| |
| |
| /* Long (arbitrary precision) integer object implementation */ |
| |
| /* XXX The functional organization of this file is terrible */ |
| |
| #include "Python.h" |
| #include "longintrepr.h" |
| #include "structseq.h" |
| |
| #include <float.h> |
| #include <ctype.h> |
| #include <stddef.h> |
| |
| /* For long multiplication, use the O(N**2) school algorithm unless |
| * both operands contain more than KARATSUBA_CUTOFF digits (this |
| * being an internal Python long digit, in base PyLong_BASE). |
| */ |
| #define KARATSUBA_CUTOFF 70 |
| #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF) |
| |
| /* For exponentiation, use the binary left-to-right algorithm |
| * unless the exponent contains more than FIVEARY_CUTOFF digits. |
| * In that case, do 5 bits at a time. The potential drawback is that |
| * a table of 2**5 intermediate results is computed. |
| */ |
| #define FIVEARY_CUTOFF 8 |
| |
| #define ABS(x) ((x) < 0 ? -(x) : (x)) |
| |
| #undef MIN |
| #undef MAX |
| #define MAX(x, y) ((x) < (y) ? (y) : (x)) |
| #define MIN(x, y) ((x) > (y) ? (y) : (x)) |
| |
| #define SIGCHECK(PyTryBlock) \ |
| if (--_Py_Ticker < 0) { \ |
| _Py_Ticker = _Py_CheckInterval; \ |
| if (PyErr_CheckSignals()) PyTryBlock \ |
| } |
| |
| /* forward declaration */ |
| static int bits_in_digit(digit d); |
| |
| /* Normalize (remove leading zeros from) a long int object. |
| Doesn't attempt to free the storage--in most cases, due to the nature |
| of the algorithms used, this could save at most be one word anyway. */ |
| |
| static PyLongObject * |
| long_normalize(register PyLongObject *v) |
| { |
| Py_ssize_t j = ABS(Py_SIZE(v)); |
| Py_ssize_t i = j; |
| |
| while (i > 0 && v->ob_digit[i-1] == 0) |
| --i; |
| if (i != j) |
| Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i; |
| return v; |
| } |
| |
| /* Allocate a new long int object with size digits. |
| Return NULL and set exception if we run out of memory. */ |
| |
| #define MAX_LONG_DIGITS \ |
| ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit)) |
| |
| PyLongObject * |
| _PyLong_New(Py_ssize_t size) |
| { |
| if (size > (Py_ssize_t)MAX_LONG_DIGITS) { |
| PyErr_SetString(PyExc_OverflowError, |
| "too many digits in integer"); |
| return NULL; |
| } |
| /* coverity[ampersand_in_size] */ |
| /* XXX(nnorwitz): PyObject_NEW_VAR / _PyObject_VAR_SIZE need to detect |
| overflow */ |
| return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size); |
| } |
| |
| PyObject * |
| _PyLong_Copy(PyLongObject *src) |
| { |
| PyLongObject *result; |
| Py_ssize_t i; |
| |
| assert(src != NULL); |
| i = src->ob_size; |
| if (i < 0) |
| i = -(i); |
| result = _PyLong_New(i); |
| if (result != NULL) { |
| result->ob_size = src->ob_size; |
| while (--i >= 0) |
| result->ob_digit[i] = src->ob_digit[i]; |
| } |
| return (PyObject *)result; |
| } |
| |
| /* Create a new long int object from a C long int */ |
| |
| PyObject * |
| PyLong_FromLong(long ival) |
| { |
| PyLongObject *v; |
| unsigned long abs_ival; |
| unsigned long t; /* unsigned so >> doesn't propagate sign bit */ |
| int ndigits = 0; |
| int negative = 0; |
| |
| if (ival < 0) { |
| /* if LONG_MIN == -LONG_MAX-1 (true on most platforms) then |
| ANSI C says that the result of -ival is undefined when ival |
| == LONG_MIN. Hence the following workaround. */ |
| abs_ival = (unsigned long)(-1-ival) + 1; |
| negative = 1; |
| } |
| else { |
| abs_ival = (unsigned long)ival; |
| } |
| |
| /* Count the number of Python digits. |
| We used to pick 5 ("big enough for anything"), but that's a |
| waste of time and space given that 5*15 = 75 bits are rarely |
| needed. */ |
| t = abs_ival; |
| while (t) { |
| ++ndigits; |
| t >>= PyLong_SHIFT; |
| } |
| v = _PyLong_New(ndigits); |
| if (v != NULL) { |
| digit *p = v->ob_digit; |
| v->ob_size = negative ? -ndigits : ndigits; |
| t = abs_ival; |
| while (t) { |
| *p++ = (digit)(t & PyLong_MASK); |
| t >>= PyLong_SHIFT; |
| } |
| } |
| return (PyObject *)v; |
| } |
| |
| /* Create a new long int object from a C unsigned long int */ |
| |
| PyObject * |
| PyLong_FromUnsignedLong(unsigned long ival) |
| { |
| PyLongObject *v; |
| unsigned long t; |
| int ndigits = 0; |
| |
| /* Count the number of Python digits. */ |
| t = (unsigned long)ival; |
| while (t) { |
| ++ndigits; |
| t >>= PyLong_SHIFT; |
| } |
| v = _PyLong_New(ndigits); |
| if (v != NULL) { |
| digit *p = v->ob_digit; |
| Py_SIZE(v) = ndigits; |
| while (ival) { |
| *p++ = (digit)(ival & PyLong_MASK); |
| ival >>= PyLong_SHIFT; |
| } |
| } |
| return (PyObject *)v; |
| } |
| |
| /* Create a new long int object from a C double */ |
| |
| PyObject * |
| PyLong_FromDouble(double dval) |
| { |
| PyLongObject *v; |
| double frac; |
| int i, ndig, expo, neg; |
| neg = 0; |
| if (Py_IS_INFINITY(dval)) { |
| PyErr_SetString(PyExc_OverflowError, |
| "cannot convert float infinity to integer"); |
| return NULL; |
| } |
| if (Py_IS_NAN(dval)) { |
| PyErr_SetString(PyExc_ValueError, |
| "cannot convert float NaN to integer"); |
| return NULL; |
| } |
| if (dval < 0.0) { |
| neg = 1; |
| dval = -dval; |
| } |
| frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ |
| if (expo <= 0) |
| return PyLong_FromLong(0L); |
| ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */ |
| v = _PyLong_New(ndig); |
| if (v == NULL) |
| return NULL; |
| frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1); |
| for (i = ndig; --i >= 0; ) { |
| digit bits = (digit)frac; |
| v->ob_digit[i] = bits; |
| frac = frac - (double)bits; |
| frac = ldexp(frac, PyLong_SHIFT); |
| } |
| if (neg) |
| Py_SIZE(v) = -(Py_SIZE(v)); |
| return (PyObject *)v; |
| } |
| |
| /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define |
| * anything about what happens when a signed integer operation overflows, |
| * and some compilers think they're doing you a favor by being "clever" |
| * then. The bit pattern for the largest postive signed long is |
| * (unsigned long)LONG_MAX, and for the smallest negative signed long |
| * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN. |
| * However, some other compilers warn about applying unary minus to an |
| * unsigned operand. Hence the weird "0-". |
| */ |
| #define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN) |
| #define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN) |
| |
| /* Get a C long int from a long int object. |
| Returns -1 and sets an error condition if overflow occurs. */ |
| |
| long |
| PyLong_AsLong(PyObject *vv) |
| { |
| /* This version by Tim Peters */ |
| register PyLongObject *v; |
| unsigned long x, prev; |
| Py_ssize_t i; |
| int sign; |
| |
| if (vv == NULL || !PyLong_Check(vv)) { |
| if (vv != NULL && PyInt_Check(vv)) |
| return PyInt_AsLong(vv); |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| v = (PyLongObject *)vv; |
| i = v->ob_size; |
| sign = 1; |
| x = 0; |
| if (i < 0) { |
| sign = -1; |
| i = -(i); |
| } |
| while (--i >= 0) { |
| prev = x; |
| x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
| if ((x >> PyLong_SHIFT) != prev) |
| goto overflow; |
| } |
| /* Haven't lost any bits, but casting to long requires extra care |
| * (see comment above). |
| */ |
| if (x <= (unsigned long)LONG_MAX) { |
| return (long)x * sign; |
| } |
| else if (sign < 0 && x == PY_ABS_LONG_MIN) { |
| return LONG_MIN; |
| } |
| /* else overflow */ |
| |
| overflow: |
| PyErr_SetString(PyExc_OverflowError, |
| "long int too large to convert to int"); |
| return -1; |
| } |
| |
| /* Get a Py_ssize_t from a long int object. |
| Returns -1 and sets an error condition if overflow occurs. */ |
| |
| Py_ssize_t |
| PyLong_AsSsize_t(PyObject *vv) { |
| register PyLongObject *v; |
| size_t x, prev; |
| Py_ssize_t i; |
| int sign; |
| |
| if (vv == NULL || !PyLong_Check(vv)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| v = (PyLongObject *)vv; |
| i = v->ob_size; |
| sign = 1; |
| x = 0; |
| if (i < 0) { |
| sign = -1; |
| i = -(i); |
| } |
| while (--i >= 0) { |
| prev = x; |
| x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
| if ((x >> PyLong_SHIFT) != prev) |
| goto overflow; |
| } |
| /* Haven't lost any bits, but casting to a signed type requires |
| * extra care (see comment above). |
| */ |
| if (x <= (size_t)PY_SSIZE_T_MAX) { |
| return (Py_ssize_t)x * sign; |
| } |
| else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) { |
| return PY_SSIZE_T_MIN; |
| } |
| /* else overflow */ |
| |
| overflow: |
| PyErr_SetString(PyExc_OverflowError, |
| "long int too large to convert to int"); |
| return -1; |
| } |
| |
| /* Get a C unsigned long int from a long int object. |
| Returns -1 and sets an error condition if overflow occurs. */ |
| |
| unsigned long |
| PyLong_AsUnsignedLong(PyObject *vv) |
| { |
| register PyLongObject *v; |
| unsigned long x, prev; |
| Py_ssize_t i; |
| |
| if (vv == NULL || !PyLong_Check(vv)) { |
| if (vv != NULL && PyInt_Check(vv)) { |
| long val = PyInt_AsLong(vv); |
| if (val < 0) { |
| PyErr_SetString(PyExc_OverflowError, |
| "can't convert negative value to unsigned long"); |
| return (unsigned long) -1; |
| } |
| return val; |
| } |
| PyErr_BadInternalCall(); |
| return (unsigned long) -1; |
| } |
| v = (PyLongObject *)vv; |
| i = Py_SIZE(v); |
| x = 0; |
| if (i < 0) { |
| PyErr_SetString(PyExc_OverflowError, |
| "can't convert negative value to unsigned long"); |
| return (unsigned long) -1; |
| } |
| while (--i >= 0) { |
| prev = x; |
| x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
| if ((x >> PyLong_SHIFT) != prev) { |
| PyErr_SetString(PyExc_OverflowError, |
| "long int too large to convert"); |
| return (unsigned long) -1; |
| } |
| } |
| return x; |
| } |
| |
| /* Get a C unsigned long int from a long int object, ignoring the high bits. |
| Returns -1 and sets an error condition if an error occurs. */ |
| |
| unsigned long |
| PyLong_AsUnsignedLongMask(PyObject *vv) |
| { |
| register PyLongObject *v; |
| unsigned long x; |
| Py_ssize_t i; |
| int sign; |
| |
| if (vv == NULL || !PyLong_Check(vv)) { |
| if (vv != NULL && PyInt_Check(vv)) |
| return PyInt_AsUnsignedLongMask(vv); |
| PyErr_BadInternalCall(); |
| return (unsigned long) -1; |
| } |
| v = (PyLongObject *)vv; |
| i = v->ob_size; |
| sign = 1; |
| x = 0; |
| if (i < 0) { |
| sign = -1; |
| i = -i; |
| } |
| while (--i >= 0) { |
| x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
| } |
| return x * sign; |
| } |
| |
| int |
| _PyLong_Sign(PyObject *vv) |
| { |
| PyLongObject *v = (PyLongObject *)vv; |
| |
| assert(v != NULL); |
| assert(PyLong_Check(v)); |
| |
| return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1); |
| } |
| |
| size_t |
| _PyLong_NumBits(PyObject *vv) |
| { |
| PyLongObject *v = (PyLongObject *)vv; |
| size_t result = 0; |
| Py_ssize_t ndigits; |
| |
| assert(v != NULL); |
| assert(PyLong_Check(v)); |
| ndigits = ABS(Py_SIZE(v)); |
| assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); |
| if (ndigits > 0) { |
| digit msd = v->ob_digit[ndigits - 1]; |
| |
| result = (ndigits - 1) * PyLong_SHIFT; |
| if (result / PyLong_SHIFT != (size_t)(ndigits - 1)) |
| goto Overflow; |
| do { |
| ++result; |
| if (result == 0) |
| goto Overflow; |
| msd >>= 1; |
| } while (msd); |
| } |
| return result; |
| |
| Overflow: |
| PyErr_SetString(PyExc_OverflowError, "long has too many bits " |
| "to express in a platform size_t"); |
| return (size_t)-1; |
| } |
| |
| PyObject * |
| _PyLong_FromByteArray(const unsigned char* bytes, size_t n, |
| int little_endian, int is_signed) |
| { |
| const unsigned char* pstartbyte;/* LSB of bytes */ |
| int incr; /* direction to move pstartbyte */ |
| const unsigned char* pendbyte; /* MSB of bytes */ |
| size_t numsignificantbytes; /* number of bytes that matter */ |
| Py_ssize_t ndigits; /* number of Python long digits */ |
| PyLongObject* v; /* result */ |
| Py_ssize_t idigit = 0; /* next free index in v->ob_digit */ |
| |
| if (n == 0) |
| return PyLong_FromLong(0L); |
| |
| if (little_endian) { |
| pstartbyte = bytes; |
| pendbyte = bytes + n - 1; |
| incr = 1; |
| } |
| else { |
| pstartbyte = bytes + n - 1; |
| pendbyte = bytes; |
| incr = -1; |
| } |
| |
| if (is_signed) |
| is_signed = *pendbyte >= 0x80; |
| |
| /* Compute numsignificantbytes. This consists of finding the most |
| significant byte. Leading 0 bytes are insignficant if the number |
| is positive, and leading 0xff bytes if negative. */ |
| { |
| size_t i; |
| const unsigned char* p = pendbyte; |
| const int pincr = -incr; /* search MSB to LSB */ |
| const unsigned char insignficant = is_signed ? 0xff : 0x00; |
| |
| for (i = 0; i < n; ++i, p += pincr) { |
| if (*p != insignficant) |
| break; |
| } |
| numsignificantbytes = n - i; |
| /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so |
| actually has 2 significant bytes. OTOH, 0xff0001 == |
| -0x00ffff, so we wouldn't *need* to bump it there; but we |
| do for 0xffff = -0x0001. To be safe without bothering to |
| check every case, bump it regardless. */ |
| if (is_signed && numsignificantbytes < n) |
| ++numsignificantbytes; |
| } |
| |
| /* How many Python long digits do we need? We have |
| 8*numsignificantbytes bits, and each Python long digit has |
| PyLong_SHIFT bits, so it's the ceiling of the quotient. */ |
| /* catch overflow before it happens */ |
| if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) { |
| PyErr_SetString(PyExc_OverflowError, |
| "byte array too long to convert to int"); |
| return NULL; |
| } |
| ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT; |
| v = _PyLong_New(ndigits); |
| if (v == NULL) |
| return NULL; |
| |
| /* Copy the bits over. The tricky parts are computing 2's-comp on |
| the fly for signed numbers, and dealing with the mismatch between |
| 8-bit bytes and (probably) 15-bit Python digits.*/ |
| { |
| size_t i; |
| twodigits carry = 1; /* for 2's-comp calculation */ |
| twodigits accum = 0; /* sliding register */ |
| unsigned int accumbits = 0; /* number of bits in accum */ |
| const unsigned char* p = pstartbyte; |
| |
