# ----------------------------------------------------------------- misc
def test_misc(maxdigits=MAXDIGITS):
if verbose:
print "long miscellaneous operations"
import sys
# check the extremes in int<->long conversion
hugepos = sys.maxint
hugeneg = -hugepos - 1
hugepos_aslong = long(hugepos)
hugeneg_aslong = long(hugeneg)
check(hugepos == hugepos_aslong, "long(sys.maxint) != sys.maxint")
check(hugeneg == hugeneg_aslong,
"long(-sys.maxint-1) != -sys.maxint-1")
# long -> int should not fail for hugepos_aslong or hugeneg_aslong
try:
check(int(hugepos_aslong) == hugepos,
"converting sys.maxint to long and back to int fails")
except OverflowError:
raise TestFailed, "int(long(sys.maxint)) overflowed!"
try:
check(int(hugeneg_aslong) == hugeneg,
"converting -sys.maxint-1 to long and back to int fails")
except OverflowError:
raise TestFailed, "int(long(-sys.maxint-1)) overflowed!"
# but long -> int should overflow for hugepos+1 and hugeneg-1
x = hugepos_aslong + 1
try:
y = int(x)
except OverflowError:
raise TestFailed, "int(long(sys.maxint) + 1) mustn't overflow"
if not isinstance(y, long):
raise TestFailed("int(long(sys.maxint) + 1) should have returned long")
x = hugeneg_aslong - 1
try:
y = int(x)
except OverflowError:
raise TestFailed, "int(long(-sys.maxint-1) - 1) mustn't overflow"
if not isinstance(y, long):
raise TestFailed("int(long(-sys.maxint-1) - 1) should have returned long")
class long2(long):
pass
x = long2(1L<<100)
y = int(x)
if type(y) is not long:
raise TestFailed("overflowing int conversion must return long not long subtype")
# ----------------------------------- tests of auto int->long conversion
def test_auto_overflow():
import math, sys
if verbose:
print "auto-convert int->long on overflow"
special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1]
sqrt = int(math.sqrt(sys.maxint))
special.extend([sqrt-1, sqrt, sqrt+1])
special.extend([-i for i in special])
def checkit(*args):
# Heavy use of nested scopes here!
verify(got == expected, "for %r expected %r got %r" %
(args, expected, got))
for x in special:
longx = long(x)
expected = -longx
got = -x
checkit('-', x)
for y in special:
longy = long(y)
expected = longx + longy
got = x + y
checkit(x, '+', y)
expected = longx - longy
got = x - y
checkit(x, '-', y)
expected = longx * longy
got = x * y
checkit(x, '*', y)
if y:
expected = longx / longy
got = x / y
checkit(x, '/', y)
expected = longx // longy
got = x // y
checkit(x, '//', y)
expected = divmod(longx, longy)
got = divmod(longx, longy)
checkit(x, 'divmod', y)
if abs(y) < 5 and not (x == 0 and y < 0):
expected = longx ** longy
got = x ** y
checkit(x, '**', y)
for z in special:
if z != 0 :
if y >= 0:
expected = pow(longx, longy, long(z))
got = pow(x, y, z)
checkit('pow', x, y, '%', z)
else:
try:
pow(longx, longy, long(z))
except TypeError:
pass
else:
raise TestFailed("pow%r should have raised "
"TypeError" % ((longx, longy, long(z)),))
# ---------------------------------------- tests of long->float overflow
def test_float_overflow():
import math
if verbose:
print "long->float overflow"
for x in -2.0, -1.0, 0.0, 1.0, 2.0:
verify(float(long(x)) == x)
shuge = '12345' * 120
huge = 1L << 30000
mhuge = -huge
namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
for test in ["float(huge)", "float(mhuge)",
"complex(huge)", "complex(mhuge)",
"complex(huge, 1)", "complex(mhuge, 1)",
"complex(1, huge)", "complex(1, mhuge)",
"1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
"1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
"1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
"1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
"1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
"1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
"math.sin(huge)", "math.sin(mhuge)",
"math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
"math.floor(huge)", "math.floor(mhuge)",
"float(shuge) == int(shuge)"]:
try:
eval(test, namespace)
except OverflowError:
pass
else:
raise TestFailed("expected OverflowError from %s" % test)
# ---------------------------------------------- test huge log and log10
def test_logs():
import math
if verbose:
print "log and log10"
LOG10E = math.log10(math.e)
for exp in range(10) + [100, 1000, 10000]:
value = 10 ** exp
log10 = math.log10(value)
verify(fcmp(log10, exp) == 0)
# log10(value) == exp, so log(value) == log10(value)/log10(e) ==
# exp/LOG10E
expected = exp / LOG10E
log = math.log(value)
verify(fcmp(log, expected) == 0)
for bad in -(1L << 10000), -2L, 0L:
try:
math.log(bad)
raise TestFailed("expected ValueError from log(<= 0)")
except ValueError:
pass
try:
math.log10(bad)
raise TestFailed("expected ValueError from log10(<= 0)")
except ValueError:
pass
# ---------------------------------------------------------------- do it
test_division()
test_karatsuba()
test_bitop_identities()
test_format()
test_misc()
test_auto_overflow()
test_float_overflow()
test_logs()