| """Random variable generators. |
| |
| integers |
| -------- |
| uniform within range |
| |
| sequences |
| --------- |
| pick random element |
| pick random sample |
| generate random permutation |
| |
| distributions on the real line: |
| ------------------------------ |
| uniform |
| triangular |
| normal (Gaussian) |
| lognormal |
| negative exponential |
| gamma |
| beta |
| pareto |
| Weibull |
| |
| distributions on the circle (angles 0 to 2pi) |
| --------------------------------------------- |
| circular uniform |
| von Mises |
| |
| General notes on the underlying Mersenne Twister core generator: |
| |
| * The period is 2**19937-1. |
| * It is one of the most extensively tested generators in existence. |
| * The random() method is implemented in C, executes in a single Python step, |
| and is, therefore, threadsafe. |
| |
| """ |
| |
| from __future__ import division |
| from warnings import warn as _warn |
| from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType |
| from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil |
| from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin |
| from os import urandom as _urandom |
| from collections.abc import Set as _Set, Sequence as _Sequence |
| from hashlib import sha512 as _sha512 |
| |
| __all__ = ["Random","seed","random","uniform","randint","choice","sample", |
| "randrange","shuffle","normalvariate","lognormvariate", |
| "expovariate","vonmisesvariate","gammavariate","triangular", |
| "gauss","betavariate","paretovariate","weibullvariate", |
| "getstate","setstate", "getrandbits", |
| "SystemRandom"] |
| |
| NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0) |
| TWOPI = 2.0*_pi |
| LOG4 = _log(4.0) |
| SG_MAGICCONST = 1.0 + _log(4.5) |
| BPF = 53 # Number of bits in a float |
| RECIP_BPF = 2**-BPF |
| |
| |
| # Translated by Guido van Rossum from C source provided by |
| # Adrian Baddeley. Adapted by Raymond Hettinger for use with |
| # the Mersenne Twister and os.urandom() core generators. |
| |
| import _random |
| |
| class Random(_random.Random): |
| """Random number generator base class used by bound module functions. |
| |
| Used to instantiate instances of Random to get generators that don't |
| share state. |
| |
| Class Random can also be subclassed if you want to use a different basic |
| generator of your own devising: in that case, override the following |
| methods: random(), seed(), getstate(), and setstate(). |
| Optionally, implement a getrandbits() method so that randrange() |
| can cover arbitrarily large ranges. |
| |
| """ |
| |
| VERSION = 3 # used by getstate/setstate |
| |
| def __init__(self, x=None): |
| """Initialize an instance. |
| |
| Optional argument x controls seeding, as for Random.seed(). |
| """ |
| |
| self.seed(x) |
| self.gauss_next = None |
| |
| def seed(self, a=None, version=2): |
| """Initialize internal state from hashable object. |
| |
| None or no argument seeds from current time or from an operating |
| system specific randomness source if available. |
| |
| For version 2 (the default), all of the bits are used if *a *is a str, |
| bytes, or bytearray. For version 1, the hash() of *a* is used instead. |
| |
| If *a* is an int, all bits are used. |
| |
| """ |
| |
| if a is None: |
| try: |
| a = int.from_bytes(_urandom(32), 'big') |
| except NotImplementedError: |
| import time |
| a = int(time.time() * 256) # use fractional seconds |
| |
| if version == 2: |
| if isinstance(a, (str, bytes, bytearray)): |
| if isinstance(a, str): |
| a = a.encode() |
| a += _sha512(a).digest() |
| a = int.from_bytes(a, 'big') |
| |
| super().seed(a) |
| self.gauss_next = None |
| |
| def getstate(self): |
| """Return internal state; can be passed to setstate() later.""" |
| return self.VERSION, super().getstate(), self.gauss_next |
| |
| def setstate(self, state): |
| """Restore internal state from object returned by getstate().""" |