| for (i = 0; i < numsignificantbytes; ++i, p += incr) { |
| twodigits thisbyte = *p; |
| /* Compute correction for 2's comp, if needed. */ |
| if (is_signed) { |
| thisbyte = (0xff ^ thisbyte) + carry; |
| carry = thisbyte >> 8; |
| thisbyte &= 0xff; |
| } |
| /* Because we're going LSB to MSB, thisbyte is |
| more significant than what's already in accum, |
| so needs to be prepended to accum. */ |
| accum |= (twodigits)thisbyte << accumbits; |
| accumbits += 8; |
| if (accumbits >= PyLong_SHIFT) { |
| /* There's enough to fill a Python digit. */ |
| assert(idigit < ndigits); |
| v->ob_digit[idigit] = (digit)(accum & |
| PyLong_MASK); |
| ++idigit; |
| accum >>= PyLong_SHIFT; |
| accumbits -= PyLong_SHIFT; |
| assert(accumbits < PyLong_SHIFT); |
| } |
| } |
| assert(accumbits < PyLong_SHIFT); |
| if (accumbits) { |
| assert(idigit < ndigits); |
| v->ob_digit[idigit] = (digit)accum; |
| ++idigit; |
| } |
| } |
| |
| Py_SIZE(v) = is_signed ? -idigit : idigit; |
| return (PyObject *)long_normalize(v); |
| } |
| |
| int |
| _PyLong_AsByteArray(PyLongObject* v, |
| unsigned char* bytes, size_t n, |
| int little_endian, int is_signed) |
| { |
| Py_ssize_t i; /* index into v->ob_digit */ |
| Py_ssize_t ndigits; /* |v->ob_size| */ |
| twodigits accum; /* sliding register */ |
| unsigned int accumbits; /* # bits in accum */ |
| int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */ |
| digit carry; /* for computing 2's-comp */ |
| size_t j; /* # bytes filled */ |
| unsigned char* p; /* pointer to next byte in bytes */ |
| int pincr; /* direction to move p */ |
| |
| assert(v != NULL && PyLong_Check(v)); |
| |
| if (Py_SIZE(v) < 0) { |
| ndigits = -(Py_SIZE(v)); |
| if (!is_signed) { |
| PyErr_SetString(PyExc_OverflowError, |
| "can't convert negative long to unsigned"); |
| return -1; |
| } |
| do_twos_comp = 1; |
| } |
| else { |
| ndigits = Py_SIZE(v); |
| do_twos_comp = 0; |
| } |
| |
| if (little_endian) { |
| p = bytes; |
| pincr = 1; |
| } |
| else { |
| p = bytes + n - 1; |
| pincr = -1; |
| } |
| |
| /* Copy over all the Python digits. |
| It's crucial that every Python digit except for the MSD contribute |
| exactly PyLong_SHIFT bits to the total, so first assert that the long is |
| normalized. */ |
| assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); |
| j = 0; |
| accum = 0; |
| accumbits = 0; |
| carry = do_twos_comp ? 1 : 0; |
| for (i = 0; i < ndigits; ++i) { |
| digit thisdigit = v->ob_digit[i]; |
| if (do_twos_comp) { |
| thisdigit = (thisdigit ^ PyLong_MASK) + carry; |
| carry = thisdigit >> PyLong_SHIFT; |
| thisdigit &= PyLong_MASK; |
| } |
| /* Because we're going LSB to MSB, thisdigit is more |
| significant than what's already in accum, so needs to be |
| prepended to accum. */ |
| accum |= (twodigits)thisdigit << accumbits; |
| |
| /* The most-significant digit may be (probably is) at least |
| partly empty. */ |
| if (i == ndigits - 1) { |
| /* Count # of sign bits -- they needn't be stored, |
| * although for signed conversion we need later to |
| * make sure at least one sign bit gets stored. */ |
| digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : |
| thisdigit; |
| while (s != 0) { |
| s >>= 1; |
| accumbits++; |
| } |
| } |
| else |
| accumbits += PyLong_SHIFT; |
| |
| /* Store as many bytes as possible. */ |
| while (accumbits >= 8) { |
| if (j >= n) |
| goto Overflow; |
| ++j; |
| *p = (unsigned char)(accum & 0xff); |
| p += pincr; |
| accumbits -= 8; |
| accum >>= 8; |
| } |
| } |
| |
| /* Store the straggler (if any). */ |
| assert(accumbits < 8); |
| assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */ |
| if (accumbits > 0) { |
| if (j >= n) |
| goto Overflow; |
| ++j; |
| if (do_twos_comp) { |
| /* Fill leading bits of the byte with sign bits |
| (appropriately pretending that the long had an |
| infinite supply of sign bits). */ |
| accum |= (~(twodigits)0) << accumbits; |
| } |
| *p = (unsigned char)(accum & 0xff); |
| p += pincr; |
| } |
| else if (j == n && n > 0 && is_signed) { |
| /* The main loop filled the byte array exactly, so the code |
| just above didn't get to ensure there's a sign bit, and the |
| loop below wouldn't add one either. Make sure a sign bit |
| exists. */ |
| unsigned char msb = *(p - pincr); |
| int sign_bit_set = msb >= 0x80; |
| assert(accumbits == 0); |
| if (sign_bit_set == do_twos_comp) |
| return 0; |
| else |
| goto Overflow; |
| } |
| |
| /* Fill remaining bytes with copies of the sign bit. */ |
| { |
| unsigned char signbyte = do_twos_comp ? 0xffU : 0U; |
| for ( ; j < n; ++j, p += pincr) |
| *p = signbyte; |
| } |
| |
| return 0; |
| |
| Overflow: |
| PyErr_SetString(PyExc_OverflowError, "long too big to convert"); |
| return -1; |
| |
| } |
| |
| double |
| _PyLong_AsScaledDouble(PyObject *vv, int *exponent) |
| { |
| /* NBITS_WANTED should be > the number of bits in a double's precision, |
| but small enough so that 2**NBITS_WANTED is within the normal double |
| range. nbitsneeded is set to 1 less than that because the most-significant |
| Python digit contains at least 1 significant bit, but we don't want to |
| bother counting them (catering to the worst case cheaply). |
| |
| 57 is one more than VAX-D double precision; I (Tim) don't know of a double |
| format with more precision than that; it's 1 larger so that we add in at |
| least one round bit to stand in for the ignored least-significant bits. |
| */ |
| #define NBITS_WANTED 57 |
| PyLongObject *v; |
| double x; |
| const double multiplier = (double)(1L << PyLong_SHIFT); |
| Py_ssize_t i; |
| int sign; |
| int nbitsneeded; |
| |
| if (vv == NULL || !PyLong_Check(vv)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| v = (PyLongObject *)vv; |
| i = Py_SIZE(v); |
| sign = 1; |
| if (i < 0) { |
| sign = -1; |
| i = -(i); |
| } |
| else if (i == 0) { |
| *exponent = 0; |
| return 0.0; |
| } |
| --i; |
| x = (double)v->ob_digit[i]; |
| nbitsneeded = NBITS_WANTED - 1; |
| /* Invariant: i Python digits remain unaccounted for. */ |
| while (i > 0 && nbitsneeded > 0) { |
| --i; |
| x = x * multiplier + (double)v->ob_digit[i]; |
| nbitsneeded -= PyLong_SHIFT; |
| } |
| /* There are i digits we didn't shift in. Pretending they're all |
| zeroes, the true value is x * 2**(i*PyLong_SHIFT). */ |
| *exponent = i; |
| assert(x > 0.0); |
| return x * sign; |
| #undef NBITS_WANTED |
| } |
| |
| /* Get a C double from a long int object. Rounds to the nearest double, |
| using the round-half-to-even rule in the case of a tie. */ |
| |
| double |
| PyLong_AsDouble(PyObject *vv) |
| { |
| PyLongObject *v = (PyLongObject *)vv; |
| Py_ssize_t rnd_digit, rnd_bit, m, n; |
| digit lsb, *d; |
| int round_up = 0; |
| double x; |
| |
| if (vv == NULL || !PyLong_Check(vv)) { |
| PyErr_BadInternalCall(); |
| return -1.0; |
| } |
| |
| /* Notes on the method: for simplicity, assume v is positive and >= |
| 2**DBL_MANT_DIG. (For negative v we just ignore the sign until the |
| end; for small v no rounding is necessary.) Write n for the number |
| of bits in v, so that 2**(n-1) <= v < 2**n, and n > DBL_MANT_DIG. |
| |
| Some terminology: the *rounding bit* of v is the 1st bit of v that |
| will be rounded away (bit n - DBL_MANT_DIG - 1); the *parity bit* |
| is the bit immediately above. The round-half-to-even rule says |
| that we round up if the rounding bit is set, unless v is exactly |
| halfway between two floats and the parity bit is zero. |
| |
| Write d[0] ... d[m] for the digits of v, least to most significant. |
| Let rnd_bit be the index of the rounding bit, and rnd_digit the |
| index of the PyLong digit containing the rounding bit. Then the |
| bits of the digit d[rnd_digit] look something like: |
| |
| rounding bit |
| | |
| v |
| msb -> sssssrttttttttt <- lsb |
| ^ |
| | |
| parity bit |
| |
| where 's' represents a 'significant bit' that will be included in |
| the mantissa of the result, 'r' is the rounding bit, and 't' |
| represents a 'trailing bit' following the rounding bit. Note that |
| if the rounding bit is at the top of d[rnd_digit] then the parity |
| bit will be the lsb of d[rnd_digit+1]. If we set |
| |
| lsb = 1 << (rnd_bit % PyLong_SHIFT) |
| |
| then d[rnd_digit] & (PyLong_BASE - 2*lsb) selects just the |
| significant bits of d[rnd_digit], d[rnd_digit] & (lsb-1) gets the |
| trailing bits, and d[rnd_digit] & lsb gives the rounding bit. |
| |
| We initialize the double x to the integer given by digits |
| d[rnd_digit:m-1], but with the rounding bit and trailing bits of |
| d[rnd_digit] masked out. So the value of x comes from the top |
| DBL_MANT_DIG bits of v, multiplied by 2*lsb. Note that in the loop |
| that produces x, all floating-point operations are exact (assuming |
| that FLT_RADIX==2). Now if we're rounding down, the value we want |
| to return is simply |
| |
| x * 2**(PyLong_SHIFT * rnd_digit). |
| |
| and if we're rounding up, it's |
| |
| (x + 2*lsb) * 2**(PyLong_SHIFT * rnd_digit). |
| |
| Under the round-half-to-even rule, we round up if, and only |
| if, the rounding bit is set *and* at least one of the |
| following three conditions is satisfied: |
| |
| (1) the parity bit is set, or |
| (2) at least one of the trailing bits of d[rnd_digit] is set, or |
| (3) at least one of the digits d[i], 0 <= i < rnd_digit |
| is nonzero. |
| |
| Finally, we have to worry about overflow. If v >= 2**DBL_MAX_EXP, |
| or equivalently n > DBL_MAX_EXP, then overflow occurs. If v < |
| 2**DBL_MAX_EXP then we're usually safe, but there's a corner case |
| to consider: if v is very close to 2**DBL_MAX_EXP then it's |
| possible that v is rounded up to exactly 2**DBL_MAX_EXP, and then |
| again overflow occurs. |
| */ |
| |
| if (Py_SIZE(v) == 0) |
| return 0.0; |
| m = ABS(Py_SIZE(v)) - 1; |
| d = v->ob_digit; |
| assert(d[m]); /* v should be normalized */ |
| |
| /* fast path for case where 0 < abs(v) < 2**DBL_MANT_DIG */ |
| if (m < DBL_MANT_DIG / PyLong_SHIFT || |
| (m == DBL_MANT_DIG / PyLong_SHIFT && |
| d[m] < (digit)1 << DBL_MANT_DIG%PyLong_SHIFT)) { |
| x = d[m]; |
| while (--m >= 0) |
| x = x*PyLong_BASE + d[m]; |
| return Py_SIZE(v) < 0 ? -x : x; |
| } |
| |
| /* if m is huge then overflow immediately; otherwise, compute the |
| number of bits n in v. The condition below implies n (= #bits) >= |
| m * PyLong_SHIFT + 1 > DBL_MAX_EXP, hence v >= 2**DBL_MAX_EXP. */ |
| if (m > (DBL_MAX_EXP-1)/PyLong_SHIFT) |
| goto overflow; |
| n = m * PyLong_SHIFT + bits_in_digit(d[m]); |
| if (n > DBL_MAX_EXP) |
| goto overflow; |
| |
| /* find location of rounding bit */ |
| assert(n > DBL_MANT_DIG); /* dealt with |v| < 2**DBL_MANT_DIG above */ |
| rnd_bit = n - DBL_MANT_DIG - 1; |
| rnd_digit = rnd_bit/PyLong_SHIFT; |
| lsb = (digit)1 << (rnd_bit%PyLong_SHIFT); |
| |
| /* Get top DBL_MANT_DIG bits of v. Assumes PyLong_SHIFT < |
| DBL_MANT_DIG, so we'll need bits from at least 2 digits of v. */ |
| x = d[m]; |
| assert(m > rnd_digit); |
| while (--m > rnd_digit) |
| x = x*PyLong_BASE + d[m]; |
| x = x*PyLong_BASE + (d[m] & (PyLong_BASE-2*lsb)); |
| |
| /* decide whether to round up, using round-half-to-even */ |
| assert(m == rnd_digit); |
| if (d[m] & lsb) { /* if (rounding bit is set) */ |
| digit parity_bit; |
| if (lsb == PyLong_BASE/2) |
| parity_bit = d[m+1] & 1; |
| else |
| parity_bit = d[m] & 2*lsb; |
| if (parity_bit) |
| round_up = 1; |
| else if (d[m] & (lsb-1)) |
| round_up = 1; |
| else { |
| while (--m >= 0) { |
| if (d[m]) { |
| round_up = 1; |
| break; |
| } |
| } |
| } |
| } |
| |
| /* and round up if necessary */ |
| if (round_up) { |
| x += 2*lsb; |
| if (n == DBL_MAX_EXP && |
| x == ldexp((double)(2*lsb), DBL_MANT_DIG)) { |
| /* overflow corner case */ |
| goto overflow; |
| } |
| } |
| |
| /* shift, adjust for sign, and return */ |
| x = ldexp(x, rnd_digit*PyLong_SHIFT); |
| return Py_SIZE(v) < 0 ? -x : x; |
| |
| overflow: |
| PyErr_SetString(PyExc_OverflowError, |
| "long int too large to convert to float"); |
| return -1.0; |
| } |
| |
| /* Create a new long (or int) object from a C pointer */ |
| |
| PyObject * |
| PyLong_FromVoidPtr(void *p) |
| { |
| #if SIZEOF_VOID_P <= SIZEOF_LONG |
| if ((long)p < 0) |
| return PyLong_FromUnsignedLong((unsigned long)p); |
| return PyInt_FromLong((long)p); |
| #else |
| |
| #ifndef HAVE_LONG_LONG |
| # error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long" |
| #endif |
| #if SIZEOF_LONG_LONG < SIZEOF_VOID_P |
| # error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" |
| #endif |
| /* optimize null pointers */ |
| if (p == NULL) |
| return PyInt_FromLong(0); |
| return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)p); |
| |
| #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ |
| } |
| |
| /* Get a C pointer from a long object (or an int object in some cases) */ |
| |
| void * |
| PyLong_AsVoidPtr(PyObject *vv) |
| { |
| /* This function will allow int or long objects. If vv is neither, |
| then the PyLong_AsLong*() functions will raise the exception: |
| PyExc_SystemError, "bad argument to internal function" |
| */ |
| #if SIZEOF_VOID_P <= SIZEOF_LONG |
| long x; |
| |
| if (PyInt_Check(vv)) |
| x = PyInt_AS_LONG(vv); |
| else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) |
| x = PyLong_AsLong(vv); |
| else |
| x = PyLong_AsUnsignedLong(vv); |
| #else |
| |
| #ifndef HAVE_LONG_LONG |
| # error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long" |
| #endif |
| #if SIZEOF_LONG_LONG < SIZEOF_VOID_P |
| # error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" |
| #endif |
| PY_LONG_LONG x; |
| |
| if (PyInt_Check(vv)) |
| x = PyInt_AS_LONG(vv); |
| else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) |
| x = PyLong_AsLongLong(vv); |
| else |
| x = PyLong_AsUnsignedLongLong(vv); |
| |
| #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ |
| |
| if (x == -1 && PyErr_Occurred()) |
| return NULL; |
| return (void *)x; |
| } |
| |
| #ifdef HAVE_LONG_LONG |
| |
| /* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later |
| * rewritten to use the newer PyLong_{As,From}ByteArray API. |
| */ |
| |
