blob: 5abc25a5723f26092134f57fa04f37d1c1d96f50 [file] [log] [blame]
# Various microbenchmarks comparing unicode and byte string performance
# Please keep this file both 2.x and 3.x compatible!
import timeit
import itertools
import operator
import re
import sys
import datetime
import optparse
VERSION = '2.0'
def p(*args):
sys.stdout.write(' '.join(str(s) for s in args) + '\n')
if sys.version_info >= (3,):
BYTES = bytes_from_str = lambda x: x.encode('ascii')
UNICODE = unicode_from_str = lambda x: x
else:
BYTES = bytes_from_str = lambda x: x
UNICODE = unicode_from_str = lambda x: x.decode('ascii')
class UnsupportedType(TypeError):
pass
p('stringbench v%s' % VERSION)
p(sys.version)
p(datetime.datetime.now())
REPEAT = 1
REPEAT = 3
#REPEAT = 7
if __name__ != "__main__":
raise SystemExit("Must run as main program")
parser = optparse.OptionParser()
parser.add_option("-R", "--skip-re", dest="skip_re",
action="store_true",
help="skip regular expression tests")
parser.add_option("-8", "--8-bit", dest="bytes_only",
action="store_true",
help="only do 8-bit string benchmarks")
parser.add_option("-u", "--unicode", dest="unicode_only",
action="store_true",
help="only do Unicode string benchmarks")
_RANGE_1000 = list(range(1000))
_RANGE_100 = list(range(100))
_RANGE_10 = list(range(10))
dups = {}
def bench(s, group, repeat_count):
def blah(f):
if f.__name__ in dups:
raise AssertionError("Multiple functions with same name: %r" %
(f.__name__,))
dups[f.__name__] = 1
f.comment = s
f.is_bench = True
f.group = group
f.repeat_count = repeat_count
return f
return blah
def uses_re(f):
f.uses_re = True
####### 'in' comparisons
@bench('"A" in "A"*1000', "early match, single character", 1000)
def in_test_quick_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("A")
for x in _RANGE_1000:
s2 in s1
@bench('"B" in "A"*1000', "no match, single character", 1000)
def in_test_no_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("B")
for x in _RANGE_1000:
s2 in s1
@bench('"AB" in "AB"*1000', "early match, two characters", 1000)
def in_test_quick_match_two_characters(STR):
s1 = STR("AB" * 1000)
s2 = STR("AB")
for x in _RANGE_1000:
s2 in s1
@bench('"BC" in "AB"*1000', "no match, two characters", 1000)
def in_test_no_match_two_character(STR):
s1 = STR("AB" * 1000)
s2 = STR("BC")
for x in _RANGE_1000:
s2 in s1
@bench('"BC" in ("AB"*300+"C")', "late match, two characters", 1000)
def in_test_slow_match_two_characters(STR):
s1 = STR("AB" * 300+"C")
s2 = STR("BC")
for x in _RANGE_1000:
s2 in s1
@bench('s="ABC"*33; (s+"E") in ((s+"D")*300+s+"E")',
"late match, 100 characters", 100)
def in_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = (m+d)*300 + m+e
s2 = m+e
for x in _RANGE_100:
s2 in s1
# Try with regex
@uses_re
@bench('s="ABC"*33; re.compile(s+"D").search((s+"D")*300+s+"E")',
"late match, 100 characters", 100)
def re_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = (m+d)*300 + m+e
s2 = m+e
pat = re.compile(s2)
search = pat.search
for x in _RANGE_100:
search(s1)
#### same tests as 'in' but use 'find'
@bench('("A"*1000).find("A")', "early match, single character", 1000)
def find_test_quick_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("A")
s1_find = s1.find
for x in _RANGE_1000:
s1_find(s2)
@bench('("A"*1000).find("B")', "no match, single character", 1000)
def find_test_no_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("B")
s1_find = s1.find
for x in _RANGE_1000:
s1_find(s2)
@bench('("AB"*1000).find("AB")', "early match, two characters", 1000)
def find_test_quick_match_two_characters(STR):
s1 = STR("AB" * 1000)
s2 = STR("AB")
s1_find = s1.find
for x in _RANGE_1000:
s1_find(s2)
@bench('("AB"*1000).find("BC")', "no match, two characters", 1000)
def find_test_no_match_two_character(STR):
s1 = STR("AB" * 1000)
s2 = STR("BC")
s1_find = s1.find
for x in _RANGE_1000:
s1_find(s2)
@bench('("AB"*1000).find("CA")', "no match, two characters", 1000)
def find_test_no_match_two_character_bis(STR):
s1 = STR("AB" * 1000)
s2 = STR("CA")
s1_find = s1.find
for x in _RANGE_1000:
s1_find(s2)
@bench('("AB"*300+"C").find("BC")', "late match, two characters", 1000)
def find_test_slow_match_two_characters(STR):
s1 = STR("AB" * 300+"C")
s2 = STR("BC")
s1_find = s1.find
for x in _RANGE_1000:
s1_find(s2)
@bench('("AB"*300+"CA").find("CA")', "late match, two characters", 1000)
def find_test_slow_match_two_characters_bis(STR):
s1 = STR("AB" * 300+"CA")
s2 = STR("CA")
s1_find = s1.find
for x in _RANGE_1000:
s1_find(s2)
@bench('s="ABC"*33; ((s+"D")*500+s+"E").find(s+"E")',
"late match, 100 characters", 100)
def find_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = (m+d)*500 + m+e
s2 = m+e
s1_find = s1.find
for x in _RANGE_100:
s1_find(s2)
@bench('s="ABC"*33; ((s+"D")*500+"E"+s).find("E"+s)',
"late match, 100 characters", 100)
def find_test_slow_match_100_characters_bis(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = (m+d)*500 + e+m
s2 = e+m
s1_find = s1.find
for x in _RANGE_100:
s1_find(s2)