| version = state[0] |
| if version == 3: |
| version, internalstate, self.gauss_next = state |
| super().setstate(internalstate) |
| elif version == 2: |
| version, internalstate, self.gauss_next = state |
| # In version 2, the state was saved as signed ints, which causes |
| # inconsistencies between 32/64-bit systems. The state is |
| # really unsigned 32-bit ints, so we convert negative ints from |
| # version 2 to positive longs for version 3. |
| try: |
| internalstate = tuple(x % (2**32) for x in internalstate) |
| except ValueError as e: |
| raise TypeError from e |
| super().setstate(internalstate) |
| else: |
| raise ValueError("state with version %s passed to " |
| "Random.setstate() of version %s" % |
| (version, self.VERSION)) |
| |
| ## ---- Methods below this point do not need to be overridden when |
| ## ---- subclassing for the purpose of using a different core generator. |
| |
| ## -------------------- pickle support ------------------- |
| |
| def __getstate__(self): # for pickle |
| return self.getstate() |
| |
| def __setstate__(self, state): # for pickle |
| self.setstate(state) |
| |
| def __reduce__(self): |
| return self.__class__, (), self.getstate() |
| |
| ## -------------------- integer methods ------------------- |
| |
| def randrange(self, start, stop=None, step=1, int=int): |
| """Choose a random item from range(start, stop[, step]). |
| |
| This fixes the problem with randint() which includes the |
| endpoint; in Python this is usually not what you want. |
| |
| Do not supply the 'int' argument. |
| """ |
| |
| # This code is a bit messy to make it fast for the |
| # common case while still doing adequate error checking. |
| istart = int(start) |
| if istart != start: |
| raise ValueError("non-integer arg 1 for randrange()") |
| if stop is None: |
| if istart > 0: |
| return self._randbelow(istart) |
| raise ValueError("empty range for randrange()") |
| |
| # stop argument supplied. |
| istop = int(stop) |
| if istop != stop: |
| raise ValueError("non-integer stop for randrange()") |
| width = istop - istart |
| if step == 1 and width > 0: |
| return istart + self._randbelow(width) |
| if step == 1: |
| raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width)) |
| |
| # Non-unit step argument supplied. |
| istep = int(step) |
| if istep != step: |
| raise ValueError("non-integer step for randrange()") |
| if istep > 0: |
| n = (width + istep - 1) // istep |
| elif istep < 0: |
| n = (width + istep + 1) // istep |
| else: |
| raise ValueError("zero step for randrange()") |
| |
| if n <= 0: |
| raise ValueError("empty range for randrange()") |
| |
| return istart + istep*self._randbelow(n) |
| |
| def randint(self, a, b): |
| """Return random integer in range [a, b], including both end points. |
| """ |
| |
| return self.randrange(a, b+1) |
| |
| def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type, |
| Method=_MethodType, BuiltinMethod=_BuiltinMethodType): |
| "Return a random int in the range [0,n). Raises ValueError if n==0." |
| |
| getrandbits = self.getrandbits |
| # Only call self.getrandbits if the original random() builtin method |
| # has not been overridden or if a new getrandbits() was supplied. |
| if type(self.random) is BuiltinMethod or type(getrandbits) is Method: |
| k = n.bit_length() # don't use (n-1) here because n can be 1 |
| r = getrandbits(k) # 0 <= r < 2**k |
| while r >= n: |
| r = getrandbits(k) |
| return r |
| # There's an overriden random() method but no new getrandbits() method, |
| # so we can only use random() from here. |
| random = self.random |
| if n >= maxsize: |
| _warn("Underlying random() generator does not supply \n" |
| "enough bits to choose from a population range this large.\n" |
| "To remove the range limitation, add a getrandbits() method.") |
| return int(random() * n) |
| rem = maxsize % n |
| limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0 |
| r = random() |