| #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one |
| |
| /* Create a new long int object from a C PY_LONG_LONG int. */ |
| |
| PyObject * |
| PyLong_FromLongLong(PY_LONG_LONG ival) |
| { |
| PyLongObject *v; |
| unsigned PY_LONG_LONG abs_ival; |
| unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */ |
| int ndigits = 0; |
| int negative = 0; |
| |
| if (ival < 0) { |
| /* avoid signed overflow on negation; see comments |
| in PyLong_FromLong above. */ |
| abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1; |
| negative = 1; |
| } |
| else { |
| abs_ival = (unsigned PY_LONG_LONG)ival; |
| } |
| |
| /* Count the number of Python digits. |
| We used to pick 5 ("big enough for anything"), but that's a |
| waste of time and space given that 5*15 = 75 bits are rarely |
| needed. */ |
| t = abs_ival; |
| while (t) { |
| ++ndigits; |
| t >>= PyLong_SHIFT; |
| } |
| v = _PyLong_New(ndigits); |
| if (v != NULL) { |
| digit *p = v->ob_digit; |
| Py_SIZE(v) = negative ? -ndigits : ndigits; |
| t = abs_ival; |
| while (t) { |
| *p++ = (digit)(t & PyLong_MASK); |
| t >>= PyLong_SHIFT; |
| } |
| } |
| return (PyObject *)v; |
| } |
| |
| /* Create a new long int object from a C unsigned PY_LONG_LONG int. */ |
| |
| PyObject * |
| PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival) |
| { |
| PyLongObject *v; |
| unsigned PY_LONG_LONG t; |
| int ndigits = 0; |
| |
| /* Count the number of Python digits. */ |
| t = (unsigned PY_LONG_LONG)ival; |
| while (t) { |
| ++ndigits; |
| t >>= PyLong_SHIFT; |
| } |
| v = _PyLong_New(ndigits); |
| if (v != NULL) { |
| digit *p = v->ob_digit; |
| Py_SIZE(v) = ndigits; |
| while (ival) { |
| *p++ = (digit)(ival & PyLong_MASK); |
| ival >>= PyLong_SHIFT; |
| } |
| } |
| return (PyObject *)v; |
| } |
| |
| /* Create a new long int object from a C Py_ssize_t. */ |
| |
| PyObject * |
| PyLong_FromSsize_t(Py_ssize_t ival) |
| { |
| Py_ssize_t bytes = ival; |
| int one = 1; |
| return _PyLong_FromByteArray( |
| (unsigned char *)&bytes, |
| SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 1); |
| } |
| |
| /* Create a new long int object from a C size_t. */ |
| |
| PyObject * |
| PyLong_FromSize_t(size_t ival) |
| { |
| size_t bytes = ival; |
| int one = 1; |
| return _PyLong_FromByteArray( |
| (unsigned char *)&bytes, |
| SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0); |
| } |
| |
| /* Get a C PY_LONG_LONG int from a long int object. |
| Return -1 and set an error if overflow occurs. */ |
| |
| PY_LONG_LONG |
| PyLong_AsLongLong(PyObject *vv) |
| { |
| PY_LONG_LONG bytes; |
| int one = 1; |
| int res; |
| |
| if (vv == NULL) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (!PyLong_Check(vv)) { |
| PyNumberMethods *nb; |
| PyObject *io; |
| if (PyInt_Check(vv)) |
| return (PY_LONG_LONG)PyInt_AsLong(vv); |
| if ((nb = vv->ob_type->tp_as_number) == NULL || |
| nb->nb_int == NULL) { |
| PyErr_SetString(PyExc_TypeError, "an integer is required"); |
| return -1; |
| } |
| io = (*nb->nb_int) (vv); |
| if (io == NULL) |
| return -1; |
| if (PyInt_Check(io)) { |
| bytes = PyInt_AsLong(io); |
| Py_DECREF(io); |
| return bytes; |
| } |
| if (PyLong_Check(io)) { |
| bytes = PyLong_AsLongLong(io); |
| Py_DECREF(io); |
| return bytes; |
| } |
| Py_DECREF(io); |
| PyErr_SetString(PyExc_TypeError, "integer conversion failed"); |
| return -1; |
| } |
| |
| res = _PyLong_AsByteArray( |
| (PyLongObject *)vv, (unsigned char *)&bytes, |
| SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); |
| |
| /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ |
| if (res < 0) |
| return (PY_LONG_LONG)-1; |
| else |
| return bytes; |
| } |
| |
| /* Get a C unsigned PY_LONG_LONG int from a long int object. |
| Return -1 and set an error if overflow occurs. */ |
| |
| unsigned PY_LONG_LONG |
| PyLong_AsUnsignedLongLong(PyObject *vv) |
| { |
| unsigned PY_LONG_LONG bytes; |
| int one = 1; |
| int res; |
| |
| if (vv == NULL || !PyLong_Check(vv)) { |
| PyErr_BadInternalCall(); |
| return (unsigned PY_LONG_LONG)-1; |
| } |
| |
| res = _PyLong_AsByteArray( |
| (PyLongObject *)vv, (unsigned char *)&bytes, |
| SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); |
| |
| /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ |
| if (res < 0) |
| return (unsigned PY_LONG_LONG)res; |
| else |
| return bytes; |
| } |
| |
| /* Get a C unsigned long int from a long int object, ignoring the high bits. |
| Returns -1 and sets an error condition if an error occurs. */ |
| |
| unsigned PY_LONG_LONG |
| PyLong_AsUnsignedLongLongMask(PyObject *vv) |
| { |
| register PyLongObject *v; |
| unsigned PY_LONG_LONG x; |
| Py_ssize_t i; |
| int sign; |
| |
| if (vv == NULL || !PyLong_Check(vv)) { |
| PyErr_BadInternalCall(); |
| return (unsigned long) -1; |
| } |
| v = (PyLongObject *)vv; |
| i = v->ob_size; |
| sign = 1; |
| x = 0; |
| if (i < 0) { |
| sign = -1; |
| i = -i; |
| } |
| while (--i >= 0) { |
| x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
| } |
| return x * sign; |
| } |
| #undef IS_LITTLE_ENDIAN |
| |
| #endif /* HAVE_LONG_LONG */ |
| |
| |
| static int |
| convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) { |
| if (PyLong_Check(v)) { |
| *a = (PyLongObject *) v; |
| Py_INCREF(v); |
| } |
| else if (PyInt_Check(v)) { |
| *a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v)); |
| } |
| else { |
| return 0; |
| } |
| if (PyLong_Check(w)) { |
| *b = (PyLongObject *) w; |
| Py_INCREF(w); |
| } |
| else if (PyInt_Check(w)) { |
| *b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w)); |
| } |
| else { |
| Py_DECREF(*a); |
| return 0; |
| } |
| return 1; |
| } |
| |
| #define CONVERT_BINOP(v, w, a, b) \ |
| if (!convert_binop(v, w, a, b)) { \ |
| Py_INCREF(Py_NotImplemented); \ |
| return Py_NotImplemented; \ |
| } |
| |
| /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d < |
| 2**k if d is nonzero, else 0. */ |
| |
| static const unsigned char BitLengthTable[32] = { |
| 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 |
| }; |
| |
| static int |
| bits_in_digit(digit d) |
| { |
| int d_bits = 0; |
| while (d >= 32) { |
| d_bits += 6; |
| d >>= 6; |
| } |
| d_bits += (int)BitLengthTable[d]; |
| return d_bits; |
| } |
| |
| /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] |
| * is modified in place, by adding y to it. Carries are propagated as far as |
| * x[m-1], and the remaining carry (0 or 1) is returned. |
| */ |
| static digit |
| v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) |
| { |
| Py_ssize_t i; |
| digit carry = 0; |
| |
| assert(m >= n); |
| for (i = 0; i < n; ++i) { |
| carry += x[i] + y[i]; |
| x[i] = carry & PyLong_MASK; |
| carry >>= PyLong_SHIFT; |
| assert((carry & 1) == carry); |
| } |
| for (; carry && i < m; ++i) { |
| carry += x[i]; |
| x[i] = carry & PyLong_MASK; |
| carry >>= PyLong_SHIFT; |
| assert((carry & 1) == carry); |
| } |
| return carry; |
| } |
| |
| /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] |
| * is modified in place, by subtracting y from it. Borrows are propagated as |
| * far as x[m-1], and the remaining borrow (0 or 1) is returned. |
| */ |
| static digit |
| v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) |
| { |
| Py_ssize_t i; |
| digit borrow = 0; |
| |
| assert(m >= n); |
| for (i = 0; i < n; ++i) { |
| borrow = x[i] - y[i] - borrow; |
| x[i] = borrow & PyLong_MASK; |
| borrow >>= PyLong_SHIFT; |
| borrow &= 1; /* keep only 1 sign bit */ |
| } |
| for (; borrow && i < m; ++i) { |
| borrow = x[i] - borrow; |
| x[i] = borrow & PyLong_MASK; |
| borrow >>= PyLong_SHIFT; |
| borrow &= 1; |
| } |
| return borrow; |
| } |
| |
| /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put |
| * result in z[0:m], and return the d bits shifted out of the top. |
| */ |
| static digit |
| v_lshift(digit *z, digit *a, Py_ssize_t m, int d) |
| { |
| Py_ssize_t i; |
| digit carry = 0; |
| |
| assert(0 <= d && d < PyLong_SHIFT); |
| for (i=0; i < m; i++) { |
| twodigits acc = (twodigits)a[i] << d | carry; |
| z[i] = (digit)acc & PyLong_MASK; |
| carry = (digit)(acc >> PyLong_SHIFT); |
| } |
| return carry; |
| } |
| |
| /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put |
| * result in z[0:m], and return the d bits shifted out of the bottom. |
| */ |
| static digit |
| v_rshift(digit *z, digit *a, Py_ssize_t m, int d) |
| { |
| Py_ssize_t i; |
| digit carry = 0; |
| digit mask = ((digit)1 << d) - 1U; |
| |
| assert(0 <= d && d < PyLong_SHIFT); |
| for (i=m; i-- > 0;) { |
| twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i]; |
| carry = (digit)acc & mask; |
| z[i] = (digit)(acc >> d); |
| } |
| return carry; |
| } |
| |
| /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient |
| in pout, and returning the remainder. pin and pout point at the LSD. |
| It's OK for pin == pout on entry, which saves oodles of mallocs/frees in |
| _PyLong_Format, but that should be done with great care since longs are |
| immutable. */ |
| |
| static digit |
| inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) |
| { |
| twodigits rem = 0; |
| |
| assert(n > 0 && n <= PyLong_MASK); |
| pin += size; |
| pout += size; |
| while (--size >= 0) { |
| digit hi; |
| rem = (rem << PyLong_SHIFT) | *--pin; |
| *--pout = hi = (digit)(rem / n); |
| rem -= (twodigits)hi * n; |
| } |
| return (digit)rem; |
| } |
| |
| /* Divide a long integer by a digit, returning both the quotient |
| (as function result) and the remainder (through *prem). |
| The sign of a is ignored; n should not be zero. */ |
| |
| static PyLongObject * |
| divrem1(PyLongObject *a, digit n, digit *prem) |
| { |
| const Py_ssize_t size = ABS(Py_SIZE(a)); |
| PyLongObject *z; |
| |
| assert(n > 0 && n <= PyLong_MASK); |
| z = _PyLong_New(size); |
| if (z == NULL) |
| return NULL; |
| *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); |
| return long_normalize(z); |
| } |
| |
| /* Convert a long integer to a base 10 string. Returns a new non-shared |
| string. (Return value is non-shared so that callers can modify the |
| returned value if necessary.) */ |
| |
| static PyObject * |
| long_to_decimal_string(PyObject *aa, int addL) |
| { |
| PyLongObject *scratch, *a; |
| PyObject *str; |
| Py_ssize_t size, strlen, size_a, i, j; |
| digit *pout, *pin, rem, tenpow; |
| char *p; |
| int negative; |
| |
| a = (PyLongObject *)aa; |
| if (a == NULL || !PyLong_Check(a)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| size_a = ABS(Py_SIZE(a)); |
| negative = Py_SIZE(a) < 0; |
| |
| /* quick and dirty upper bound for the number of digits |
| required to express a in base _PyLong_DECIMAL_BASE: |
| |
| #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE)) |
| |
| But log2(a) < size_a * PyLong_SHIFT, and |
| log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT |
| > 3 * _PyLong_DECIMAL_SHIFT |
| */ |
| if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) { |
| PyErr_SetString(PyExc_OverflowError, |
| "long is too large to format"); |
| return NULL; |
| } |
| /* the expression size_a * PyLong_SHIFT is now safe from overflow */ |
| size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT); |
| scratch = _PyLong_New(size); |
| if (scratch == NULL) |
| return NULL; |
| |
| /* convert array of base _PyLong_BASE digits in pin to an array of |
| base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP, |
| Volume 2 (3rd edn), section 4.4, Method 1b). */ |
| pin = a->ob_digit; |
| pout = scratch->ob_digit; |
| size = 0; |
| for (i = size_a; --i >= 0; ) { |
| digit hi = pin[i]; |
| for (j = 0; j < size; j++) { |
| twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi; |
| hi = (digit)(z / _PyLong_DECIMAL_BASE); |
| pout[j] = (digit)(z - (twodigits)hi * |
| _PyLong_DECIMAL_BASE); |
| } |
| while (hi) { |
| pout[size++] = hi % _PyLong_DECIMAL_BASE; |
| hi /= _PyLong_DECIMAL_BASE; |
| } |
| /* check for keyboard interrupt */ |
| SIGCHECK({ |
| Py_DECREF(scratch); |
| return NULL; |
| }) |
| } |
| /* pout should have at least one digit, so that the case when a = 0 |
| works correctly */ |
| if (size == 0) |
| pout[size++] = 0; |
| |
| /* calculate exact length of output string, and allocate */ |
| strlen = (addL != 0) + negative + |
| 1 + (size - 1) * _PyLong_DECIMAL_SHIFT; |
| tenpow = 10; |
| rem = pout[size-1]; |
| while (rem >= tenpow) { |
| tenpow *= 10; |
| strlen++; |
| } |
| str = PyString_FromStringAndSize(NULL, strlen); |
| if (str == NULL) { |
| Py_DECREF(scratch); |
| return NULL; |
| } |
| |
| /* fill the string right-to-left */ |
| p = PyString_AS_STRING(str) + strlen; |
| *p = '\0'; |
| if (addL) |
| *--p = 'L'; |
| /* pout[0] through pout[size-2] contribute exactly |
| _PyLong_DECIMAL_SHIFT digits each */ |
| for (i=0; i < size - 1; i++) { |
| rem = pout[i]; |
| for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { |
| *--p = '0' + rem % 10; |
| rem /= 10; |
| } |
| } |
| /* pout[size-1]: always produce at least one decimal digit */ |
| rem = pout[i]; |
| do { |
| *--p = '0' + rem % 10; |
| rem /= 10; |
| } while (rem != 0); |
| |
| /* and sign */ |
| if (negative) |
| *--p = '-'; |
| |
| /* check we've counted correctly */ |
| assert(p == PyString_AS_STRING(str)); |
| Py_DECREF(scratch); |
| return (PyObject *)str; |
| } |
| |
| /* Convert the long to a string object with given base, |
| appending a base prefix of 0[box] if base is 2, 8 or 16. |
| Add a trailing "L" if addL is non-zero. |
| If newstyle is zero, then use the pre-2.6 behavior of octal having |
| a leading "0", instead of the prefix "0o" */ |
| PyAPI_FUNC(PyObject *) |
| _PyLong_Format(PyObject *aa, int base, int addL, int newstyle) |
| { |
| register PyLongObject *a = (PyLongObject *)aa; |
| PyStringObject *str; |
| Py_ssize_t i, sz; |
| Py_ssize_t size_a; |
| char *p; |
| int bits; |
| char sign = '\0'; |
| |
| if (base == 10) |
| return long_to_decimal_string((PyObject *)a, addL); |
| |
| if (a == NULL || !PyLong_Check(a)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| assert(base >= 2 && base <= 36); |
| size_a = ABS(Py_SIZE(a)); |
| |
| /* Compute a rough upper bound for the length of the string */ |