#### Same tests for 'rfind'
@bench('("A"*1000).rfind("A")', "early match, single character", 1000)
def rfind_test_quick_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("A")
s1_rfind = s1.rfind
for x in _RANGE_1000:
s1_rfind(s2)
@bench('("A"*1000).rfind("B")', "no match, single character", 1000)
def rfind_test_no_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("B")
s1_rfind = s1.rfind
for x in _RANGE_1000:
s1_rfind(s2)
@bench('("AB"*1000).rfind("AB")', "early match, two characters", 1000)
def rfind_test_quick_match_two_characters(STR):
s1 = STR("AB" * 1000)
s2 = STR("AB")
s1_rfind = s1.rfind
for x in _RANGE_1000:
s1_rfind(s2)
@bench('("AB"*1000).rfind("BC")', "no match, two characters", 1000)
def rfind_test_no_match_two_character(STR):
s1 = STR("AB" * 1000)
s2 = STR("BC")
s1_rfind = s1.rfind
for x in _RANGE_1000:
s1_rfind(s2)
@bench('("AB"*1000).rfind("CA")', "no match, two characters", 1000)
def rfind_test_no_match_two_character_bis(STR):
s1 = STR("AB" * 1000)
s2 = STR("CA")
s1_rfind = s1.rfind
for x in _RANGE_1000:
s1_rfind(s2)
@bench('("C"+"AB"*300).rfind("CA")', "late match, two characters", 1000)
def rfind_test_slow_match_two_characters(STR):
s1 = STR("C" + "AB" * 300)
s2 = STR("CA")
s1_rfind = s1.rfind
for x in _RANGE_1000:
s1_rfind(s2)
@bench('("BC"+"AB"*300).rfind("BC")', "late match, two characters", 1000)
def rfind_test_slow_match_two_characters_bis(STR):
s1 = STR("BC" + "AB" * 300)
s2 = STR("BC")
s1_rfind = s1.rfind
for x in _RANGE_1000:
s1_rfind(s2)
@bench('s="ABC"*33; ("E"+s+("D"+s)*500).rfind("E"+s)',
"late match, 100 characters", 100)
def rfind_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = e+m + (d+m)*500
s2 = e+m
s1_rfind = s1.rfind
for x in _RANGE_100:
s1_rfind(s2)
@bench('s="ABC"*33; (s+"E"+("D"+s)*500).rfind(s+"E")',
"late match, 100 characters", 100)
def rfind_test_slow_match_100_characters_bis(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = m+e + (d+m)*500
s2 = m+e
s1_rfind = s1.rfind
for x in _RANGE_100:
s1_rfind(s2)
#### Now with index.
# Skip the ones which fail because that would include exception overhead.
@bench('("A"*1000).index("A")', "early match, single character", 1000)
def index_test_quick_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("A")
s1_index = s1.index
for x in _RANGE_1000:
s1_index(s2)
@bench('("AB"*1000).index("AB")', "early match, two characters", 1000)
def index_test_quick_match_two_characters(STR):
s1 = STR("AB" * 1000)
s2 = STR("AB")
s1_index = s1.index
for x in _RANGE_1000:
s1_index(s2)
@bench('("AB"*300+"C").index("BC")', "late match, two characters", 1000)
def index_test_slow_match_two_characters(STR):
s1 = STR("AB" * 300+"C")
s2 = STR("BC")
s1_index = s1.index
for x in _RANGE_1000:
s1_index(s2)
@bench('s="ABC"*33; ((s+"D")*500+s+"E").index(s+"E")',
"late match, 100 characters", 100)
def index_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = (m+d)*500 + m+e
s2 = m+e
s1_index = s1.index
for x in _RANGE_100:
s1_index(s2)
#### Same for rindex
@bench('("A"*1000).rindex("A")', "early match, single character", 1000)
def rindex_test_quick_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("A")
s1_rindex = s1.rindex
for x in _RANGE_1000:
s1_rindex(s2)
@bench('("AB"*1000).rindex("AB")', "early match, two characters", 1000)
def rindex_test_quick_match_two_characters(STR):
s1 = STR("AB" * 1000)
s2 = STR("AB")
s1_rindex = s1.rindex
for x in _RANGE_1000:
s1_rindex(s2)
@bench('("C"+"AB"*300).rindex("CA")', "late match, two characters", 1000)
def rindex_test_slow_match_two_characters(STR):
s1 = STR("C" + "AB" * 300)
s2 = STR("CA")
s1_rindex = s1.rindex
for x in _RANGE_1000:
s1_rindex(s2)
@bench('s="ABC"*33; ("E"+s+("D"+s)*500).rindex("E"+s)',
"late match, 100 characters", 100)
def rindex_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = e + m + (d+m)*500
s2 = e + m
s1_rindex = s1.rindex
for x in _RANGE_100:
s1_rindex(s2)
#### Same for partition
@bench('("A"*1000).partition("A")', "early match, single character", 1000)
def partition_test_quick_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("A")
s1_partition = s1.partition
for x in _RANGE_1000:
s1_partition(s2)
@bench('("A"*1000).partition("B")', "no match, single character", 1000)
def partition_test_no_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("B")
s1_partition = s1.partition
for x in _RANGE_1000:
s1_partition(s2)
@bench('("AB"*1000).partition("AB")', "early match, two characters", 1000)
def partition_test_quick_match_two_characters(STR):
s1 = STR("AB" * 1000)
s2 = STR("AB")
s1_partition = s1.partition
for x in _RANGE_1000:
s1_partition(s2)
@bench('("AB"*1000).partition("BC")', "no match, two characters", 1000)
def partition_test_no_match_two_character(STR):
s1 = STR("AB" * 1000)
s2 = STR("BC")
s1_partition = s1.partition
for x in _RANGE_1000:
s1_partition(s2)
@bench('("AB"*300+"C").partition("BC")', "late match, two characters", 1000)
def partition_test_slow_match_two_characters(STR):
s1 = STR("AB" * 300+"C")