| while r >= limit: |
| r = random() |
| return int(r*maxsize) % n |
| |
| ## -------------------- sequence methods ------------------- |
| |
| def choice(self, seq): |
| """Choose a random element from a non-empty sequence.""" |
| try: |
| i = self._randbelow(len(seq)) |
| except ValueError: |
| raise IndexError('Cannot choose from an empty sequence') |
| return seq[i] |
| |
| def shuffle(self, x, random=None, int=int): |
| """x, random=random.random -> shuffle list x in place; return None. |
| |
| Optional arg random is a 0-argument function returning a random |
| float in [0.0, 1.0); by default, the standard random.random. |
| """ |
| |
| randbelow = self._randbelow |
| for i in reversed(range(1, len(x))): |
| # pick an element in x[:i+1] with which to exchange x[i] |
| j = randbelow(i+1) if random is None else int(random() * (i+1)) |
| x[i], x[j] = x[j], x[i] |
| |
| def sample(self, population, k): |
| """Chooses k unique random elements from a population sequence or set. |
| |
| Returns a new list containing elements from the population while |
| leaving the original population unchanged. The resulting list is |
| in selection order so that all sub-slices will also be valid random |
| samples. This allows raffle winners (the sample) to be partitioned |
| into grand prize and second place winners (the subslices). |
| |
| Members of the population need not be hashable or unique. If the |
| population contains repeats, then each occurrence is a possible |
| selection in the sample. |
| |
| To choose a sample in a range of integers, use range as an argument. |
| This is especially fast and space efficient for sampling from a |
| large population: sample(range(10000000), 60) |
| """ |
| |
| # Sampling without replacement entails tracking either potential |
| # selections (the pool) in a list or previous selections in a set. |
| |
| # When the number of selections is small compared to the |
| # population, then tracking selections is efficient, requiring |
| # only a small set and an occasional reselection. For |
| # a larger number of selections, the pool tracking method is |
| # preferred since the list takes less space than the |
| # set and it doesn't suffer from frequent reselections. |
| |
| if isinstance(population, _Set): |
| population = tuple(population) |
| if not isinstance(population, _Sequence): |
| raise TypeError("Population must be a sequence or set. For dicts, use list(d).") |
| randbelow = self._randbelow |
| n = len(population) |
| if not 0 <= k <= n: |
| raise ValueError("Sample larger than population") |
| result = [None] * k |
| setsize = 21 # size of a small set minus size of an empty list |
| if k > 5: |
| setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets |
| if n <= setsize: |
| # An n-length list is smaller than a k-length set |
| pool = list(population) |
| for i in range(k): # invariant: non-selected at [0,n-i) |
| j = randbelow(n-i) |
| result[i] = pool[j] |
| pool[j] = pool[n-i-1] # move non-selected item into vacancy |
| else: |
| selected = set() |
| selected_add = selected.add |
| for i in range(k): |
| j = randbelow(n) |
| while j in selected: |
| j = randbelow(n) |
| selected_add(j) |
| result[i] = population[j] |
| return result |
| |
| ## -------------------- real-valued distributions ------------------- |
| |
| ## -------------------- uniform distribution ------------------- |
| |
| def uniform(self, a, b): |
| "Get a random number in the range [a, b) or [a, b] depending on rounding." |
| return a + (b-a) * self.random() |
| |
| ## -------------------- triangular -------------------- |
| |
| def triangular(self, low=0.0, high=1.0, mode=None): |
| """Triangular distribution. |
| |
| Continuous distribution bounded by given lower and upper limits, |
| and having a given mode value in-between. |
| |
| http://en.wikipedia.org/wiki/Triangular_distribution |
| |
| """ |
| u = self.random() |