| i = base; |
| bits = 0; |
| while (i > 1) { |
| ++bits; |
| i >>= 1; |
| } |
| i = 5 + (addL ? 1 : 0); |
| /* ensure we don't get signed overflow in sz calculation */ |
| if (size_a > (PY_SSIZE_T_MAX - i) / PyLong_SHIFT) { |
| PyErr_SetString(PyExc_OverflowError, |
| "long is too large to format"); |
| return NULL; |
| } |
| sz = i + 1 + (size_a * PyLong_SHIFT - 1) / bits; |
| assert(sz >= 0); |
| str = (PyStringObject *) PyString_FromStringAndSize((char *)0, sz); |
| if (str == NULL) |
| return NULL; |
| p = PyString_AS_STRING(str) + sz; |
| *p = '\0'; |
| if (addL) |
| *--p = 'L'; |
| if (a->ob_size < 0) |
| sign = '-'; |
| |
| if (a->ob_size == 0) { |
| *--p = '0'; |
| } |
| else if ((base & (base - 1)) == 0) { |
| /* JRH: special case for power-of-2 bases */ |
| twodigits accum = 0; |
| int accumbits = 0; /* # of bits in accum */ |
| int basebits = 1; /* # of bits in base-1 */ |
| i = base; |
| while ((i >>= 1) > 1) |
| ++basebits; |
| |
| for (i = 0; i < size_a; ++i) { |
| accum |= (twodigits)a->ob_digit[i] << accumbits; |
| accumbits += PyLong_SHIFT; |
| assert(accumbits >= basebits); |
| do { |
| char cdigit = (char)(accum & (base - 1)); |
| cdigit += (cdigit < 10) ? '0' : 'a'-10; |
| assert(p > PyString_AS_STRING(str)); |
| *--p = cdigit; |
| accumbits -= basebits; |
| accum >>= basebits; |
| } while (i < size_a-1 ? accumbits >= basebits : |
| accum > 0); |
| } |
| } |
| else { |
| /* Not 0, and base not a power of 2. Divide repeatedly by |
| base, but for speed use the highest power of base that |
| fits in a digit. */ |
| Py_ssize_t size = size_a; |
| digit *pin = a->ob_digit; |
| PyLongObject *scratch; |
| /* powbasw <- largest power of base that fits in a digit. */ |
| digit powbase = base; /* powbase == base ** power */ |
| int power = 1; |
| for (;;) { |
| twodigits newpow = powbase * (twodigits)base; |
| if (newpow >> PyLong_SHIFT) |
| /* doesn't fit in a digit */ |
| break; |
| powbase = (digit)newpow; |
| ++power; |
| } |
| |
| /* Get a scratch area for repeated division. */ |
| scratch = _PyLong_New(size); |
| if (scratch == NULL) { |
| Py_DECREF(str); |
| return NULL; |
| } |
| |
| /* Repeatedly divide by powbase. */ |
| do { |
| int ntostore = power; |
| digit rem = inplace_divrem1(scratch->ob_digit, |
| pin, size, powbase); |
| pin = scratch->ob_digit; /* no need to use a again */ |
| if (pin[size - 1] == 0) |
| --size; |
| SIGCHECK({ |
| Py_DECREF(scratch); |
| Py_DECREF(str); |
| return NULL; |
| }) |
| |
| /* Break rem into digits. */ |
| assert(ntostore > 0); |
| do { |
| digit nextrem = (digit)(rem / base); |
| char c = (char)(rem - nextrem * base); |
| assert(p > PyString_AS_STRING(str)); |
| c += (c < 10) ? '0' : 'a'-10; |
| *--p = c; |
| rem = nextrem; |
| --ntostore; |
| /* Termination is a bit delicate: must not |
| store leading zeroes, so must get out if |
| remaining quotient and rem are both 0. */ |
| } while (ntostore && (size || rem)); |
| } while (size != 0); |
| Py_DECREF(scratch); |
| } |
| |
| if (base == 2) { |
| *--p = 'b'; |
| *--p = '0'; |
| } |
| else if (base == 8) { |
| if (newstyle) { |
| *--p = 'o'; |
| *--p = '0'; |
| } |
| else |
| if (size_a != 0) |
| *--p = '0'; |
| } |
| else if (base == 16) { |
| *--p = 'x'; |
| *--p = '0'; |
| } |
| else if (base != 10) { |
| *--p = '#'; |
| *--p = '0' + base%10; |
| if (base > 10) |
| *--p = '0' + base/10; |
| } |
| if (sign) |
| *--p = sign; |
| if (p != PyString_AS_STRING(str)) { |
| char *q = PyString_AS_STRING(str); |
| assert(p > q); |
| do { |
| } while ((*q++ = *p++) != '\0'); |
| q--; |
| _PyString_Resize((PyObject **)&str, |
| (Py_ssize_t) (q - PyString_AS_STRING(str))); |
| } |
| return (PyObject *)str; |
| } |
| |
| /* Table of digit values for 8-bit string -> integer conversion. |
| * '0' maps to 0, ..., '9' maps to 9. |
| * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35. |
| * All other indices map to 37. |
| * Note that when converting a base B string, a char c is a legitimate |
| * base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B. |
| */ |
| int _PyLong_DigitValue[256] = { |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37, |
| 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, |
| 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
| }; |
| |
| /* *str points to the first digit in a string of base `base` digits. base |
| * is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first |
| * non-digit (which may be *str!). A normalized long is returned. |
| * The point to this routine is that it takes time linear in the number of |
| * string characters. |
| */ |
| static PyLongObject * |
| long_from_binary_base(char **str, int base) |
| { |
| char *p = *str; |
| char *start = p; |
| int bits_per_char; |
| Py_ssize_t n; |
| PyLongObject *z; |
| twodigits accum; |
| int bits_in_accum; |
| digit *pdigit; |
| |
| assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); |
| n = base; |
| for (bits_per_char = -1; n; ++bits_per_char) |
| n >>= 1; |
| /* n <- total # of bits needed, while setting p to end-of-string */ |
| while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base) |
| ++p; |
| *str = p; |
| /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */ |
| n = (p - start) * bits_per_char + PyLong_SHIFT - 1; |
| if (n / bits_per_char < p - start) { |
| PyErr_SetString(PyExc_ValueError, |
| "long string too large to convert"); |
| return NULL; |
| } |
| n = n / PyLong_SHIFT; |
| z = _PyLong_New(n); |
| if (z == NULL) |
| return NULL; |
| /* Read string from right, and fill in long from left; i.e., |
| * from least to most significant in both. |
| */ |
| accum = 0; |
| bits_in_accum = 0; |
| pdigit = z->ob_digit; |
| while (--p >= start) { |
| int k = _PyLong_DigitValue[Py_CHARMASK(*p)]; |
| assert(k >= 0 && k < base); |
| accum |= (twodigits)k << bits_in_accum; |
| bits_in_accum += bits_per_char; |
| if (bits_in_accum >= PyLong_SHIFT) { |
| *pdigit++ = (digit)(accum & PyLong_MASK); |
| assert(pdigit - z->ob_digit <= n); |
| accum >>= PyLong_SHIFT; |
| bits_in_accum -= PyLong_SHIFT; |
| assert(bits_in_accum < PyLong_SHIFT); |
| } |
| } |
| if (bits_in_accum) { |
| assert(bits_in_accum <= PyLong_SHIFT); |
| *pdigit++ = (digit)accum; |
| assert(pdigit - z->ob_digit <= n); |
| } |
| while (pdigit - z->ob_digit < n) |
| *pdigit++ = 0; |
| return long_normalize(z); |
| } |
| |
| PyObject * |
| PyLong_FromString(char *str, char **pend, int base) |
| { |
| int sign = 1; |
| char *start, *orig_str = str; |
| PyLongObject *z; |
| PyObject *strobj, *strrepr; |
| Py_ssize_t slen; |
| |
| if ((base != 0 && base < 2) || base > 36) { |
| PyErr_SetString(PyExc_ValueError, |
| "long() arg 2 must be >= 2 and <= 36"); |
| return NULL; |
| } |
| while (*str != '\0' && isspace(Py_CHARMASK(*str))) |
| str++; |
| if (*str == '+') |
| ++str; |
| else if (*str == '-') { |
| ++str; |
| sign = -1; |
| } |
| while (*str != '\0' && isspace(Py_CHARMASK(*str))) |
| str++; |
| if (base == 0) { |
| /* No base given. Deduce the base from the contents |
| of the string */ |
| if (str[0] != '0') |
| base = 10; |
| else if (str[1] == 'x' || str[1] == 'X') |
| base = 16; |
| else if (str[1] == 'o' || str[1] == 'O') |
| base = 8; |
| else if (str[1] == 'b' || str[1] == 'B') |
| base = 2; |
| else |
| /* "old" (C-style) octal literal, still valid in |
| 2.x, although illegal in 3.x */ |
| base = 8; |
| } |
| /* Whether or not we were deducing the base, skip leading chars |
| as needed */ |
| if (str[0] == '0' && |
| ((base == 16 && (str[1] == 'x' || str[1] == 'X')) || |
| (base == 8 && (str[1] == 'o' || str[1] == 'O')) || |
| (base == 2 && (str[1] == 'b' || str[1] == 'B')))) |
| str += 2; |
| |
| start = str; |
| if ((base & (base - 1)) == 0) |
| z = long_from_binary_base(&str, base); |
| else { |
| /*** |
| Binary bases can be converted in time linear in the number of digits, because |
| Python's representation base is binary. Other bases (including decimal!) use |
| the simple quadratic-time algorithm below, complicated by some speed tricks. |
| |
| First some math: the largest integer that can be expressed in N base-B digits |
| is B**N-1. Consequently, if we have an N-digit input in base B, the worst- |
| case number of Python digits needed to hold it is the smallest integer n s.t. |
| |
| PyLong_BASE**n-1 >= B**N-1 [or, adding 1 to both sides] |
| PyLong_BASE**n >= B**N [taking logs to base PyLong_BASE] |
| n >= log(B**N)/log(PyLong_BASE) = N * log(B)/log(PyLong_BASE) |
| |
| The static array log_base_PyLong_BASE[base] == log(base)/log(PyLong_BASE) so we can compute |
| this quickly. A Python long with that much space is reserved near the start, |
| and the result is computed into it. |
| |
| The input string is actually treated as being in base base**i (i.e., i digits |
| are processed at a time), where two more static arrays hold: |
| |
| convwidth_base[base] = the largest integer i such that base**i <= PyLong_BASE |
| convmultmax_base[base] = base ** convwidth_base[base] |
| |
| The first of these is the largest i such that i consecutive input digits |
| must fit in a single Python digit. The second is effectively the input |
| base we're really using. |
| |
| Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base |
| convmultmax_base[base], the result is "simply" |
| |
| (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1 |
| |
| where B = convmultmax_base[base]. |
| |
| Error analysis: as above, the number of Python digits `n` needed is worst- |
| case |
| |
| n >= N * log(B)/log(PyLong_BASE) |
| |
| where `N` is the number of input digits in base `B`. This is computed via |
| |
| size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1; |
| |
| below. Two numeric concerns are how much space this can waste, and whether |
| the computed result can be too small. To be concrete, assume PyLong_BASE = 2**15, |
| which is the default (and it's unlikely anyone changes that). |
| |
| Waste isn't a problem: provided the first input digit isn't 0, the difference |
| between the worst-case input with N digits and the smallest input with N |
| digits is about a factor of B, but B is small compared to PyLong_BASE so at most |
| one allocated Python digit can remain unused on that count. If |
| N*log(B)/log(PyLong_BASE) is mathematically an exact integer, then truncating that |
| and adding 1 returns a result 1 larger than necessary. However, that can't |
| happen: whenever B is a power of 2, long_from_binary_base() is called |
| instead, and it's impossible for B**i to be an integer power of 2**15 when |
| B is not a power of 2 (i.e., it's impossible for N*log(B)/log(PyLong_BASE) to be |
| an exact integer when B is not a power of 2, since B**i has a prime factor |
| other than 2 in that case, but (2**15)**j's only prime factor is 2). |
| |
| The computed result can be too small if the true value of N*log(B)/log(PyLong_BASE) |
| is a little bit larger than an exact integer, but due to roundoff errors (in |
| computing log(B), log(PyLong_BASE), their quotient, and/or multiplying that by N) |
| yields a numeric result a little less than that integer. Unfortunately, "how |
| close can a transcendental function get to an integer over some range?" |
| questions are generally theoretically intractable. Computer analysis via |
| continued fractions is practical: expand log(B)/log(PyLong_BASE) via continued |
| fractions, giving a sequence i/j of "the best" rational approximations. Then |
| j*log(B)/log(PyLong_BASE) is approximately equal to (the integer) i. This shows that |
| we can get very close to being in trouble, but very rarely. For example, |
| 76573 is a denominator in one of the continued-fraction approximations to |
| log(10)/log(2**15), and indeed: |
| |
| >>> log(10)/log(2**15)*76573 |
| 16958.000000654003 |
| |
| is very close to an integer. If we were working with IEEE single-precision, |
| rounding errors could kill us. Finding worst cases in IEEE double-precision |
| requires better-than-double-precision log() functions, and Tim didn't bother. |
| Instead the code checks to see whether the allocated space is enough as each |
| new Python digit is added, and copies the whole thing to a larger long if not. |
| This should happen extremely rarely, and in fact I don't have a test case |
| that triggers it(!). Instead the code was tested by artificially allocating |
| just 1 digit at the start, so that the copying code was exercised for every |
| digit beyond the first. |
| ***/ |
| register twodigits c; /* current input character */ |
| Py_ssize_t size_z; |
| int i; |
| int convwidth; |
| twodigits convmultmax, convmult; |
| digit *pz, *pzstop; |
| char* scan; |
| |
| static double log_base_PyLong_BASE[37] = {0.0e0,}; |
| static int convwidth_base[37] = {0,}; |
| static twodigits convmultmax_base[37] = {0,}; |
| |
| if (log_base_PyLong_BASE[base] == 0.0) { |
| twodigits convmax = base; |
| int i = 1; |
| |
| log_base_PyLong_BASE[base] = log((double)base) / |
| log((double)PyLong_BASE); |
| for (;;) { |
| twodigits next = convmax * base; |
| if (next > PyLong_BASE) |
| break; |
| convmax = next; |
| ++i; |
| } |
| convmultmax_base[base] = convmax; |
| assert(i > 0); |
| convwidth_base[base] = i; |
| } |
| |
| /* Find length of the string of numeric characters. */ |
| scan = str; |
| while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base) |
| ++scan; |
| |
| /* Create a long object that can contain the largest possible |
| * integer with this base and length. Note that there's no |
| * need to initialize z->ob_digit -- no slot is read up before |
| * being stored into. |
| */ |
| size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1; |
| /* Uncomment next line to test exceedingly rare copy code */ |
| /* size_z = 1; */ |
| assert(size_z > 0); |
| z = _PyLong_New(size_z); |
| if (z == NULL) |
| return NULL; |
| Py_SIZE(z) = 0; |
| |
| /* `convwidth` consecutive input digits are treated as a single |
| * digit in base `convmultmax`. |
| */ |
| convwidth = convwidth_base[base]; |
| convmultmax = convmultmax_base[base]; |