s2 = STR("BC")
s1_partition = s1.partition
for x in _RANGE_1000:
s1_partition(s2)
@bench('s="ABC"*33; ((s+"D")*500+s+"E").partition(s+"E")',
"late match, 100 characters", 100)
def partition_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = (m+d)*500 + m+e
s2 = m+e
s1_partition = s1.partition
for x in _RANGE_100:
s1_partition(s2)
#### Same for rpartition
@bench('("A"*1000).rpartition("A")', "early match, single character", 1000)
def rpartition_test_quick_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("A")
s1_rpartition = s1.rpartition
for x in _RANGE_1000:
s1_rpartition(s2)
@bench('("A"*1000).rpartition("B")', "no match, single character", 1000)
def rpartition_test_no_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("B")
s1_rpartition = s1.rpartition
for x in _RANGE_1000:
s1_rpartition(s2)
@bench('("AB"*1000).rpartition("AB")', "early match, two characters", 1000)
def rpartition_test_quick_match_two_characters(STR):
s1 = STR("AB" * 1000)
s2 = STR("AB")
s1_rpartition = s1.rpartition
for x in _RANGE_1000:
s1_rpartition(s2)
@bench('("AB"*1000).rpartition("BC")', "no match, two characters", 1000)
def rpartition_test_no_match_two_character(STR):
s1 = STR("AB" * 1000)
s2 = STR("BC")
s1_rpartition = s1.rpartition
for x in _RANGE_1000:
s1_rpartition(s2)
@bench('("C"+"AB"*300).rpartition("CA")', "late match, two characters", 1000)
def rpartition_test_slow_match_two_characters(STR):
s1 = STR("C" + "AB" * 300)
s2 = STR("CA")
s1_rpartition = s1.rpartition
for x in _RANGE_1000:
s1_rpartition(s2)
@bench('s="ABC"*33; ("E"+s+("D"+s)*500).rpartition("E"+s)',
"late match, 100 characters", 100)
def rpartition_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = e + m + (d+m)*500
s2 = e + m
s1_rpartition = s1.rpartition
for x in _RANGE_100:
s1_rpartition(s2)
#### Same for split(s, 1)
@bench('("A"*1000).split("A", 1)', "early match, single character", 1000)
def split_test_quick_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("A")
s1_split = s1.split
for x in _RANGE_1000:
s1_split(s2, 1)
@bench('("A"*1000).split("B", 1)', "no match, single character", 1000)
def split_test_no_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("B")
s1_split = s1.split
for x in _RANGE_1000:
s1_split(s2, 1)
@bench('("AB"*1000).split("AB", 1)', "early match, two characters", 1000)
def split_test_quick_match_two_characters(STR):
s1 = STR("AB" * 1000)
s2 = STR("AB")
s1_split = s1.split
for x in _RANGE_1000:
s1_split(s2, 1)
@bench('("AB"*1000).split("BC", 1)', "no match, two characters", 1000)
def split_test_no_match_two_character(STR):
s1 = STR("AB" * 1000)
s2 = STR("BC")
s1_split = s1.split
for x in _RANGE_1000:
s1_split(s2, 1)
@bench('("AB"*300+"C").split("BC", 1)', "late match, two characters", 1000)
def split_test_slow_match_two_characters(STR):
s1 = STR("AB" * 300+"C")
s2 = STR("BC")
s1_split = s1.split
for x in _RANGE_1000:
s1_split(s2, 1)
@bench('s="ABC"*33; ((s+"D")*500+s+"E").split(s+"E", 1)',
"late match, 100 characters", 100)
def split_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = (m+d)*500 + m+e
s2 = m+e
s1_split = s1.split
for x in _RANGE_100:
s1_split(s2, 1)
#### Same for rsplit(s, 1)
@bench('("A"*1000).rsplit("A", 1)', "early match, single character", 1000)
def rsplit_test_quick_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("A")
s1_rsplit = s1.rsplit
for x in _RANGE_1000:
s1_rsplit(s2, 1)
@bench('("A"*1000).rsplit("B", 1)', "no match, single character", 1000)
def rsplit_test_no_match_single_character(STR):
s1 = STR("A" * 1000)
s2 = STR("B")
s1_rsplit = s1.rsplit
for x in _RANGE_1000:
s1_rsplit(s2, 1)
@bench('("AB"*1000).rsplit("AB", 1)', "early match, two characters", 1000)
def rsplit_test_quick_match_two_characters(STR):
s1 = STR("AB" * 1000)
s2 = STR("AB")
s1_rsplit = s1.rsplit
for x in _RANGE_1000:
s1_rsplit(s2, 1)
@bench('("AB"*1000).rsplit("BC", 1)', "no match, two characters", 1000)
def rsplit_test_no_match_two_character(STR):
s1 = STR("AB" * 1000)
s2 = STR("BC")
s1_rsplit = s1.rsplit
for x in _RANGE_1000:
s1_rsplit(s2, 1)
@bench('("C"+"AB"*300).rsplit("CA", 1)', "late match, two characters", 1000)
def rsplit_test_slow_match_two_characters(STR):
s1 = STR("C" + "AB" * 300)
s2 = STR("CA")
s1_rsplit = s1.rsplit
for x in _RANGE_1000:
s1_rsplit(s2, 1)
@bench('s="ABC"*33; ("E"+s+("D"+s)*500).rsplit("E"+s, 1)',
"late match, 100 characters", 100)
def rsplit_test_slow_match_100_characters(STR):
m = STR("ABC"*33)
d = STR("D")
e = STR("E")
s1 = e + m + (d+m)*500
s2 = e + m
s1_rsplit = s1.rsplit
for x in _RANGE_100:
s1_rsplit(s2, 1)
#### Benchmark the operator-based methods
@bench('"A"*10', "repeat 1 character 10 times", 1000)
def repeat_single_10_times(STR):
s = STR("A")
for x in _RANGE_1000:
s * 10
@bench('"A"*1000', "repeat 1 character 1000 times", 1000)
def repeat_single_1000_times(STR):
s = STR("A")
for x in _RANGE_1000:
s * 1000
@bench('"ABCDE"*10', "repeat 5 characters 10 times", 1000)
def repeat_5_10_times(STR):
s = STR("ABCDE")
for x in _RANGE_1000:
s * 10
@bench('"ABCDE"*1000', "repeat 5 characters 1000 times", 1000)
def repeat_5_1000_times(STR):
s = STR("ABCDE")
for x in _RANGE_1000:
s * 1000
# + for concat
@bench('"Andrew"+"Dalke"', "concat two strings", 1000)
def concat_two_strings(STR):
s1 = STR("Andrew")
s2 = STR("Dalke")
for x in _RANGE_1000:
s1+s2
@bench('s1+s2+s3+s4+...+s20', "concat 20 strings of words length 4 to 15",
1000)
def concat_many_strings(STR):
s1=STR('TIXSGYNREDCVBHJ')
s2=STR('PUMTLXBZVDO')
s3=STR('FVZNJ')
s4=STR('OGDXUW')
s5=STR('WEIMRNCOYVGHKB')
s6=STR('FCQTNMXPUZH')
s7=STR('TICZJYRLBNVUEAK')
s8=STR('REYB')
s9=STR('PWUOQ')
s10=STR('EQHCMKBS')
s11=STR('AEVDFOH')
s12=STR('IFHVD')
s13=STR('JGTCNLXWOHQ')
s14=STR('ITSKEPYLROZAWXF')
s15=STR('THEK')
s16=STR('GHPZFBUYCKMNJIT')
s17=STR('JMUZ')
s18=STR('WLZQMTB')
s19=STR('KPADCBW')
s20=STR('TNJHZQAGBU')
for x in _RANGE_1000:
(s1 + s2+ s3+ s4+ s5+ s6+ s7+ s8+ s9+s10+
s11+s12+s13+s14+s15+s16+s17+s18+s19+s20)
#### Benchmark join
def get_bytes_yielding_seq(STR, arg):
if STR is BYTES and sys.version_info >= (3,):
raise UnsupportedType
return STR(arg)
@bench('"A".join("")',
"join empty string, with 1 character sep", 100)
def join_empty_single(STR):
sep = STR("A")
s2 = get_bytes_yielding_seq(STR, "")
sep_join = sep.join
for x in _RANGE_100:
sep_join(s2)
@bench('"ABCDE".join("")',
"join empty string, with 5 character sep", 100)
def join_empty_5(STR):
sep = STR("ABCDE")
s2 = get_bytes_yielding_seq(STR, "")
sep_join = sep.join
for x in _RANGE_100:
sep_join(s2)
@bench('"A".join("ABC..Z")',
"join string with 26 characters, with 1 character sep", 1000)
def join_alphabet_single(STR):
sep = STR("A")
s2 = get_bytes_yielding_seq(STR, "ABCDEFGHIJKLMnOPQRSTUVWXYZ")
sep_join = sep.join
for x in _RANGE_1000:
sep_join(s2)
@bench('"ABCDE".join("ABC..Z")',
"join string with 26 characters, with 5 character sep", 1000)
def join_alphabet_5(STR):
sep = STR("ABCDE")
s2 = get_bytes_yielding_seq(STR, "ABCDEFGHIJKLMnOPQRSTUVWXYZ")
sep_join = sep.join
for x in _RANGE_1000:
sep_join(s2)
@bench('"A".join(list("ABC..Z"))',
"join list of 26 characters, with 1 character sep", 1000)
def join_alphabet_list_single(STR):
sep = STR("A")
s2 = [STR(x) for x in "ABCDEFGHIJKLMnOPQRSTUVWXYZ"]
sep_join = sep.join
for x in _RANGE_1000:
sep_join(s2)
@bench('"ABCDE".join(list("ABC..Z"))',
"join list of 26 characters, with 5 character sep", 1000)
def join_alphabet_list_five(STR):
sep = STR("ABCDE")
s2 = [STR(x) for x in "ABCDEFGHIJKLMnOPQRSTUVWXYZ"]
sep_join = sep.join
for x in _RANGE_1000:
sep_join(s2)
@bench('"A".join(["Bob"]*100))',
"join list of 100 words, with 1 character sep", 1000)
def join_100_words_single(STR):
sep = STR("A")
s2 = [STR("Bob")]*100
sep_join = sep.join
for x in _RANGE_1000:
sep_join(s2)
@bench('"ABCDE".join(["Bob"]*100))',
"join list of 100 words, with 5 character sep", 1000)
def join_100_words_5(STR):
sep = STR("ABCDE")
s2 = [STR("Bob")]*100
sep_join = sep.join
for x in _RANGE_1000:
sep_join(s2)
#### split tests
@bench('("Here are some words. "*2).split()', "split whitespace (small)", 1000)
def whitespace_split(STR):
s = STR("Here are some words. "*2)
s_split = s.split
for x in _RANGE_1000:
s_split()
@bench('("Here are some words. "*2).rsplit()', "split whitespace (small)", 1000)
def whitespace_rsplit(STR):
s = STR("Here are some words. "*2)
s_rsplit = s.rsplit
for x in _RANGE_1000:
s_rsplit()
@bench('("Here are some words. "*2).split(None, 1)',
"split 1 whitespace", 1000)
def whitespace_split_1(STR):
s = STR("Here are some words. "*2)
s_split = s.split
N = None
for x in _RANGE_1000:
s_split(N, 1)
@bench('("Here are some words. "*2).rsplit(None, 1)',
"split 1 whitespace", 1000)
def whitespace_rsplit_1(STR):
s = STR("Here are some words. "*2)
s_rsplit = s.rsplit
N = None
for x in _RANGE_1000:
s_rsplit(N, 1)
@bench('("Here are some words. "*2).partition(" ")',
"split 1 whitespace", 1000)
def whitespace_partition(STR):
sep = STR(" ")
s = STR("Here are some words. "*2)
s_partition = s.partition
for x in _RANGE_1000:
s_partition(sep)
@bench('("Here are some words. "*2).rpartition(" ")',
"split 1 whitespace", 1000)
def whitespace_rpartition(STR):
sep = STR(" ")
s = STR("Here are some words. "*2)
s_rpartition = s.rpartition
for x in _RANGE_1000:
s_rpartition(sep)
human_text = """\
Python is a dynamic object-oriented programming language that can be
used for many kinds of software development. It offers strong support
for integration with other languages and tools, comes with extensive
standard libraries, and can be learned in a few days. Many Python
programmers report substantial productivity gains and feel the language
encourages the development of higher quality, more maintainable code.
Python runs on Windows, Linux/Unix, Mac OS X, Amiga, Palm
Handhelds, and Nokia mobile phones. Python has also been ported to the
Java and .NET virtual machines.
Python is distributed under an OSI-approved open source license that
makes it free to use, even for commercial products.