| c = 0.5 if mode is None else (mode - low) / (high - low) |
| if u > c: |
| u = 1.0 - u |
| c = 1.0 - c |
| low, high = high, low |
| return low + (high - low) * (u * c) ** 0.5 |
| |
| ## -------------------- normal distribution -------------------- |
| |
| def normalvariate(self, mu, sigma): |
| """Normal distribution. |
| |
| mu is the mean, and sigma is the standard deviation. |
| |
| """ |
| # mu = mean, sigma = standard deviation |
| |
| # Uses Kinderman and Monahan method. Reference: Kinderman, |
| # A.J. and Monahan, J.F., "Computer generation of random |
| # variables using the ratio of uniform deviates", ACM Trans |
| # Math Software, 3, (1977), pp257-260. |
| |
| random = self.random |
| while 1: |
| u1 = random() |
| u2 = 1.0 - random() |
| z = NV_MAGICCONST*(u1-0.5)/u2 |
| zz = z*z/4.0 |
| if zz <= -_log(u2): |
| break |
| return mu + z*sigma |
| |
| ## -------------------- lognormal distribution -------------------- |
| |
| def lognormvariate(self, mu, sigma): |
| """Log normal distribution. |
| |
| If you take the natural logarithm of this distribution, you'll get a |
| normal distribution with mean mu and standard deviation sigma. |
| mu can have any value, and sigma must be greater than zero. |
| |
| """ |
| return _exp(self.normalvariate(mu, sigma)) |
| |
| ## -------------------- exponential distribution -------------------- |
| |
| def expovariate(self, lambd): |
| """Exponential distribution. |
| |
| lambd is 1.0 divided by the desired mean. It should be |
| nonzero. (The parameter would be called "lambda", but that is |
| a reserved word in Python.) Returned values range from 0 to |
| positive infinity if lambd is positive, and from negative |
| infinity to 0 if lambd is negative. |
| |
| """ |
| # lambd: rate lambd = 1/mean |
| # ('lambda' is a Python reserved word) |
| |
| random = self.random |
| u = random() |
| while u <= 1e-7: |
| u = random() |
| return -_log(u)/lambd |
| |
| ## -------------------- von Mises distribution -------------------- |
| |
| def vonmisesvariate(self, mu, kappa): |
| """Circular data distribution. |
| |
| mu is the mean angle, expressed in radians between 0 and 2*pi, and |
| kappa is the concentration parameter, which must be greater than or |
| equal to zero. If kappa is equal to zero, this distribution reduces |
| to a uniform random angle over the range 0 to 2*pi. |
| |
| """ |
| # mu: mean angle (in radians between 0 and 2*pi) |
| # kappa: concentration parameter kappa (>= 0) |
| # if kappa = 0 generate uniform random angle |
| |
| # Based upon an algorithm published in: Fisher, N.I., |
| # "Statistical Analysis of Circular Data", Cambridge |
| # University Press, 1993. |
| |
| # Thanks to Magnus Kessler for a correction to the |
| # implementation of step 4. |
| |
| random = self.random |
| if kappa <= 1e-6: |
| return TWOPI * random() |
| |
| a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa) |
| b = (a - _sqrt(2.0 * a))/(2.0 * kappa) |
| r = (1.0 + b * b)/(2.0 * b) |
| |
| while 1: |
| u1 = random() |
| |
| z = _cos(_pi * u1) |
| f = (1.0 + r * z)/(r + z) |
| c = kappa * (r - f) |
| |
| u2 = random() |
| |
| if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c): |
| break |
| |
| u3 = random() |
| if u3 > 0.5: |
| theta = (mu % TWOPI) + _acos(f) |
| else: |
| theta = (mu % TWOPI) - _acos(f) |
| |
| return theta |
| |
| ## -------------------- gamma distribution -------------------- |
| |
| def gammavariate(self, alpha, beta): |
| """Gamma distribution. Not the gamma function! |
| |
| Conditions on the parameters are alpha > 0 and beta > 0. |
| |
| The probability distribution function is: |
| |
| x ** (alpha - 1) * math.exp(-x / beta) |
| pdf(x) = -------------------------------------- |
| math.gamma(alpha) * beta ** alpha |
| |
| """ |
| |
| # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2 |
| |
| # Warning: a few older sources define the gamma distribution in terms |
| # of alpha > -1.0 |