| |
| /* Work ;-) */ |
| while (str < scan) { |
| /* grab up to convwidth digits from the input string */ |
| c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)]; |
| for (i = 1; i < convwidth && str != scan; ++i, ++str) { |
| c = (twodigits)(c * base + |
| _PyLong_DigitValue[Py_CHARMASK(*str)]); |
| assert(c < PyLong_BASE); |
| } |
| |
| convmult = convmultmax; |
| /* Calculate the shift only if we couldn't get |
| * convwidth digits. |
| */ |
| if (i != convwidth) { |
| convmult = base; |
| for ( ; i > 1; --i) |
| convmult *= base; |
| } |
| |
| /* Multiply z by convmult, and add c. */ |
| pz = z->ob_digit; |
| pzstop = pz + Py_SIZE(z); |
| for (; pz < pzstop; ++pz) { |
| c += (twodigits)*pz * convmult; |
| *pz = (digit)(c & PyLong_MASK); |
| c >>= PyLong_SHIFT; |
| } |
| /* carry off the current end? */ |
| if (c) { |
| assert(c < PyLong_BASE); |
| if (Py_SIZE(z) < size_z) { |
| *pz = (digit)c; |
| ++Py_SIZE(z); |
| } |
| else { |
| PyLongObject *tmp; |
| /* Extremely rare. Get more space. */ |
| assert(Py_SIZE(z) == size_z); |
| tmp = _PyLong_New(size_z + 1); |
| if (tmp == NULL) { |
| Py_DECREF(z); |
| return NULL; |
| } |
| memcpy(tmp->ob_digit, |
| z->ob_digit, |
| sizeof(digit) * size_z); |
| Py_DECREF(z); |
| z = tmp; |
| z->ob_digit[size_z] = (digit)c; |
| ++size_z; |
| } |
| } |
| } |
| } |
| if (z == NULL) |
| return NULL; |
| if (str == start) |
| goto onError; |
| if (sign < 0) |
| Py_SIZE(z) = -(Py_SIZE(z)); |
| if (*str == 'L' || *str == 'l') |
| str++; |
| while (*str && isspace(Py_CHARMASK(*str))) |
| str++; |
| if (*str != '\0') |
| goto onError; |
| if (pend) |
| *pend = str; |
| return (PyObject *) z; |
| |
| onError: |
| Py_XDECREF(z); |
| slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; |
| strobj = PyString_FromStringAndSize(orig_str, slen); |
| if (strobj == NULL) |
| return NULL; |
| strrepr = PyObject_Repr(strobj); |
| Py_DECREF(strobj); |
| if (strrepr == NULL) |
| return NULL; |
| PyErr_Format(PyExc_ValueError, |
| "invalid literal for long() with base %d: %s", |
| base, PyString_AS_STRING(strrepr)); |
| Py_DECREF(strrepr); |
| return NULL; |
| } |
| |
| #ifdef Py_USING_UNICODE |
| PyObject * |
| PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base) |
| { |
| PyObject *result; |
| char *buffer = (char *)PyMem_MALLOC(length+1); |
| |
| if (buffer == NULL) |
| return NULL; |
| |
| if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) { |
| PyMem_FREE(buffer); |
| return NULL; |
| } |
| result = PyLong_FromString(buffer, NULL, base); |
| PyMem_FREE(buffer); |
| return result; |
| } |
| #endif |
| |
| /* forward */ |
| static PyLongObject *x_divrem |
| (PyLongObject *, PyLongObject *, PyLongObject **); |
| static PyObject *long_long(PyObject *v); |
| |
| /* Long division with remainder, top-level routine */ |
| |
| static int |
| long_divrem(PyLongObject *a, PyLongObject *b, |
| PyLongObject **pdiv, PyLongObject **prem) |
| { |
| Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); |
| PyLongObject *z; |
| |
| if (size_b == 0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "long division or modulo by zero"); |
| return -1; |
| } |
| if (size_a < size_b || |
| (size_a == size_b && |
| a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { |
| /* |a| < |b|. */ |
| *pdiv = _PyLong_New(0); |
| if (*pdiv == NULL) |
| return -1; |
| Py_INCREF(a); |
| *prem = (PyLongObject *) a; |
| return 0; |
| } |
| if (size_b == 1) { |
| digit rem = 0; |
| z = divrem1(a, b->ob_digit[0], &rem); |
| if (z == NULL) |
| return -1; |
| *prem = (PyLongObject *) PyLong_FromLong((long)rem); |
| if (*prem == NULL) { |
| Py_DECREF(z); |
| return -1; |
| } |
| } |
| else { |
| z = x_divrem(a, b, prem); |
| if (z == NULL) |
| return -1; |
| } |
| /* Set the signs. |
| The quotient z has the sign of a*b; |
| the remainder r has the sign of a, |
| so a = b*z + r. */ |
| if ((a->ob_size < 0) != (b->ob_size < 0)) |
| z->ob_size = -(z->ob_size); |
| if (a->ob_size < 0 && (*prem)->ob_size != 0) |
| (*prem)->ob_size = -((*prem)->ob_size); |
| *pdiv = z; |
| return 0; |
| } |
| |
| /* Unsigned long division with remainder -- the algorithm. The arguments v1 |
| and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */ |
| |
| static PyLongObject * |
| x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) |
| { |
| PyLongObject *v, *w, *a; |
| Py_ssize_t i, k, size_v, size_w; |
| int d; |
| digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak; |
| twodigits vv; |
| sdigit zhi; |
| stwodigits z; |
| |
| /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd |
| edn.), section 4.3.1, Algorithm D], except that we don't explicitly |
| handle the special case when the initial estimate q for a quotient |
| digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and |
| that won't overflow a digit. */ |
| |
| /* allocate space; w will also be used to hold the final remainder */ |
| size_v = ABS(Py_SIZE(v1)); |
| size_w = ABS(Py_SIZE(w1)); |
| assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */ |
| v = _PyLong_New(size_v+1); |
| if (v == NULL) { |
| *prem = NULL; |
| return NULL; |
| } |
| w = _PyLong_New(size_w); |
| if (w == NULL) { |
| Py_DECREF(v); |
| *prem = NULL; |
| return NULL; |
| } |
| |
| /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2. |
| shift v1 left by the same amount. Results go into w and v. */ |
| d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]); |
| carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d); |
| assert(carry == 0); |
| carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d); |
| if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) { |
| v->ob_digit[size_v] = carry; |
| size_v++; |
| } |
| |
| /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has |
| at most (and usually exactly) k = size_v - size_w digits. */ |
| k = size_v - size_w; |
| assert(k >= 0); |
| a = _PyLong_New(k); |
| if (a == NULL) { |
| Py_DECREF(w); |
| Py_DECREF(v); |
| *prem = NULL; |
| return NULL; |
| } |
| v0 = v->ob_digit; |
| w0 = w->ob_digit; |
| wm1 = w0[size_w-1]; |
| wm2 = w0[size_w-2]; |
| for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) { |
| /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving |
| single-digit quotient q, remainder in vk[0:size_w]. */ |
| |
| SIGCHECK({ |
| Py_DECREF(a); |
| Py_DECREF(w); |
| Py_DECREF(v); |
| *prem = NULL; |
| return NULL; |
| }) |
| |
| /* estimate quotient digit q; may overestimate by 1 (rare) */ |
| vtop = vk[size_w]; |
| assert(vtop <= wm1); |
| vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1]; |
| q = (digit)(vv / wm1); |
| r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */ |
| while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT) |
| | vk[size_w-2])) { |
| --q; |
| r += wm1; |
| if (r >= PyLong_BASE) |
| break; |
| } |
| assert(q <= PyLong_BASE); |
| |
| /* subtract q*w0[0:size_w] from vk[0:size_w+1] */ |
| zhi = 0; |
| for (i = 0; i < size_w; ++i) { |
| /* invariants: -PyLong_BASE <= -q <= zhi <= 0; |
| -PyLong_BASE * q <= z < PyLong_BASE */ |
| z = (sdigit)vk[i] + zhi - |
| (stwodigits)q * (stwodigits)w0[i]; |
| vk[i] = (digit)z & PyLong_MASK; |
| zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits, |
| z, PyLong_SHIFT); |
| } |
| |
| /* add w back if q was too large (this branch taken rarely) */ |
| assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0); |
| if ((sdigit)vtop + zhi < 0) { |
| carry = 0; |
| for (i = 0; i < size_w; ++i) { |
| carry += vk[i] + w0[i]; |
| vk[i] = carry & PyLong_MASK; |
| carry >>= PyLong_SHIFT; |
| } |
| --q; |
| } |
| |
| /* store quotient digit */ |
| assert(q < PyLong_BASE); |
| *--ak = q; |
| } |
| |
| /* unshift remainder; we reuse w to store the result */ |
| carry = v_rshift(w0, v0, size_w, d); |
| assert(carry==0); |
| Py_DECREF(v); |
| |
| *prem = long_normalize(w); |
| return long_normalize(a); |
| } |
| |
| /* Methods */ |
| |
| static void |
| long_dealloc(PyObject *v) |
| { |
| Py_TYPE(v)->tp_free(v); |
| } |
| |
| static PyObject * |
| long_repr(PyObject *v) |
| { |
| return _PyLong_Format(v, 10, 1, 0); |
| } |
| |
| static PyObject * |
| long_str(PyObject *v) |
| { |
| return _PyLong_Format(v, 10, 0, 0); |
| } |
| |
| static int |
| long_compare(PyLongObject *a, PyLongObject *b) |
| { |
| Py_ssize_t sign; |
| |
| if (Py_SIZE(a) != Py_SIZE(b)) { |
| if (ABS(Py_SIZE(a)) == 0 && ABS(Py_SIZE(b)) == 0) |
| sign = 0; |
| else |
| sign = Py_SIZE(a) - Py_SIZE(b); |
| } |
| else { |
| Py_ssize_t i = ABS(Py_SIZE(a)); |
| while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) |
| ; |
| if (i < 0) |
| sign = 0; |
| else { |
| sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i]; |
| if (Py_SIZE(a) < 0) |
| sign = -sign; |
| } |
| } |
| return sign < 0 ? -1 : sign > 0 ? 1 : 0; |
| } |
| |
| static long |
| long_hash(PyLongObject *v) |
| { |
| unsigned long x; |
| Py_ssize_t i; |
| int sign; |
| |
| /* This is designed so that Python ints and longs with the |
| same value hash to the same value, otherwise comparisons |
| of mapping keys will turn out weird */ |
| i = v->ob_size; |
| sign = 1; |
| x = 0; |
| if (i < 0) { |
| sign = -1; |
| i = -(i); |
| } |
| /* The following loop produces a C unsigned long x such that x is |
| congruent to the absolute value of v modulo ULONG_MAX. The |
| resulting x is nonzero if and only if v is. */ |
| while (--i >= 0) { |
| /* Force a native long #-bits (32 or 64) circular shift */ |
| x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT); |
| x += v->ob_digit[i]; |
| /* If the addition above overflowed we compensate by |
| incrementing. This preserves the value modulo |
| ULONG_MAX. */ |
| if (x < v->ob_digit[i]) |
| x++; |
| } |
| x = x * sign; |
| if (x == (unsigned long)-1) |
| x = (unsigned long)-2; |
| return (long)x; |
| } |
| |
| |
| /* Add the absolute values of two long integers. */ |
| |
| static PyLongObject * |
| x_add(PyLongObject *a, PyLongObject *b) |
| { |
| Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); |
| PyLongObject *z; |
| Py_ssize_t i; |
| digit carry = 0; |
| |
| /* Ensure a is the larger of the two: */ |
| if (size_a < size_b) { |
| { PyLongObject *temp = a; a = b; b = temp; } |
| { Py_ssize_t size_temp = size_a; |
| size_a = size_b; |
| size_b = size_temp; } |
| } |
| z = _PyLong_New(size_a+1); |
| if (z == NULL) |
| return NULL; |
| for (i = 0; i < size_b; ++i) { |
| carry += a->ob_digit[i] + b->ob_digit[i]; |
| z->ob_digit[i] = carry & PyLong_MASK; |
| carry >>= PyLong_SHIFT; |
| } |
| for (; i < size_a; ++i) { |
| carry += a->ob_digit[i]; |
| z->ob_digit[i] = carry & PyLong_MASK; |
| carry >>= PyLong_SHIFT; |
| } |
| z->ob_digit[i] = carry; |
| return long_normalize(z); |
| } |
| |
| /* Subtract the absolute values of two integers. */ |
| |
| static PyLongObject * |
| x_sub(PyLongObject *a, PyLongObject *b) |
| { |
| Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); |
| PyLongObject *z; |
| Py_ssize_t i; |
| int sign = 1; |
| digit borrow = 0; |
| |
| /* Ensure a is the larger of the two: */ |
| if (size_a < size_b) { |
| sign = -1; |
| { PyLongObject *temp = a; a = b; b = temp; } |
| { Py_ssize_t size_temp = size_a; |
| size_a = size_b; |
| size_b = size_temp; } |
| } |
| else if (size_a == size_b) { |
| /* Find highest digit where a and b differ: */ |
| i = size_a; |
| while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) |
| ; |
| if (i < 0) |
| return _PyLong_New(0); |
| if (a->ob_digit[i] < b->ob_digit[i]) { |
| sign = -1; |
| { PyLongObject *temp = a; a = b; b = temp; } |
| } |
| size_a = size_b = i+1; |
| } |
| z = _PyLong_New(size_a); |
| if (z == NULL) |
| return NULL; |
| for (i = 0; i < size_b; ++i) { |
| /* The following assumes unsigned arithmetic |
| works module 2**N for some N>PyLong_SHIFT. */ |
| borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; |
| z->ob_digit[i] = borrow & PyLong_MASK; |
| borrow >>= PyLong_SHIFT; |
| borrow &= 1; /* Keep only one sign bit */ |
| } |
| for (; i < size_a; ++i) { |
| borrow = a->ob_digit[i] - borrow; |
| z->ob_digit[i] = borrow & PyLong_MASK; |
| borrow >>= PyLong_SHIFT; |
| borrow &= 1; /* Keep only one sign bit */ |
| } |
| assert(borrow == 0); |
| if (sign < 0) |
| z->ob_size = -(z->ob_size); |
| return long_normalize(z); |
| } |
| |
| static PyObject * |
| long_add(PyLongObject *v, PyLongObject *w) |
| { |
| PyLongObject *a, *b, *z; |
| |
| CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); |
| |
| if (a->ob_size < 0) { |
| if (b->ob_size < 0) { |
| z = x_add(a, b); |
| if (z != NULL && z->ob_size != 0) |
| z->ob_size = -(z->ob_size); |
| } |
| else |
| z = x_sub(b, a); |
| } |
| else { |
| if (b->ob_size < 0) |
| z = x_sub(a, b); |
| else |
| z = x_add(a, b); |
| } |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *)z; |
| } |
| |
| static PyObject * |
| long_sub(PyLongObject *v, PyLongObject *w) |
| { |
| PyLongObject *a, *b, *z; |
| |
| CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); |
| |
| if (a->ob_size < 0) { |
| if (b->ob_size < 0) |
| z = x_sub(a, b); |
| else |
| z = x_add(a, b); |
| if (z != NULL && z->ob_size != 0) |
| z->ob_size = -(z->ob_size); |
| } |
| else { |
| if (b->ob_size < 0) |
| z = x_add(a, b); |
| else |
| z = x_sub(a, b); |
| } |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *)z; |
| } |
| |
| /* Grade school multiplication, ignoring the signs. |
| * Returns the absolute value of the product, or NULL if error. |
| */ |
| static PyLongObject * |
| x_mul(PyLongObject *a, PyLongObject *b) |
| { |
| PyLongObject *z; |
| Py_ssize_t size_a = ABS(Py_SIZE(a)); |
| Py_ssize_t size_b = ABS(Py_SIZE(b)); |
| Py_ssize_t i; |
| |
| z = _PyLong_New(size_a + size_b); |
| if (z == NULL) |
| return NULL; |
| |
| memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit)); |
| if (a == b) { |
| /* Efficient squaring per HAC, Algorithm 14.16: |
| * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf |
| * Gives slightly less than a 2x speedup when a == b, |
| * via exploiting that each entry in the multiplication |
| * pyramid appears twice (except for the size_a squares). |