"""*25
human_text_bytes = bytes_from_str(human_text)
human_text_unicode = unicode_from_str(human_text)
def _get_human_text(STR):
if STR is UNICODE:
return human_text_unicode
if STR is BYTES:
return human_text_bytes
raise AssertionError
@bench('human_text.split()', "split whitespace (huge)", 10)
def whitespace_split_huge(STR):
s = _get_human_text(STR)
s_split = s.split
for x in _RANGE_10:
s_split()
@bench('human_text.rsplit()', "split whitespace (huge)", 10)
def whitespace_rsplit_huge(STR):
s = _get_human_text(STR)
s_rsplit = s.rsplit
for x in _RANGE_10:
s_rsplit()
@bench('"this\\nis\\na\\ntest\\n".split("\\n")', "split newlines", 1000)
def newlines_split(STR):
s = STR("this\nis\na\ntest\n")
s_split = s.split
nl = STR("\n")
for x in _RANGE_1000:
s_split(nl)
@bench('"this\\nis\\na\\ntest\\n".rsplit("\\n")', "split newlines", 1000)
def newlines_rsplit(STR):
s = STR("this\nis\na\ntest\n")
s_rsplit = s.rsplit
nl = STR("\n")
for x in _RANGE_1000:
s_rsplit(nl)
@bench('"this\\nis\\na\\ntest\\n".splitlines()', "split newlines", 1000)
def newlines_splitlines(STR):
s = STR("this\nis\na\ntest\n")
s_splitlines = s.splitlines
for x in _RANGE_1000:
s_splitlines()
## split text with 2000 newlines
def _make_2000_lines():
import random
r = random.Random(100)
chars = list(map(chr, range(32, 128)))
i = 0
while i < len(chars):
chars[i] = " "
i += r.randrange(9)
s = "".join(chars)
s = s*4
words = []
for i in range(2000):
start = r.randrange(96)
n = r.randint(5, 65)
words.append(s[start:start+n])
return "\n".join(words)+"\n"
_text_with_2000_lines = _make_2000_lines()
_text_with_2000_lines_bytes = bytes_from_str(_text_with_2000_lines)
_text_with_2000_lines_unicode = unicode_from_str(_text_with_2000_lines)
def _get_2000_lines(STR):
if STR is UNICODE:
return _text_with_2000_lines_unicode
if STR is BYTES:
return _text_with_2000_lines_bytes
raise AssertionError
@bench('"...text...".split("\\n")', "split 2000 newlines", 10)
def newlines_split_2000(STR):
s = _get_2000_lines(STR)
s_split = s.split
nl = STR("\n")
for x in _RANGE_10:
s_split(nl)
@bench('"...text...".rsplit("\\n")', "split 2000 newlines", 10)
def newlines_rsplit_2000(STR):
s = _get_2000_lines(STR)
s_rsplit = s.rsplit
nl = STR("\n")
for x in _RANGE_10:
s_rsplit(nl)
@bench('"...text...".splitlines()', "split 2000 newlines", 10)
def newlines_splitlines_2000(STR):
s = _get_2000_lines(STR)
s_splitlines = s.splitlines
for x in _RANGE_10:
s_splitlines()
## split text on "--" characters
@bench(
'"this--is--a--test--of--the--emergency--broadcast--system".split("--")',
"split on multicharacter separator (small)", 1000)
def split_multichar_sep_small(STR):
s = STR("this--is--a--test--of--the--emergency--broadcast--system")
s_split = s.split
pat = STR("--")
for x in _RANGE_1000:
s_split(pat)
@bench(
'"this--is--a--test--of--the--emergency--broadcast--system".rsplit("--")',
"split on multicharacter separator (small)", 1000)
def rsplit_multichar_sep_small(STR):
s = STR("this--is--a--test--of--the--emergency--broadcast--system")
s_rsplit = s.rsplit
pat = STR("--")
for x in _RANGE_1000:
s_rsplit(pat)
## split dna text on "ACTAT" characters
@bench('dna.split("ACTAT")',
"split on multicharacter separator (dna)", 10)
def split_multichar_sep_dna(STR):
s = _get_dna(STR)
s_split = s.split
pat = STR("ACTAT")
for x in _RANGE_10:
s_split(pat)
@bench('dna.rsplit("ACTAT")',
"split on multicharacter separator (dna)", 10)
def rsplit_multichar_sep_dna(STR):
s = _get_dna(STR)
s_rsplit = s.rsplit
pat = STR("ACTAT")
for x in _RANGE_10:
s_rsplit(pat)
## split with limits
GFF3_example = "\t".join([
"I", "Genomic_canonical", "region", "357208", "396183", ".", "+", ".",
"ID=Sequence:R119;note=Clone R119%3B Genbank AF063007;Name=R119"])
@bench('GFF3_example.split("\\t")', "tab split", 1000)
def tab_split_no_limit(STR):
sep = STR("\t")
s = STR(GFF3_example)
s_split = s.split
for x in _RANGE_1000:
s_split(sep)
@bench('GFF3_example.split("\\t", 8)', "tab split", 1000)
def tab_split_limit(STR):
sep = STR("\t")
s = STR(GFF3_example)
s_split = s.split
for x in _RANGE_1000:
s_split(sep, 8)
@bench('GFF3_example.rsplit("\\t")', "tab split", 1000)
def tab_rsplit_no_limit(STR):
sep = STR("\t")
s = STR(GFF3_example)
s_rsplit = s.rsplit
for x in _RANGE_1000:
s_rsplit(sep)
@bench('GFF3_example.rsplit("\\t", 8)', "tab split", 1000)
def tab_rsplit_limit(STR):
sep = STR("\t")
s = STR(GFF3_example)
s_rsplit = s.rsplit
for x in _RANGE_1000:
s_rsplit(sep, 8)
#### Count characters
@bench('...text.with.2000.newlines.count("\\n")',
"count newlines", 10)
def count_newlines(STR):