| if alpha <= 0.0 or beta <= 0.0: |
| raise ValueError('gammavariate: alpha and beta must be > 0.0') |
| |
| random = self.random |
| if alpha > 1.0: |
| |
| # Uses R.C.H. Cheng, "The generation of Gamma |
| # variables with non-integral shape parameters", |
| # Applied Statistics, (1977), 26, No. 1, p71-74 |
| |
| ainv = _sqrt(2.0 * alpha - 1.0) |
| bbb = alpha - LOG4 |
| ccc = alpha + ainv |
| |
| while 1: |
| u1 = random() |
| if not 1e-7 < u1 < .9999999: |
| continue |
| u2 = 1.0 - random() |
| v = _log(u1/(1.0-u1))/ainv |
| x = alpha*_exp(v) |
| z = u1*u1*u2 |
| r = bbb+ccc*v-x |
| if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z): |
| return x * beta |
| |
| elif alpha == 1.0: |
| # expovariate(1) |
| u = random() |
| while u <= 1e-7: |
| u = random() |
| return -_log(u) * beta |
| |
| else: # alpha is between 0 and 1 (exclusive) |
| |
| # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle |
| |
| while 1: |
| u = random() |
| b = (_e + alpha)/_e |
| p = b*u |
| if p <= 1.0: |
| x = p ** (1.0/alpha) |
| else: |
| x = -_log((b-p)/alpha) |
| u1 = random() |
| if p > 1.0: |
| if u1 <= x ** (alpha - 1.0): |
| break |
| elif u1 <= _exp(-x): |
| break |
| return x * beta |
| |
| ## -------------------- Gauss (faster alternative) -------------------- |
| |
| def gauss(self, mu, sigma): |
| """Gaussian distribution. |
| |
| mu is the mean, and sigma is the standard deviation. This is |
| slightly faster than the normalvariate() function. |
| |
| Not thread-safe without a lock around calls. |
| |
| """ |
| |
| # When x and y are two variables from [0, 1), uniformly |
| # distributed, then |
| # |
| # cos(2*pi*x)*sqrt(-2*log(1-y)) |
| # sin(2*pi*x)*sqrt(-2*log(1-y)) |
| # |
| # are two *independent* variables with normal distribution |
| # (mu = 0, sigma = 1). |
| # (Lambert Meertens) |
| # (corrected version; bug discovered by Mike Miller, fixed by LM) |
| |
| # Multithreading note: When two threads call this function |
| # simultaneously, it is possible that they will receive the |
| # same return value. The window is very small though. To |
| # avoid this, you have to use a lock around all calls. (I |
| # didn't want to slow this down in the serial case by using a |
| # lock here.) |
| |
| random = self.random |
| z = self.gauss_next |
| self.gauss_next = None |
| if z is None: |
| x2pi = random() * TWOPI |
| g2rad = _sqrt(-2.0 * _log(1.0 - random())) |
| z = _cos(x2pi) * g2rad |
| self.gauss_next = _sin(x2pi) * g2rad |
| |
| return mu + z*sigma |
| |
| ## -------------------- beta -------------------- |
| ## See |
| ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html |
| ## for Ivan Frohne's insightful analysis of why the original implementation: |
| ## |
| ## def betavariate(self, alpha, beta): |
| ## # Discrete Event Simulation in C, pp 87-88. |
| ## |
| ## y = self.expovariate(alpha) |
| ## z = self.expovariate(1.0/beta) |
| ## return z/(y+z) |
| ## |
| ## was dead wrong, and how it probably got that way. |
| |
| def betavariate(self, alpha, beta): |
| """Beta distribution. |
| |
| Conditions on the parameters are alpha > 0 and beta > 0. |
| Returned values range between 0 and 1. |
| |
| """ |
| |
| # This version due to Janne Sinkkonen, and matches all the std |
| # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution"). |
| y = self.gammavariate(alpha, 1.) |
| if y == 0: |
| return 0.0 |
| else: |
| return y / (y + self.gammavariate(beta, 1.)) |
| |
| ## -------------------- Pareto -------------------- |
| |
| def paretovariate(self, alpha): |
| """Pareto distribution. alpha is the shape parameter.""" |
| # Jain, pg. 495 |
| |
| u = 1.0 - self.random() |
| return 1.0 / u ** (1.0/alpha) |
| |
| ## -------------------- Weibull -------------------- |
| |
| def weibullvariate(self, alpha, beta): |
| """Weibull distribution. |
| |
| alpha is the scale parameter and beta is the shape parameter. |
| |
| """ |