| */ |
| for (i = 0; i < size_a; ++i) { |
| twodigits carry; |
| twodigits f = a->ob_digit[i]; |
| digit *pz = z->ob_digit + (i << 1); |
| digit *pa = a->ob_digit + i + 1; |
| digit *paend = a->ob_digit + size_a; |
| |
| SIGCHECK({ |
| Py_DECREF(z); |
| return NULL; |
| }) |
| |
| carry = *pz + f * f; |
| *pz++ = (digit)(carry & PyLong_MASK); |
| carry >>= PyLong_SHIFT; |
| assert(carry <= PyLong_MASK); |
| |
| /* Now f is added in twice in each column of the |
| * pyramid it appears. Same as adding f<<1 once. |
| */ |
| f <<= 1; |
| while (pa < paend) { |
| carry += *pz + *pa++ * f; |
| *pz++ = (digit)(carry & PyLong_MASK); |
| carry >>= PyLong_SHIFT; |
| assert(carry <= (PyLong_MASK << 1)); |
| } |
| if (carry) { |
| carry += *pz; |
| *pz++ = (digit)(carry & PyLong_MASK); |
| carry >>= PyLong_SHIFT; |
| } |
| if (carry) |
| *pz += (digit)(carry & PyLong_MASK); |
| assert((carry >> PyLong_SHIFT) == 0); |
| } |
| } |
| else { /* a is not the same as b -- gradeschool long mult */ |
| for (i = 0; i < size_a; ++i) { |
| twodigits carry = 0; |
| twodigits f = a->ob_digit[i]; |
| digit *pz = z->ob_digit + i; |
| digit *pb = b->ob_digit; |
| digit *pbend = b->ob_digit + size_b; |
| |
| SIGCHECK({ |
| Py_DECREF(z); |
| return NULL; |
| }) |
| |
| while (pb < pbend) { |
| carry += *pz + *pb++ * f; |
| *pz++ = (digit)(carry & PyLong_MASK); |
| carry >>= PyLong_SHIFT; |
| assert(carry <= PyLong_MASK); |
| } |
| if (carry) |
| *pz += (digit)(carry & PyLong_MASK); |
| assert((carry >> PyLong_SHIFT) == 0); |
| } |
| } |
| return long_normalize(z); |
| } |
| |
| /* A helper for Karatsuba multiplication (k_mul). |
| Takes a long "n" and an integer "size" representing the place to |
| split, and sets low and high such that abs(n) == (high << size) + low, |
| viewing the shift as being by digits. The sign bit is ignored, and |
| the return values are >= 0. |
| Returns 0 on success, -1 on failure. |
| */ |
| static int |
| kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low) |
| { |
| PyLongObject *hi, *lo; |
| Py_ssize_t size_lo, size_hi; |
| const Py_ssize_t size_n = ABS(Py_SIZE(n)); |
| |
| size_lo = MIN(size_n, size); |
| size_hi = size_n - size_lo; |
| |
| if ((hi = _PyLong_New(size_hi)) == NULL) |
| return -1; |
| if ((lo = _PyLong_New(size_lo)) == NULL) { |
| Py_DECREF(hi); |
| return -1; |
| } |
| |
| memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); |
| memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); |
| |
| *high = long_normalize(hi); |
| *low = long_normalize(lo); |
| return 0; |
| } |
| |
| static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); |
| |
| /* Karatsuba multiplication. Ignores the input signs, and returns the |
| * absolute value of the product (or NULL if error). |
| * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). |
| */ |
| static PyLongObject * |
| k_mul(PyLongObject *a, PyLongObject *b) |
| { |
| Py_ssize_t asize = ABS(Py_SIZE(a)); |
| Py_ssize_t bsize = ABS(Py_SIZE(b)); |
| PyLongObject *ah = NULL; |
| PyLongObject *al = NULL; |
| PyLongObject *bh = NULL; |
| PyLongObject *bl = NULL; |
| PyLongObject *ret = NULL; |
| PyLongObject *t1, *t2, *t3; |
| Py_ssize_t shift; /* the number of digits we split off */ |
| Py_ssize_t i; |
| |
| /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl |
| * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl |
| * Then the original product is |
| * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl |
| * By picking X to be a power of 2, "*X" is just shifting, and it's |
| * been reduced to 3 multiplies on numbers half the size. |
| */ |
| |
| /* We want to split based on the larger number; fiddle so that b |
| * is largest. |
| */ |
| if (asize > bsize) { |
| t1 = a; |
| a = b; |
| b = t1; |
| |
| i = asize; |
| asize = bsize; |
| bsize = i; |
| } |
| |
| /* Use gradeschool math when either number is too small. */ |
| i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; |
| if (asize <= i) { |
| if (asize == 0) |
| return _PyLong_New(0); |
| else |
| return x_mul(a, b); |
| } |
| |
| /* If a is small compared to b, splitting on b gives a degenerate |
| * case with ah==0, and Karatsuba may be (even much) less efficient |
| * than "grade school" then. However, we can still win, by viewing |
| * b as a string of "big digits", each of width a->ob_size. That |
| * leads to a sequence of balanced calls to k_mul. |
| */ |
| if (2 * asize <= bsize) |
| return k_lopsided_mul(a, b); |
| |
| /* Split a & b into hi & lo pieces. */ |
| shift = bsize >> 1; |
| if (kmul_split(a, shift, &ah, &al) < 0) goto fail; |
| assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */ |
| |
| if (a == b) { |
| bh = ah; |
| bl = al; |
| Py_INCREF(bh); |
| Py_INCREF(bl); |
| } |
| else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; |
| |
| /* The plan: |
| * 1. Allocate result space (asize + bsize digits: that's always |
| * enough). |
| * 2. Compute ah*bh, and copy into result at 2*shift. |
| * 3. Compute al*bl, and copy into result at 0. Note that this |
| * can't overlap with #2. |
| * 4. Subtract al*bl from the result, starting at shift. This may |
| * underflow (borrow out of the high digit), but we don't care: |
| * we're effectively doing unsigned arithmetic mod |
| * PyLong_BASE**(sizea + sizeb), and so long as the *final* result fits, |
| * borrows and carries out of the high digit can be ignored. |
| * 5. Subtract ah*bh from the result, starting at shift. |
| * 6. Compute (ah+al)*(bh+bl), and add it into the result starting |
| * at shift. |
| */ |
| |
| /* 1. Allocate result space. */ |
| ret = _PyLong_New(asize + bsize); |
| if (ret == NULL) goto fail; |
| #ifdef Py_DEBUG |
| /* Fill with trash, to catch reference to uninitialized digits. */ |
| memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit)); |
| #endif |
| |
| /* 2. t1 <- ah*bh, and copy into high digits of result. */ |
| if ((t1 = k_mul(ah, bh)) == NULL) goto fail; |
| assert(Py_SIZE(t1) >= 0); |
| assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret)); |
| memcpy(ret->ob_digit + 2*shift, t1->ob_digit, |
| Py_SIZE(t1) * sizeof(digit)); |
| |
| /* Zero-out the digits higher than the ah*bh copy. */ |
| i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1); |
| if (i) |
| memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0, |
| i * sizeof(digit)); |
| |
| /* 3. t2 <- al*bl, and copy into the low digits. */ |
| if ((t2 = k_mul(al, bl)) == NULL) { |
| Py_DECREF(t1); |
| goto fail; |
| } |
| assert(Py_SIZE(t2) >= 0); |
| assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */ |
| memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit)); |
| |
| /* Zero out remaining digits. */ |
| i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */ |
| if (i) |
| memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit)); |
| |
| /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first |
| * because it's fresher in cache. |
| */ |
| i = Py_SIZE(ret) - shift; /* # digits after shift */ |
| (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2)); |
| Py_DECREF(t2); |
| |
| (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1)); |
| Py_DECREF(t1); |
| |
| /* 6. t3 <- (ah+al)(bh+bl), and add into result. */ |
| if ((t1 = x_add(ah, al)) == NULL) goto fail; |
| Py_DECREF(ah); |
| Py_DECREF(al); |
| ah = al = NULL; |
| |
| if (a == b) { |
| t2 = t1; |
| Py_INCREF(t2); |
| } |
| else if ((t2 = x_add(bh, bl)) == NULL) { |
| Py_DECREF(t1); |
| goto fail; |
| } |
| Py_DECREF(bh); |
| Py_DECREF(bl); |
| bh = bl = NULL; |
| |
| t3 = k_mul(t1, t2); |
| Py_DECREF(t1); |
| Py_DECREF(t2); |
| if (t3 == NULL) goto fail; |
| assert(Py_SIZE(t3) >= 0); |
| |
| /* Add t3. It's not obvious why we can't run out of room here. |
| * See the (*) comment after this function. |
| */ |
| (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3)); |
| Py_DECREF(t3); |
| |
| return long_normalize(ret); |
| |
| fail: |
| Py_XDECREF(ret); |
| Py_XDECREF(ah); |
| Py_XDECREF(al); |
| Py_XDECREF(bh); |
| Py_XDECREF(bl); |
| return NULL; |
| } |
| |
| /* (*) Why adding t3 can't "run out of room" above. |
| |
| Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts |
| to start with: |
| |
| 1. For any integer i, i = c(i/2) + f(i/2). In particular, |
| bsize = c(bsize/2) + f(bsize/2). |
| 2. shift = f(bsize/2) |
| 3. asize <= bsize |
| 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this |
| routine, so asize > bsize/2 >= f(bsize/2) in this routine. |
| |
| We allocated asize + bsize result digits, and add t3 into them at an offset |
| of shift. This leaves asize+bsize-shift allocated digit positions for t3 |
| to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = |
| asize + c(bsize/2) available digit positions. |
| |
| bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has |
| at most c(bsize/2) digits + 1 bit. |
| |
| If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) |
| digits, and al has at most f(bsize/2) digits in any case. So ah+al has at |
| most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. |
| |
| The product (ah+al)*(bh+bl) therefore has at most |
| |
| c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits |
| |
| and we have asize + c(bsize/2) available digit positions. We need to show |
| this is always enough. An instance of c(bsize/2) cancels out in both, so |
| the question reduces to whether asize digits is enough to hold |
| (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize, |
| then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4, |
| asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 |
| digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If |
| asize == bsize, then we're asking whether bsize digits is enough to hold |
| c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits |
| is enough to hold 2 bits. This is so if bsize >= 2, which holds because |
| bsize >= KARATSUBA_CUTOFF >= 2. |
| |
| Note that since there's always enough room for (ah+al)*(bh+bl), and that's |
| clearly >= each of ah*bh and al*bl, there's always enough room to subtract |
| ah*bh and al*bl too. |
| */ |
| |
| /* b has at least twice the digits of a, and a is big enough that Karatsuba |
| * would pay off *if* the inputs had balanced sizes. View b as a sequence |
| * of slices, each with a->ob_size digits, and multiply the slices by a, |
| * one at a time. This gives k_mul balanced inputs to work with, and is |
| * also cache-friendly (we compute one double-width slice of the result |
| * at a time, then move on, never bactracking except for the helpful |
| * single-width slice overlap between successive partial sums). |
| */ |
| static PyLongObject * |
| k_lopsided_mul(PyLongObject *a, PyLongObject *b) |
| { |
| const Py_ssize_t asize = ABS(Py_SIZE(a)); |
| Py_ssize_t bsize = ABS(Py_SIZE(b)); |
| Py_ssize_t nbdone; /* # of b digits already multiplied */ |
| PyLongObject *ret; |
| PyLongObject *bslice = NULL; |
| |
| assert(asize > KARATSUBA_CUTOFF); |
| assert(2 * asize <= bsize); |
| |
| /* Allocate result space, and zero it out. */ |
| ret = _PyLong_New(asize + bsize); |
| if (ret == NULL) |
| return NULL; |
| memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit)); |
| |
| /* Successive slices of b are copied into bslice. */ |
| bslice = _PyLong_New(asize); |
| if (bslice == NULL) |
| goto fail; |
| |
| nbdone = 0; |
| while (bsize > 0) { |
| PyLongObject *product; |
| const Py_ssize_t nbtouse = MIN(bsize, asize); |
| |
| /* Multiply the next slice of b by a. */ |
| memcpy(bslice->ob_digit, b->ob_digit + nbdone, |
| nbtouse * sizeof(digit)); |
| Py_SIZE(bslice) = nbtouse; |
| product = k_mul(a, bslice); |
| if (product == NULL) |
| goto fail; |
| |
| /* Add into result. */ |
| (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone, |
| product->ob_digit, Py_SIZE(product)); |
| Py_DECREF(product); |
| |
| bsize -= nbtouse; |
| nbdone += nbtouse; |
| } |
| |
| Py_DECREF(bslice); |
| return long_normalize(ret); |
| |
| fail: |
| Py_DECREF(ret); |
| Py_XDECREF(bslice); |
| return NULL; |
| } |
| |
| static PyObject * |
| long_mul(PyLongObject *v, PyLongObject *w) |
| { |
| PyLongObject *a, *b, *z; |
| |
| if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| z = k_mul(a, b); |
| /* Negate if exactly one of the inputs is negative. */ |
| if (((a->ob_size ^ b->ob_size) < 0) && z) |
| z->ob_size = -(z->ob_size); |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *)z; |
| } |
| |
| /* The / and % operators are now defined in terms of divmod(). |
| The expression a mod b has the value a - b*floor(a/b). |
| The long_divrem function gives the remainder after division of |
| |a| by |b|, with the sign of a. This is also expressed |
| as a - b*trunc(a/b), if trunc truncates towards zero. |
| Some examples: |
| a b a rem b a mod b |
| 13 10 3 3 |
| -13 10 -3 7 |
| 13 -10 3 -7 |
| -13 -10 -3 -3 |
| So, to get from rem to mod, we have to add b if a and b |
| have different signs. We then subtract one from the 'div' |
| part of the outcome to keep the invariant intact. */ |
| |
| /* Compute |
| * *pdiv, *pmod = divmod(v, w) |
| * NULL can be passed for pdiv or pmod, in which case that part of |
| * the result is simply thrown away. The caller owns a reference to |
| * each of these it requests (does not pass NULL for). |
| */ |
| static int |
| l_divmod(PyLongObject *v, PyLongObject *w, |
| PyLongObject **pdiv, PyLongObject **pmod) |
| { |
| PyLongObject *div, *mod; |
| |
| if (long_divrem(v, w, &div, &mod) < 0) |
| return -1; |
| if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) || |
| (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) { |
| PyLongObject *temp; |
| PyLongObject *one; |
| temp = (PyLongObject *) long_add(mod, w); |
| Py_DECREF(mod); |
| mod = temp; |
| if (mod == NULL) { |
| Py_DECREF(div); |
| return -1; |
| } |
| one = (PyLongObject *) PyLong_FromLong(1L); |
| if (one == NULL || |
| (temp = (PyLongObject *) long_sub(div, one)) == NULL) { |
| Py_DECREF(mod); |
| Py_DECREF(div); |
| Py_XDECREF(one); |
| return -1; |