s = _get_2000_lines(STR)
s_count = s.count
nl = STR("\n")
for x in _RANGE_10:
s_count(nl)
# Orchid sequences concatenated, from Biopython
_dna = """
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACATAATAATTGATCGGGTT
AATCTGGAGGATCTGTTTACTTTGGTCACCCATGAGCATTTGCTGTTGAAGTGACCTAGAATTGCCATCG
AGCCTCCTTGGGAGCTTTCTTGTTGGCGAGATCTAAACCCTTGCCCGGCGCAGTTTTGCTCCAAGTCGTT
TGACACATAATTGGTGAAGGGGGTGGCATCCTTCCCTGACCCTCCCCCAACTATTTTTTTAACAACTCTC
AGCAACGGAGACTCAGTCTTCGGCAAATGCGATAAATGGTGTGAATTGCAGAATCCCGTGCACCATCGAG
TCTTTGAACGCAAGTTGCGCCCGAGGCCATCAGGCCAAGGGCACGCCTGCCTGGGCATTGCGAGTCATAT
CTCTCCCTTAACGAGGCTGTCCATACATACTGTTCAGCCGGTGCGGATGTGAGTTTGGCCCCTTGTTCTT
TGGTACGGGGGGTCTAAGAGCTGCATGGGCTTTTGATGGTCCTAAATACGGCAAGAGGTGGACGAACTAT
GCTACAACAAAATTGTTGTGCAGAGGCCCCGGGTTGTCGTATTAGATGGGCCACCGTAATCTGAAGACCC
TTTTGAACCCCATTGGAGGCCCATCAACCCATGATCAGTTGATGGCCATTTGGTTGCGACCCCAGGTCAG
GTGAGCAACAGCTGTCGTAACAAGGTTTCCGTAGGGTGAACTGCGGAAGGATCATTGTTGAGATCACATA
ATAATTGATCGAGTTAATCTGGAGGATCTGTTTACTTGGGTCACCCATGGGCATTTGCTGTTGAAGTGAC
CTAGATTTGCCATCGAGCCTCCTTGGGAGCATCCTTGTTGGCGATATCTAAACCCTCAATTTTTCCCCCA
ATCAAATTACACAAAATTGGTGGAGGGGGTGGCATTCTTCCCTTACCCTCCCCCAAATATTTTTTTAACA
ACTCTCAGCAACGGATATCTCAGCTCTTGCATCGATGAAGAACCCACCGAAATGCGATAAATGGTGTGAA
TTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAGGCCATCAGGCCAAGGGCACG
CCTGCCTGGGCATTGCGAGTCATATCTCTCCCTTAACGAGGCTGTCCATACATACTGTTCAGCCGGTGCG
GATGTGAGTTTGGCCCCTTGTTCTTTGGTACGGGGGGTCTAAGAGATGCATGGGCTTTTGATGGTCCTAA
ATACGGCAAGAGGTGGACGAACTATGCTACAACAAAATTGTTGTGCAAAGGCCCCGGGTTGTCGTATAAG
ATGGGCCACCGATATCTGAAGACCCTTTTGGACCCCATTGGAGCCCATCAACCCATGTCAGTTGATGGCC
ATTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACATAATAATTGATCGA
GTTAATCTGGAGGATCTGTTTACTTGGGTCACCCATGGGCATTTGCTGTTGAAGTGACCTAGATTTGCCA
TCGAGCCTCCTTGGGAGCTTTCTTGTTGGCGATATCTAAACCCTTGCCCGGCAGAGTTTTGGGAATCCCG
TGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAGGCCATCAGGCCAAGGGCACGCCTGCCTGGGCAT
TGCGAGTCATATCTCTCCCTTAACGAGGCTGTCCATACACACCTGTTCAGCCGGTGCGGATGTGAGTTTG
GCCCCTTGTTCTTTGGTACGGGGGGTCTAAGAGCTGCATGGGCTTTTGATGGTCCTAAATACGGCAAGAG
GTGGACGAACTATGCTACAACAAAATTGTTGTGCAAAGGCCCCGGGTTGTCGTATTAGATGGGCCACCAT
AATCTGAAGACCCTTTTGAACCCCATTGGAGGCCCATCAACCCATGATCAGTTGATGGCCATTTGGTTGC
GACCCAGTCAGGTGAGGGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACATAATAATTGATCGAG
TTAATCTGGAGGATCTGTTTACTTTGGTCACCCATGGGCATTTGCTGTTGAAGTGACCTAGATTTGCCAT
CGAGCCTCCTTGGGAGCTTTCTTGTTGGCGAGATCTAAACCCTTGCCCGGCGGAGTTTGGCGCCAAGTCA
TATGACACATAATTGGTGAAGGGGGTGGCATCCTGCCCTGACCCTCCCCAAATTATTTTTTTAACAACTC
TCAGCAACGGATATCTCGGCTCTTGCATCGATGAAGAACGCAGCGAAATGCGATAAATGGTGTGAATTGC
AGAATCCCGTGAACCATCGAGTCTTTGGAACGCAAGTTGCGCCCGAGGCCATCAGGCCAAGGGCACGCCT
GCCTGGGCATTGGGAATCATATCTCTCCCCTAACGAGGCTATCCAAACATACTGTTCATCCGGTGCGGAT
GTGAGTTTGGCCCCTTGTTCTTTGGTACCGGGGGTCTAAGAGCTGCATGGGCATTTGATGGTCCTCAAAA
CGGCAAGAGGTGGACGAACTATGCCACAACAAAATTGTTGTCCCAAGGCCCCGGGTTGTCGTATTAGATG
GGCCACCGTAACCTGAAGACCCTTTTGAACCCCATTGGAGGCCCATCAACCCATGATCAGTTGATGACCA
TTTGTTGCGACCCCAGTCAGCTGAGCAACCCGCTGAGTGGAAGGTCATTGCCGATATCACATAATAATTG
ATCGAGTTAATCTGGAGGATCTGTTTACTTGGTCACCCATGAGCATTTGCTGTTGAAGTGACCTAGATTT
GCCATCGAGCCTCCTTGGGAGTTTTCTTGTTGGCGAGATCTAAACCCTTGCCCGGCGGAGTTGTGCGCCA
AGTCATATGACACATAATTGGTGAAGGGGGTGGCATCCTGCCCTGACCCTCCCCAAATTATTTTTTTAAC
AACTCTCAGCAACGGATATCTCGGCTCTTGCATCGATGAAGAACGCAGCGAAATGCGATAAATGGTGTGA
ATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAGGCCATCAGGCCAAGGGCAC
GCCTGCCTGGGCATTGCGAGTCATATCTCTCCCTTAACGAGGCTGTCCATACATACTGTTCATCCGGTGC
GGATGTGAGTTTGGCCCCTTGTTCTTTGGTACGGGGGGTCTAAGAGCTGCATGGGCATTTGATGGTCCTC
AAAACGGCAAGAGGTGGACGAACTATGCTACAACCAAATTGTTGTCCCAAGGCCCCGGGTTGTCGTATTA
GATGGGCCACCGTAACCTGAAGACCCTTTTGAACCCCATTGGAGGCCCATCAACCCATGATCAGTTGATG
ACCATGTGTTGCGACCCCAGTCAGCTGAGCAACGCGCTGAGCGTAACAAGGTTTCCGTAGGTGGACCTCC
GGGAGGATCATTGTTGAGATCACATAATAATTGATCGAGGTAATCTGGAGGATCTGCATATTTTGGTCAC
"""
_dna = "".join(_dna.splitlines())
_dna = _dna * 25
_dna_bytes = bytes_from_str(_dna)
_dna_unicode = unicode_from_str(_dna)
def _get_dna(STR):
if STR is UNICODE:
return _dna_unicode
if STR is BYTES:
return _dna_bytes
raise AssertionError
@bench('dna.count("AACT")', "count AACT substrings in DNA example", 10)
def count_aact(STR):
seq = _get_dna(STR)
seq_count = seq.count
needle = STR("AACT")
for x in _RANGE_10:
seq_count(needle)
##### startswith and endswith
@bench('"Andrew".startswith("A")', 'startswith single character', 1000)
def startswith_single(STR):
s1 = STR("Andrew")
s2 = STR("A")
s1_startswith = s1.startswith
for x in _RANGE_1000:
s1_startswith(s2)
@bench('"Andrew".startswith("Andrew")', 'startswith multiple characters',
1000)
def startswith_multiple(STR):