| # Jain, pg. 499; bug fix courtesy Bill Arms |
| |
| u = 1.0 - self.random() |
| return alpha * (-_log(u)) ** (1.0/beta) |
| |
| ## --------------- Operating System Random Source ------------------ |
| |
| class SystemRandom(Random): |
| """Alternate random number generator using sources provided |
| by the operating system (such as /dev/urandom on Unix or |
| CryptGenRandom on Windows). |
| |
| Not available on all systems (see os.urandom() for details). |
| """ |
| |
| def random(self): |
| """Get the next random number in the range [0.0, 1.0).""" |
| return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF |
| |
| def getrandbits(self, k): |
| """getrandbits(k) -> x. Generates a long int with k random bits.""" |
| if k <= 0: |
| raise ValueError('number of bits must be greater than zero') |
| if k != int(k): |
| raise TypeError('number of bits should be an integer') |
| numbytes = (k + 7) // 8 # bits / 8 and rounded up |
| x = int.from_bytes(_urandom(numbytes), 'big') |
| return x >> (numbytes * 8 - k) # trim excess bits |
| |
| def seed(self, *args, **kwds): |
| "Stub method. Not used for a system random number generator." |
| return None |
| |
| def _notimplemented(self, *args, **kwds): |
| "Method should not be called for a system random number generator." |
| raise NotImplementedError('System entropy source does not have state.') |
| getstate = setstate = _notimplemented |
| |
| ## -------------------- test program -------------------- |
| |
| def _test_generator(n, func, args): |
| import time |
| print(n, 'times', func.__name__) |
| total = 0.0 |
| sqsum = 0.0 |
| smallest = 1e10 |
| largest = -1e10 |
| t0 = time.time() |
| for i in range(n): |
| x = func(*args) |
| total += x |
| sqsum = sqsum + x*x |
| smallest = min(x, smallest) |
| largest = max(x, largest) |
| t1 = time.time() |
| print(round(t1-t0, 3), 'sec,', end=' ') |
| avg = total/n |
| stddev = _sqrt(sqsum/n - avg*avg) |
| print('avg %g, stddev %g, min %g, max %g' % \ |
| (avg, stddev, smallest, largest)) |
| |
| |
| def _test(N=2000): |
| _test_generator(N, random, ()) |
| _test_generator(N, normalvariate, (0.0, 1.0)) |
| _test_generator(N, lognormvariate, (0.0, 1.0)) |
| _test_generator(N, vonmisesvariate, (0.0, 1.0)) |
| _test_generator(N, gammavariate, (0.01, 1.0)) |
| _test_generator(N, gammavariate, (0.1, 1.0)) |
| _test_generator(N, gammavariate, (0.1, 2.0)) |
| _test_generator(N, gammavariate, (0.5, 1.0)) |
| _test_generator(N, gammavariate, (0.9, 1.0)) |
| _test_generator(N, gammavariate, (1.0, 1.0)) |
| _test_generator(N, gammavariate, (2.0, 1.0)) |
| _test_generator(N, gammavariate, (20.0, 1.0)) |
| _test_generator(N, gammavariate, (200.0, 1.0)) |
| _test_generator(N, gauss, (0.0, 1.0)) |
| _test_generator(N, betavariate, (3.0, 3.0)) |
| _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0)) |
| |
| # Create one instance, seeded from current time, and export its methods |
| # as module-level functions. The functions share state across all uses |
| #(both in the user's code and in the Python libraries), but that's fine |
| # for most programs and is easier for the casual user than making them |
| # instantiate their own Random() instance. |
| |
| _inst = Random() |
| seed = _inst.seed |
| random = _inst.random |
| uniform = _inst.uniform |
| triangular = _inst.triangular |
| randint = _inst.randint |
| choice = _inst.choice |
| randrange = _inst.randrange |
| sample = _inst.sample |
| shuffle = _inst.shuffle |
| normalvariate = _inst.normalvariate |
| lognormvariate = _inst.lognormvariate |
| expovariate = _inst.expovariate |
| vonmisesvariate = _inst.vonmisesvariate |
| gammavariate = _inst.gammavariate |
| gauss = _inst.gauss |
| betavariate = _inst.betavariate |
| paretovariate = _inst.paretovariate |
| weibullvariate = _inst.weibullvariate |
| getstate = _inst.getstate |
| setstate = _inst.setstate |
| getrandbits = _inst.getrandbits |
| |
| if __name__ == '__main__': |
| _test() |