| } |
| Py_DECREF(one); |
| Py_DECREF(div); |
| div = temp; |
| } |
| if (pdiv != NULL) |
| *pdiv = div; |
| else |
| Py_DECREF(div); |
| |
| if (pmod != NULL) |
| *pmod = mod; |
| else |
| Py_DECREF(mod); |
| |
| return 0; |
| } |
| |
| static PyObject * |
| long_div(PyObject *v, PyObject *w) |
| { |
| PyLongObject *a, *b, *div; |
| |
| CONVERT_BINOP(v, w, &a, &b); |
| if (l_divmod(a, b, &div, NULL) < 0) |
| div = NULL; |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *)div; |
| } |
| |
| static PyObject * |
| long_classic_div(PyObject *v, PyObject *w) |
| { |
| PyLongObject *a, *b, *div; |
| |
| CONVERT_BINOP(v, w, &a, &b); |
| if (Py_DivisionWarningFlag && |
| PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0) |
| div = NULL; |
| else if (l_divmod(a, b, &div, NULL) < 0) |
| div = NULL; |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *)div; |
| } |
| |
| static PyObject * |
| long_true_divide(PyObject *v, PyObject *w) |
| { |
| PyLongObject *a, *b; |
| double ad, bd; |
| int failed, aexp = -1, bexp = -1; |
| |
| CONVERT_BINOP(v, w, &a, &b); |
| ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp); |
| bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp); |
| failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred(); |
| Py_DECREF(a); |
| Py_DECREF(b); |
| if (failed) |
| return NULL; |
| /* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x, |
| but should really be set correctly after sucessful calls to |
| _PyLong_AsScaledDouble() */ |
| assert(aexp >= 0 && bexp >= 0); |
| |
| if (bd == 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "long division or modulo by zero"); |
| return NULL; |
| } |
| |
| /* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */ |
| ad /= bd; /* overflow/underflow impossible here */ |
| aexp -= bexp; |
| if (aexp > INT_MAX / PyLong_SHIFT) |
| goto overflow; |
| else if (aexp < -(INT_MAX / PyLong_SHIFT)) |
| return PyFloat_FromDouble(0.0); /* underflow to 0 */ |
| errno = 0; |
| ad = ldexp(ad, aexp * PyLong_SHIFT); |
| if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */ |
| goto overflow; |
| return PyFloat_FromDouble(ad); |
| |
| overflow: |
| PyErr_SetString(PyExc_OverflowError, |
| "long/long too large for a float"); |
| return NULL; |
| |
| } |
| |
| static PyObject * |
| long_mod(PyObject *v, PyObject *w) |
| { |
| PyLongObject *a, *b, *mod; |
| |
| CONVERT_BINOP(v, w, &a, &b); |
| |
| if (l_divmod(a, b, NULL, &mod) < 0) |
| mod = NULL; |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *)mod; |
| } |
| |
| static PyObject * |
| long_divmod(PyObject *v, PyObject *w) |
| { |
| PyLongObject *a, *b, *div, *mod; |
| PyObject *z; |
| |
| CONVERT_BINOP(v, w, &a, &b); |
| |
| if (l_divmod(a, b, &div, &mod) < 0) { |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return NULL; |
| } |
| z = PyTuple_New(2); |
| if (z != NULL) { |
| PyTuple_SetItem(z, 0, (PyObject *) div); |
| PyTuple_SetItem(z, 1, (PyObject *) mod); |
| } |
| else { |
| Py_DECREF(div); |
| Py_DECREF(mod); |
| } |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return z; |
| } |
| |
| /* pow(v, w, x) */ |
| static PyObject * |
| long_pow(PyObject *v, PyObject *w, PyObject *x) |
| { |
| PyLongObject *a, *b, *c; /* a,b,c = v,w,x */ |
| int negativeOutput = 0; /* if x<0 return negative output */ |
| |
| PyLongObject *z = NULL; /* accumulated result */ |
| Py_ssize_t i, j, k; /* counters */ |
| PyLongObject *temp = NULL; |
| |
| /* 5-ary values. If the exponent is large enough, table is |
| * precomputed so that table[i] == a**i % c for i in range(32). |
| */ |
| PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
| |
| /* a, b, c = v, w, x */ |
| CONVERT_BINOP(v, w, &a, &b); |
| if (PyLong_Check(x)) { |
| c = (PyLongObject *)x; |
| Py_INCREF(x); |
| } |
| else if (PyInt_Check(x)) { |
| c = (PyLongObject *)PyLong_FromLong(PyInt_AS_LONG(x)); |
| if (c == NULL) |
| goto Error; |
| } |
| else if (x == Py_None) |
| c = NULL; |
| else { |
| Py_DECREF(a); |
| Py_DECREF(b); |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| if (Py_SIZE(b) < 0) { /* if exponent is negative */ |
| if (c) { |
| PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " |
| "cannot be negative when 3rd argument specified"); |
| goto Error; |
| } |
| else { |
| /* else return a float. This works because we know |
| that this calls float_pow() which converts its |
| arguments to double. */ |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return PyFloat_Type.tp_as_number->nb_power(v, w, x); |
| } |
| } |
| |
| if (c) { |
| /* if modulus == 0: |
| raise ValueError() */ |
| if (Py_SIZE(c) == 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "pow() 3rd argument cannot be 0"); |
| goto Error; |
| } |
| |
| /* if modulus < 0: |
| negativeOutput = True |
| modulus = -modulus */ |
| if (Py_SIZE(c) < 0) { |
| negativeOutput = 1; |
| temp = (PyLongObject *)_PyLong_Copy(c); |
| if (temp == NULL) |
| goto Error; |
| Py_DECREF(c); |
| c = temp; |
| temp = NULL; |
| c->ob_size = - c->ob_size; |
| } |
| |
| /* if modulus == 1: |
| return 0 */ |
| if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) { |
| z = (PyLongObject *)PyLong_FromLong(0L); |
| goto Done; |
| } |
| |
| /* if base < 0: |
| base = base % modulus |
| Having the base positive just makes things easier. */ |
| if (Py_SIZE(a) < 0) { |
| if (l_divmod(a, c, NULL, &temp) < 0) |
| goto Error; |
| Py_DECREF(a); |
| a = temp; |
| temp = NULL; |
| } |
| } |
| |
| /* At this point a, b, and c are guaranteed non-negative UNLESS |
| c is NULL, in which case a may be negative. */ |
| |
| z = (PyLongObject *)PyLong_FromLong(1L); |
| if (z == NULL) |
| goto Error; |
| |
| /* Perform a modular reduction, X = X % c, but leave X alone if c |
| * is NULL. |
| */ |
| #define REDUCE(X) \ |
| if (c != NULL) { \ |
| if (l_divmod(X, c, NULL, &temp) < 0) \ |
| goto Error; \ |
| Py_XDECREF(X); \ |
| X = temp; \ |
| temp = NULL; \ |
| } |
| |
| /* Multiply two values, then reduce the result: |
| result = X*Y % c. If c is NULL, skip the mod. */ |
| #define MULT(X, Y, result) \ |
| { \ |
| temp = (PyLongObject *)long_mul(X, Y); \ |
| if (temp == NULL) \ |
| goto Error; \ |
| Py_XDECREF(result); \ |
| result = temp; \ |
| temp = NULL; \ |
| REDUCE(result) \ |
| } |
| |
| if (Py_SIZE(b) <= FIVEARY_CUTOFF) { |
| /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ |
| /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */ |
| for (i = Py_SIZE(b) - 1; i >= 0; --i) { |
| digit bi = b->ob_digit[i]; |
| |
| for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) { |
| MULT(z, z, z) |
| if (bi & j) |
| MULT(z, a, z) |
| } |
| } |
| } |
| else { |
| /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */ |
| Py_INCREF(z); /* still holds 1L */ |
| table[0] = z; |
| for (i = 1; i < 32; ++i) |
| MULT(table[i-1], a, table[i]) |
| |
| for (i = Py_SIZE(b) - 1; i >= 0; --i) { |
| const digit bi = b->ob_digit[i]; |
| |
| for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) { |
| const int index = (bi >> j) & 0x1f; |
| for (k = 0; k < 5; ++k) |
| MULT(z, z, z) |
| if (index) |
| MULT(z, table[index], z) |
| } |
| } |
| } |
| |
| if (negativeOutput && (Py_SIZE(z) != 0)) { |
| temp = (PyLongObject *)long_sub(z, c); |
| if (temp == NULL) |
| goto Error; |
| Py_DECREF(z); |
| z = temp; |
| temp = NULL; |
| } |
| goto Done; |
| |
| Error: |
| if (z != NULL) { |
| Py_DECREF(z); |
| z = NULL; |
| } |
| /* fall through */ |
| Done: |
| if (Py_SIZE(b) > FIVEARY_CUTOFF) { |
| for (i = 0; i < 32; ++i) |
| Py_XDECREF(table[i]); |
| } |
| Py_DECREF(a); |
| Py_DECREF(b); |
| Py_XDECREF(c); |
| Py_XDECREF(temp); |
| return (PyObject *)z; |
| } |
| |
| static PyObject * |
| long_invert(PyLongObject *v) |
| { |
| /* Implement ~x as -(x+1) */ |
| PyLongObject *x; |
| PyLongObject *w; |
| w = (PyLongObject *)PyLong_FromLong(1L); |
| if (w == NULL) |
| return NULL; |
| x = (PyLongObject *) long_add(v, w); |
| Py_DECREF(w); |
| if (x == NULL) |
| return NULL; |
| Py_SIZE(x) = -(Py_SIZE(x)); |
| return (PyObject *)x; |
| } |
| |
| static PyObject * |
| long_neg(PyLongObject *v) |
| { |
| PyLongObject *z; |
| if (v->ob_size == 0 && PyLong_CheckExact(v)) { |
| /* -0 == 0 */ |
| Py_INCREF(v); |
| return (PyObject *) v; |
| } |
| z = (PyLongObject *)_PyLong_Copy(v); |
| if (z != NULL) |
| z->ob_size = -(v->ob_size); |
| return (PyObject *)z; |
| } |
| |
| static PyObject * |
| long_abs(PyLongObject *v) |
| { |
| if (v->ob_size < 0) |
| return long_neg(v); |
| else |
| return long_long((PyObject *)v); |
| } |
| |
| static int |
| long_nonzero(PyLongObject *v) |
| { |
| return ABS(Py_SIZE(v)) != 0; |
| } |
| |
| static PyObject * |
| long_rshift(PyLongObject *v, PyLongObject *w) |
| { |
| PyLongObject *a, *b; |
| PyLongObject *z = NULL; |
| long shiftby; |
| Py_ssize_t newsize, wordshift, loshift, hishift, i, j; |
| digit lomask, himask; |
| |
| CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); |
| |
| if (Py_SIZE(a) < 0) { |
| /* Right shifting negative numbers is harder */ |
| PyLongObject *a1, *a2; |
| a1 = (PyLongObject *) long_invert(a); |
| if (a1 == NULL) |
| goto rshift_error; |
| a2 = (PyLongObject *) long_rshift(a1, b); |
| Py_DECREF(a1); |
| if (a2 == NULL) |
| goto rshift_error; |
| z = (PyLongObject *) long_invert(a2); |
| Py_DECREF(a2); |
| } |
| else { |
| |
| shiftby = PyLong_AsLong((PyObject *)b); |
| if (shiftby == -1L && PyErr_Occurred()) |
| goto rshift_error; |
| if (shiftby < 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "negative shift count"); |
| goto rshift_error; |
| } |
| wordshift = shiftby / PyLong_SHIFT; |
| newsize = ABS(Py_SIZE(a)) - wordshift; |
| if (newsize <= 0) { |
| z = _PyLong_New(0); |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *)z; |
| } |
| loshift = shiftby % PyLong_SHIFT; |
| hishift = PyLong_SHIFT - loshift; |
| lomask = ((digit)1 << hishift) - 1; |
| himask = PyLong_MASK ^ lomask; |
| z = _PyLong_New(newsize); |
| if (z == NULL) |
| goto rshift_error; |
| if (Py_SIZE(a) < 0) |
| Py_SIZE(z) = -(Py_SIZE(z)); |
| for (i = 0, j = wordshift; i < newsize; i++, j++) { |
| z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; |
| if (i+1 < newsize) |
| z->ob_digit[i] |= |
| (a->ob_digit[j+1] << hishift) & himask; |
| } |
| z = long_normalize(z); |
| } |
| rshift_error: |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *) z; |
| |
| } |
| |
| static PyObject * |
| long_lshift(PyObject *v, PyObject *w) |
| { |
| /* This version due to Tim Peters */ |
| PyLongObject *a, *b; |
| PyLongObject *z = NULL; |
| long shiftby; |
| Py_ssize_t oldsize, newsize, wordshift, remshift, i, j; |
| twodigits accum; |
| |
| CONVERT_BINOP(v, w, &a, &b); |
| |
| shiftby = PyLong_AsLong((PyObject *)b); |
| if (shiftby == -1L && PyErr_Occurred()) |
| goto lshift_error; |
| if (shiftby < 0) { |
| PyErr_SetString(PyExc_ValueError, "negative shift count"); |
| goto lshift_error; |
| } |
| if ((long)(int)shiftby != shiftby) { |
| PyErr_SetString(PyExc_ValueError, |
| "outrageous left shift count"); |
| goto lshift_error; |
| } |
| /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */ |
| wordshift = (int)shiftby / PyLong_SHIFT; |
| remshift = (int)shiftby - wordshift * PyLong_SHIFT; |
| |
| oldsize = ABS(a->ob_size); |
| newsize = oldsize + wordshift; |
| if (remshift) |
| ++newsize; |
| z = _PyLong_New(newsize); |
| if (z == NULL) |
| goto lshift_error; |
| if (a->ob_size < 0) |
| z->ob_size = -(z->ob_size); |
| for (i = 0; i < wordshift; i++) |
| z->ob_digit[i] = 0; |
| accum = 0; |
| for (i = wordshift, j = 0; j < oldsize; i++, j++) { |
| accum |= (twodigits)a->ob_digit[j] << remshift; |
| z->ob_digit[i] = (digit)(accum & PyLong_MASK); |
| accum >>= PyLong_SHIFT; |
| } |
| if (remshift) |
| z->ob_digit[newsize-1] = (digit)accum; |
| else |
| assert(!accum); |
| z = long_normalize(z); |
| lshift_error: |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *) z; |
| } |
| |
| /* Compute two's complement of digit vector a[0:m], writing result to |
| z[0:m]. The digit vector a need not be normalized, but should not |
| be entirely zero. a and z may point to the same digit vector. */ |
| |
| static void |
| v_complement(digit *z, digit *a, Py_ssize_t m) |
| { |
| Py_ssize_t i; |
| digit carry = 1; |
| for (i = 0; i < m; ++i) { |
| carry += a[i] ^ PyLong_MASK; |
| z[i] = carry & PyLong_MASK; |
| carry >>= PyLong_SHIFT; |
| } |
| assert(carry == 0); |
| } |
| |
| /* Bitwise and/xor/or operations */ |
| |
| static PyObject * |
| long_bitwise(PyLongObject *a, |
| int op, /* '&', '|', '^' */ |
| PyLongObject *b) |
| { |
| int nega, negb, negz; |
| Py_ssize_t size_a, size_b, size_z, i; |
| PyLongObject *z; |
| |
| /* Bitwise operations for negative numbers operate as though |
| on a two's complement representation. So convert arguments |
| from sign-magnitude to two's complement, and convert the |
| result back to sign-magnitude at the end. */ |
| |
| /* If a is negative, replace it by its two's complement. */ |
| size_a = ABS(Py_SIZE(a)); |
| nega = Py_SIZE(a) < 0; |
| if (nega) { |
| z = _PyLong_New(size_a); |
| if (z == NULL) |
| return NULL; |
| v_complement(z->ob_digit, a->ob_digit, size_a); |
| a = z; |
| } |
| else |
| /* Keep reference count consistent. */ |
| Py_INCREF(a); |
| |
| /* Same for b. */ |
| size_b = ABS(Py_SIZE(b)); |
| negb = Py_SIZE(b) < 0; |
| if (negb) { |
| z = _PyLong_New(size_b); |
| if (z == NULL) { |
| Py_DECREF(a); |
| return NULL; |
| } |
| v_complement(z->ob_digit, b->ob_digit, size_b); |
| b = z; |
| } |
| else |
| Py_INCREF(b); |
| |
| /* Swap a and b if necessary to ensure size_a >= size_b. */ |
| if (size_a < size_b) { |
| z = a; a = b; b = z; |
| size_z = size_a; size_a = size_b; size_b = size_z; |
| negz = nega; nega = negb; negb = negz; |
| } |
| |
| /* JRH: The original logic here was to allocate the result value (z) |
| as the longer of the two operands. However, there are some cases |
| where the result is guaranteed to be shorter than that: AND of two |
| positives, OR of two negatives: use the shorter number. AND with |