s1 = STR("Andrew")
s2 = STR("Andrew")
s1_startswith = s1.startswith
for x in _RANGE_1000:
s1_startswith(s2)
@bench('"Andrew".startswith("Anders")',
'startswith multiple characters - not!', 1000)
def startswith_multiple_not(STR):
s1 = STR("Andrew")
s2 = STR("Anders")
s1_startswith = s1.startswith
for x in _RANGE_1000:
s1_startswith(s2)
# endswith
@bench('"Andrew".endswith("w")', 'endswith single character', 1000)
def endswith_single(STR):
s1 = STR("Andrew")
s2 = STR("w")
s1_endswith = s1.endswith
for x in _RANGE_1000:
s1_endswith(s2)
@bench('"Andrew".endswith("Andrew")', 'endswith multiple characters', 1000)
def endswith_multiple(STR):
s1 = STR("Andrew")
s2 = STR("Andrew")
s1_endswith = s1.endswith
for x in _RANGE_1000:
s1_endswith(s2)
@bench('"Andrew".endswith("Anders")',
'endswith multiple characters - not!', 1000)
def endswith_multiple_not(STR):
s1 = STR("Andrew")
s2 = STR("Anders")
s1_endswith = s1.endswith
for x in _RANGE_1000:
s1_endswith(s2)
#### Strip
@bench('"Hello!\\n".strip()', 'strip terminal newline', 1000)
def terminal_newline_strip_right(STR):
s = STR("Hello!\n")
s_strip = s.strip
for x in _RANGE_1000:
s_strip()
@bench('"Hello!\\n".rstrip()', 'strip terminal newline', 1000)
def terminal_newline_rstrip(STR):
s = STR("Hello!\n")
s_rstrip = s.rstrip
for x in _RANGE_1000:
s_rstrip()
@bench('"\\nHello!".strip()', 'strip terminal newline', 1000)
def terminal_newline_strip_left(STR):
s = STR("\nHello!")
s_strip = s.strip
for x in _RANGE_1000:
s_strip()
@bench('"\\nHello!\\n".strip()', 'strip terminal newline', 1000)
def terminal_newline_strip_both(STR):
s = STR("\nHello!\n")
s_strip = s.strip
for x in _RANGE_1000:
s_strip()
@bench('"\\nHello!".rstrip()', 'strip terminal newline', 1000)
def terminal_newline_lstrip(STR):
s = STR("\nHello!")
s_lstrip = s.lstrip
for x in _RANGE_1000:
s_lstrip()
@bench('s="Hello!\\n"; s[:-1] if s[-1]=="\\n" else s',
'strip terminal newline', 1000)
def terminal_newline_if_else(STR):
s = STR("Hello!\n")
NL = STR("\n")
for x in _RANGE_1000:
s[:-1] if (s[-1] == NL) else s
# Strip multiple spaces or tabs
@bench('"Hello\\t \\t".strip()', 'strip terminal spaces and tabs', 1000)
def terminal_space_strip(STR):
s = STR("Hello\t \t!")
s_strip = s.strip
for x in _RANGE_1000:
s_strip()
@bench('"Hello\\t \\t".rstrip()', 'strip terminal spaces and tabs', 1000)
def terminal_space_rstrip(STR):
s = STR("Hello!\t \t")
s_rstrip = s.rstrip
for x in _RANGE_1000:
s_rstrip()
@bench('"\\t \\tHello".rstrip()', 'strip terminal spaces and tabs', 1000)
def terminal_space_lstrip(STR):
s = STR("\t \tHello!")
s_lstrip = s.lstrip
for x in _RANGE_1000:
s_lstrip()
#### replace
@bench('"This is a test".replace(" ", "\\t")', 'replace single character',
1000)
def replace_single_character(STR):
s = STR("This is a test!")
from_str = STR(" ")
to_str = STR("\t")
s_replace = s.replace
for x in _RANGE_1000:
s_replace(from_str, to_str)
@uses_re
@bench('re.sub(" ", "\\t", "This is a test"', 'replace single character',
1000)
def replace_single_character_re(STR):
s = STR("This is a test!")
pat = re.compile(STR(" "))
to_str = STR("\t")
pat_sub = pat.sub
for x in _RANGE_1000:
pat_sub(to_str, s)
@bench('"...text.with.2000.lines...replace("\\n", " ")',
'replace single character, big string', 10)
def replace_single_character_big(STR):
s = _get_2000_lines(STR)
from_str = STR("\n")
to_str = STR(" ")
s_replace = s.replace
for x in _RANGE_10:
s_replace(from_str, to_str)
@uses_re
@bench('re.sub("\\n", " ", "...text.with.2000.lines...")',
'replace single character, big string', 10)
def replace_single_character_big_re(STR):
s = _get_2000_lines(STR)
pat = re.compile(STR("\n"))
to_str = STR(" ")
pat_sub = pat.sub
for x in _RANGE_10:
pat_sub(to_str, s)
@bench('dna.replace("ATC", "ATT")',
'replace multiple characters, dna', 10)
def replace_multiple_characters_dna(STR):
seq = _get_dna(STR)
from_str = STR("ATC")
to_str = STR("ATT")
seq_replace = seq.replace
for x in _RANGE_10:
seq_replace(from_str, to_str)
# This increases the character count
@bench('"...text.with.2000.newlines...replace("\\n", "\\r\\n")',
'replace and expand multiple characters, big string', 10)
def replace_multiple_character_big(STR):
s = _get_2000_lines(STR)
from_str = STR("\n")
to_str = STR("\r\n")
s_replace = s.replace
for x in _RANGE_10:
s_replace(from_str, to_str)
# This decreases the character count
@bench('"When shall we three meet again?".replace("ee", "")',
'replace/remove multiple characters', 1000)
def replace_multiple_character_remove(STR):
s = STR("When shall we three meet again?")
from_str = STR("ee")
to_str = STR("")
s_replace = s.replace
for x in _RANGE_1000:
s_replace(from_str, to_str)
big_s = "A" + ("Z"*128*1024)
big_s_bytes = bytes_from_str(big_s)
big_s_unicode = unicode_from_str(big_s)
def _get_big_s(STR):
if STR is UNICODE: return big_s_unicode
if STR is BYTES: return big_s_bytes
raise AssertionError
# The older replace implementation counted all matches in
# the string even when it only needed to make one replacement.
@bench('("A" + ("Z"*128*1024)).replace("A", "BB", 1)',
'quick replace single character match', 10)
def quick_replace_single_match(STR):
s = _get_big_s(STR)
from_str = STR("A")
to_str = STR("BB")
s_replace = s.replace
for x in _RANGE_10:
s_replace(from_str, to_str, 1)
@bench('("A" + ("Z"*128*1024)).replace("AZZ", "BBZZ", 1)',
'quick replace multiple character match', 10)
def quick_replace_multiple_match(STR):
s = _get_big_s(STR)
from_str = STR("AZZ")
to_str = STR("BBZZ")
s_replace = s.replace
for x in _RANGE_10:
s_replace(from_str, to_str, 1)
####
# CCP does a lot of this, for internationalisation of ingame messages.
_format = "The %(thing)s is %(place)s the %(location)s."
_format_dict = { "thing":"THING", "place":"PLACE", "location":"LOCATION", }
_format_bytes = bytes_from_str(_format)
_format_unicode = unicode_from_str(_format)
_format_dict_bytes = dict((bytes_from_str(k), bytes_from_str(v)) for (k,v) in _format_dict.items())
_format_dict_unicode = dict((unicode_from_str(k), unicode_from_str(v)) for (k,v) in _format_dict.items())
def _get_format(STR):
if STR is UNICODE:
return _format_unicode
if STR is BYTES:
if sys.version_info >= (3,):
raise UnsupportedType
return _format_bytes
raise AssertionError
def _get_format_dict(STR):
if STR is UNICODE:
return _format_dict_unicode
if STR is BYTES:
if sys.version_info >= (3,):
raise UnsupportedType
return _format_dict_bytes
raise AssertionError
# Formatting.
@bench('"The %(k1)s is %(k2)s the %(k3)s."%{"k1":"x","k2":"y","k3":"z",}',
'formatting a string type with a dict', 1000)
def format_with_dict(STR):
s = _get_format(STR)
d = _get_format_dict(STR)
for x in _RANGE_1000:
s % d
#### Upper- and lower- case conversion
@bench('("Where in the world is Carmen San Deigo?"*10).lower()',
"case conversion -- rare", 1000)
def lower_conversion_rare(STR):
s = STR("Where in the world is Carmen San Deigo?"*10)
s_lower = s.lower
for x in _RANGE_1000:
s_lower()
@bench('("WHERE IN THE WORLD IS CARMEN SAN DEIGO?"*10).lower()',
"case conversion -- dense", 1000)
def lower_conversion_dense(STR):
s = STR("WHERE IN THE WORLD IS CARMEN SAN DEIGO?"*10)
s_lower = s.lower
for x in _RANGE_1000:
s_lower()
@bench('("wHERE IN THE WORLD IS cARMEN sAN dEIGO?"*10).upper()',
"case conversion -- rare", 1000)
def upper_conversion_rare(STR):
s = STR("Where in the world is Carmen San Deigo?"*10)
s_upper = s.upper
for x in _RANGE_1000:
s_upper()
@bench('("where in the world is carmen san deigo?"*10).upper()',
"case conversion -- dense", 1000)
def upper_conversion_dense(STR):
s = STR("where in the world is carmen san deigo?"*10)
s_upper = s.upper
for x in _RANGE_1000:
s_upper()
# end of benchmarks
#################
class BenchTimer(timeit.Timer):
def best(self, repeat=1):
for i in range(1, 10):
number = 10**i
x = self.timeit(number)
if x > 0.02:
break
times = [x]
for i in range(1, repeat):
times.append(self.timeit(number))
return min(times) / number
def main():
(options, test_names) = parser.parse_args()
if options.bytes_only and options.unicode_only:
raise SystemExit("Only one of --8-bit and --unicode are allowed")
bench_functions = []
for (k,v) in globals().items():
if hasattr(v, "is_bench"):
if test_names:
for name in test_names:
if name in v.group:
break
else:
# Not selected, ignore
continue
if options.skip_re and hasattr(v, "uses_re"):
continue
bench_functions.append( (v.group, k, v) )
bench_functions.sort()
p("bytes\tunicode")
p("(in ms)\t(in ms)\t%\tcomment")
bytes_total = uni_total = 0.0
for title, group in itertools.groupby(bench_functions,
operator.itemgetter(0)):
# Flush buffer before each group
sys.stdout.flush()
p("="*10, title)
for (_, k, v) in group:
if hasattr(v, "is_bench"):
bytes_time = 0.0
bytes_time_s = " - "
if not options.unicode_only:
try:
bytes_time = BenchTimer("__main__.%s(__main__.BYTES)" % (k,),
"import __main__").best(REPEAT)
bytes_time_s = "%.2f" % (1000 * bytes_time)
bytes_total += bytes_time
except UnsupportedType:
bytes_time_s = "N/A"
uni_time = 0.0
uni_time_s = " - "
if not options.bytes_only:
try:
uni_time = BenchTimer("__main__.%s(__main__.UNICODE)" % (k,),
"import __main__").best(REPEAT)
uni_time_s = "%.2f" % (1000 * uni_time)
uni_total += uni_time
except UnsupportedType:
uni_time_s = "N/A"
try:
average = bytes_time/uni_time
except (TypeError, ZeroDivisionError):
average = 0.0
p("%s\t%s\t%.1f\t%s (*%d)" % (
bytes_time_s, uni_time_s, 100.*average,
v.comment, v.repeat_count))
if bytes_total == uni_total == 0.0:
p("That was zippy!")
else:
try:
ratio = bytes_total/uni_total
except ZeroDivisionError:
ratio = 0.0
p("%.2f\t%.2f\t%.1f\t%s" % (
1000*bytes_total, 1000*uni_total, 100.*ratio,
"TOTAL"))
if __name__ == "__main__":
main()