| mixed signs: use the positive number. OR with mixed signs: use the |
| negative number. |
| */ |
| switch (op) { |
| case '^': |
| negz = nega ^ negb; |
| size_z = size_a; |
| break; |
| case '&': |
| negz = nega & negb; |
| size_z = negb ? size_a : size_b; |
| break; |
| case '|': |
| negz = nega | negb; |
| size_z = negb ? size_b : size_a; |
| break; |
| default: |
| PyErr_BadArgument(); |
| return NULL; |
| } |
| |
| /* We allow an extra digit if z is negative, to make sure that |
| the final two's complement of z doesn't overflow. */ |
| z = _PyLong_New(size_z + negz); |
| if (z == NULL) { |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return NULL; |
| } |
| |
| /* Compute digits for overlap of a and b. */ |
| switch(op) { |
| case '&': |
| for (i = 0; i < size_b; ++i) |
| z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i]; |
| break; |
| case '|': |
| for (i = 0; i < size_b; ++i) |
| z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i]; |
| break; |
| case '^': |
| for (i = 0; i < size_b; ++i) |
| z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i]; |
| break; |
| default: |
| PyErr_BadArgument(); |
| return NULL; |
| } |
| |
| /* Copy any remaining digits of a, inverting if necessary. */ |
| if (op == '^' && negb) |
| for (; i < size_z; ++i) |
| z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK; |
| else if (i < size_z) |
| memcpy(&z->ob_digit[i], &a->ob_digit[i], |
| (size_z-i)*sizeof(digit)); |
| |
| /* Complement result if negative. */ |
| if (negz) { |
| Py_SIZE(z) = -(Py_SIZE(z)); |
| z->ob_digit[size_z] = PyLong_MASK; |
| v_complement(z->ob_digit, z->ob_digit, size_z+1); |
| } |
| |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return (PyObject *)long_normalize(z); |
| } |
| |
| static PyObject * |
| long_and(PyObject *v, PyObject *w) |
| { |
| PyLongObject *a, *b; |
| PyObject *c; |
| CONVERT_BINOP(v, w, &a, &b); |
| c = long_bitwise(a, '&', b); |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return c; |
| } |
| |
| static PyObject * |
| long_xor(PyObject *v, PyObject *w) |
| { |
| PyLongObject *a, *b; |
| PyObject *c; |
| CONVERT_BINOP(v, w, &a, &b); |
| c = long_bitwise(a, '^', b); |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return c; |
| } |
| |
| static PyObject * |
| long_or(PyObject *v, PyObject *w) |
| { |
| PyLongObject *a, *b; |
| PyObject *c; |
| CONVERT_BINOP(v, w, &a, &b); |
| c = long_bitwise(a, '|', b); |
| Py_DECREF(a); |
| Py_DECREF(b); |
| return c; |
| } |
| |
| static int |
| long_coerce(PyObject **pv, PyObject **pw) |
| { |
| if (PyInt_Check(*pw)) { |
| *pw = PyLong_FromLong(PyInt_AS_LONG(*pw)); |
| if (*pw == NULL) |
| return -1; |
| Py_INCREF(*pv); |
| return 0; |
| } |
| else if (PyLong_Check(*pw)) { |
| Py_INCREF(*pv); |
| Py_INCREF(*pw); |
| return 0; |
| } |
| return 1; /* Can't do it */ |
| } |
| |
| static PyObject * |
| long_long(PyObject *v) |
| { |
| if (PyLong_CheckExact(v)) |
| Py_INCREF(v); |
| else |
| v = _PyLong_Copy((PyLongObject *)v); |
| return v; |
| } |
| |
| static PyObject * |
| long_int(PyObject *v) |
| { |
| long x; |
| x = PyLong_AsLong(v); |
| if (PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
| PyErr_Clear(); |
| if (PyLong_CheckExact(v)) { |
| Py_INCREF(v); |
| return v; |
| } |
| else |
| return _PyLong_Copy((PyLongObject *)v); |
| } |
| else |
| return NULL; |
| } |
| return PyInt_FromLong(x); |
| } |
| |
| static PyObject * |
| long_float(PyObject *v) |
| { |
| double result; |
| result = PyLong_AsDouble(v); |
| if (result == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyFloat_FromDouble(result); |
| } |
| |
| static PyObject * |
| long_oct(PyObject *v) |
| { |
| return _PyLong_Format(v, 8, 1, 0); |
| } |
| |
| static PyObject * |
| long_hex(PyObject *v) |
| { |
| return _PyLong_Format(v, 16, 1, 0); |
| } |
| |
| static PyObject * |
| long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); |
| |
| static PyObject * |
| long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyObject *x = NULL; |
| int base = -909; /* unlikely! */ |
| static char *kwlist[] = {"x", "base", 0}; |
| |
| if (type != &PyLong_Type) |
| return long_subtype_new(type, args, kwds); /* Wimp out */ |
| if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist, |
| &x, &base)) |
| return NULL; |
| if (x == NULL) |
| return PyLong_FromLong(0L); |
| if (base == -909) |
| return PyNumber_Long(x); |
| else if (PyString_Check(x)) { |
| /* Since PyLong_FromString doesn't have a length parameter, |
| * check here for possible NULs in the string. */ |
| char *string = PyString_AS_STRING(x); |
| if (strlen(string) != (size_t)PyString_Size(x)) { |
| /* create a repr() of the input string, |
| * just like PyLong_FromString does. */ |
| PyObject *srepr; |
| srepr = PyObject_Repr(x); |
| if (srepr == NULL) |
| return NULL; |
| PyErr_Format(PyExc_ValueError, |
| "invalid literal for long() with base %d: %s", |
| base, PyString_AS_STRING(srepr)); |
| Py_DECREF(srepr); |
| return NULL; |
| } |
| return PyLong_FromString(PyString_AS_STRING(x), NULL, base); |
| } |
| #ifdef Py_USING_UNICODE |
| else if (PyUnicode_Check(x)) |
| return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x), |
| PyUnicode_GET_SIZE(x), |
| base); |
| #endif |
| else { |
| PyErr_SetString(PyExc_TypeError, |
| "long() can't convert non-string with explicit base"); |
| return NULL; |
| } |
| } |
| |
| /* Wimpy, slow approach to tp_new calls for subtypes of long: |
| first create a regular long from whatever arguments we got, |
| then allocate a subtype instance and initialize it from |
| the regular long. The regular long is then thrown away. |
| */ |
| static PyObject * |
| long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyLongObject *tmp, *newobj; |
| Py_ssize_t i, n; |
| |
| assert(PyType_IsSubtype(type, &PyLong_Type)); |
| tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds); |
| if (tmp == NULL) |
| return NULL; |
| assert(PyLong_CheckExact(tmp)); |
| n = Py_SIZE(tmp); |
| if (n < 0) |
| n = -n; |
| newobj = (PyLongObject *)type->tp_alloc(type, n); |
| if (newobj == NULL) { |
| Py_DECREF(tmp); |
| return NULL; |
| } |
| assert(PyLong_Check(newobj)); |
| Py_SIZE(newobj) = Py_SIZE(tmp); |
| for (i = 0; i < n; i++) |
| newobj->ob_digit[i] = tmp->ob_digit[i]; |
| Py_DECREF(tmp); |
| return (PyObject *)newobj; |
| } |
| |
| static PyObject * |
| long_getnewargs(PyLongObject *v) |
| { |
| return Py_BuildValue("(N)", _PyLong_Copy(v)); |
| } |
| |
| static PyObject * |
| long_get0(PyLongObject *v, void *context) { |
| return PyLong_FromLong(0L); |
| } |
| |
| static PyObject * |
| long_get1(PyLongObject *v, void *context) { |
| return PyLong_FromLong(1L); |
| } |
| |
| static PyObject * |
| long__format__(PyObject *self, PyObject *args) |
| { |
| PyObject *format_spec; |
| |
| if (!PyArg_ParseTuple(args, "O:__format__", &format_spec)) |
| return NULL; |
| if (PyBytes_Check(format_spec)) |
| return _PyLong_FormatAdvanced(self, |
| PyBytes_AS_STRING(format_spec), |
| PyBytes_GET_SIZE(format_spec)); |
| if (PyUnicode_Check(format_spec)) { |
| /* Convert format_spec to a str */ |
| PyObject *result; |
| PyObject *str_spec = PyObject_Str(format_spec); |
| |
| if (str_spec == NULL) |
| return NULL; |
| |
| result = _PyLong_FormatAdvanced(self, |
| PyBytes_AS_STRING(str_spec), |
| PyBytes_GET_SIZE(str_spec)); |
| |
| Py_DECREF(str_spec); |
| return result; |
| } |
| PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode"); |
| return NULL; |
| } |
| |
| static PyObject * |
| long_sizeof(PyLongObject *v) |
| { |
| Py_ssize_t res; |
| |
| res = v->ob_type->tp_basicsize + ABS(Py_SIZE(v))*sizeof(digit); |
| return PyInt_FromSsize_t(res); |
| } |
| |
| static PyObject * |
| long_bit_length(PyLongObject *v) |
| { |
| PyLongObject *result, *x, *y; |
| Py_ssize_t ndigits, msd_bits = 0; |
| digit msd; |
| |
| assert(v != NULL); |
| assert(PyLong_Check(v)); |
| |
| ndigits = ABS(Py_SIZE(v)); |
| if (ndigits == 0) |
| return PyInt_FromLong(0); |
| |
| msd = v->ob_digit[ndigits-1]; |
| while (msd >= 32) { |
| msd_bits += 6; |
| msd >>= 6; |
| } |
| msd_bits += (long)(BitLengthTable[msd]); |
| |
| if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT) |
| return PyInt_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits); |
| |
| /* expression above may overflow; use Python integers instead */ |
| result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1); |
| if (result == NULL) |
| return NULL; |
| x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT); |
| if (x == NULL) |
| goto error; |
| y = (PyLongObject *)long_mul(result, x); |
| Py_DECREF(x); |
| if (y == NULL) |
| goto error; |
| Py_DECREF(result); |
| result = y; |
| |
| x = (PyLongObject *)PyLong_FromLong(msd_bits); |
| if (x == NULL) |
| goto error; |
| y = (PyLongObject *)long_add(result, x); |
| Py_DECREF(x); |
| if (y == NULL) |
| goto error; |
| Py_DECREF(result); |
| result = y; |
| |
| return (PyObject *)result; |
| |
| error: |
| Py_DECREF(result); |
| return NULL; |
| } |
| |
| PyDoc_STRVAR(long_bit_length_doc, |
| "long.bit_length() -> int or long\n\ |
| \n\ |
| Number of bits necessary to represent self in binary.\n\ |
| >>> bin(37L)\n\ |
| '0b100101'\n\ |
| >>> (37L).bit_length()\n\ |
| 6"); |
| |
| #if 0 |
| static PyObject * |
| long_is_finite(PyObject *v) |
| { |
| Py_RETURN_TRUE; |
| } |
| #endif |
| |
| static PyMethodDef long_methods[] = { |
| {"conjugate", (PyCFunction)long_long, METH_NOARGS, |
| "Returns self, the complex conjugate of any long."}, |
| {"bit_length", (PyCFunction)long_bit_length, METH_NOARGS, |
| long_bit_length_doc}, |
| #if 0 |
| {"is_finite", (PyCFunction)long_is_finite, METH_NOARGS, |
| "Returns always True."}, |
| #endif |
| {"__trunc__", (PyCFunction)long_long, METH_NOARGS, |
| "Truncating an Integral returns itself."}, |
| {"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS}, |
| {"__format__", (PyCFunction)long__format__, METH_VARARGS}, |
| {"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS, |
| "Returns size in memory, in bytes"}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyGetSetDef long_getset[] = { |
| {"real", |
| (getter)long_long, (setter)NULL, |
| "the real part of a complex number", |
| NULL}, |
| {"imag", |
| (getter)long_get0, (setter)NULL, |
| "the imaginary part of a complex number", |
| NULL}, |
| {"numerator", |
| (getter)long_long, (setter)NULL, |
| "the numerator of a rational number in lowest terms", |
| NULL}, |
| {"denominator", |
| (getter)long_get1, (setter)NULL, |
| "the denominator of a rational number in lowest terms", |
| NULL}, |
| {NULL} /* Sentinel */ |
| }; |
| |
| PyDoc_STRVAR(long_doc, |
| "long(x[, base]) -> integer\n\ |
| \n\ |
| Convert a string or number to a long integer, if possible. A floating\n\ |
| point argument will be truncated towards zero (this does not include a\n\ |
| string representation of a floating point number!) When converting a\n\ |
| string, use the optional base. It is an error to supply a base when\n\ |
| converting a non-string."); |
| |
| static PyNumberMethods long_as_number = { |
| (binaryfunc) long_add, /*nb_add*/ |
| (binaryfunc) long_sub, /*nb_subtract*/ |
| (binaryfunc) long_mul, /*nb_multiply*/ |
| long_classic_div, /*nb_divide*/ |
| long_mod, /*nb_remainder*/ |
| long_divmod, /*nb_divmod*/ |
| long_pow, /*nb_power*/ |
| (unaryfunc) long_neg, /*nb_negative*/ |
| (unaryfunc) long_long, /*tp_positive*/ |
| (unaryfunc) long_abs, /*tp_absolute*/ |
| (inquiry) long_nonzero, /*tp_nonzero*/ |
| (unaryfunc) long_invert, /*nb_invert*/ |
| long_lshift, /*nb_lshift*/ |
| (binaryfunc) long_rshift, /*nb_rshift*/ |
| long_and, /*nb_and*/ |
| long_xor, /*nb_xor*/ |
| long_or, /*nb_or*/ |
| long_coerce, /*nb_coerce*/ |
| long_int, /*nb_int*/ |
| long_long, /*nb_long*/ |
| long_float, /*nb_float*/ |
| long_oct, /*nb_oct*/ |
| long_hex, /*nb_hex*/ |
| 0, /* nb_inplace_add */ |
| 0, /* nb_inplace_subtract */ |
| 0, /* nb_inplace_multiply */ |
| 0, /* nb_inplace_divide */ |
| 0, /* nb_inplace_remainder */ |
| 0, /* nb_inplace_power */ |
| 0, /* nb_inplace_lshift */ |
| 0, /* nb_inplace_rshift */ |
| 0, /* nb_inplace_and */ |
| 0, /* nb_inplace_xor */ |
| 0, /* nb_inplace_or */ |
| long_div, /* nb_floor_divide */ |
| long_true_divide, /* nb_true_divide */ |
| 0, /* nb_inplace_floor_divide */ |
| 0, /* nb_inplace_true_divide */ |
| long_long, /* nb_index */ |
| }; |
| |
| PyTypeObject PyLong_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, /* ob_size */ |
| "long", /* tp_name */ |
| offsetof(PyLongObject, ob_digit), /* tp_basicsize */ |
| sizeof(digit), /* tp_itemsize */ |
| long_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| (cmpfunc)long_compare, /* tp_compare */ |
| long_repr, /* tp_repr */ |
| &long_as_number, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)long_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| long_str, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | |
| Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */ |
| long_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| long_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| long_getset, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| long_new, /* tp_new */ |
| PyObject_Del, /* tp_free */ |
| }; |
| |
| static PyTypeObject Long_InfoType; |
| |
| PyDoc_STRVAR(long_info__doc__, |
| "sys.long_info\n\ |
| \n\ |
| A struct sequence that holds information about Python's\n\ |
| internal representation of integers. The attributes are read only."); |
| |
| static PyStructSequence_Field long_info_fields[] = { |
| {"bits_per_digit", "size of a digit in bits"}, |
| {"sizeof_digit", "size in bytes of the C type used to " |
| "represent a digit"}, |
| {NULL, NULL} |
| }; |
| |
| static PyStructSequence_Desc long_info_desc = { |
| "sys.long_info", /* name */ |
| long_info__doc__, /* doc */ |
| long_info_fields, /* fields */ |
| 2 /* number of fields */ |
| }; |
| |
| PyObject * |
| PyLong_GetInfo(void) |
| { |
| PyObject* long_info; |
| int field = 0; |
| long_info = PyStructSequence_New(&Long_InfoType); |
| if (long_info == NULL) |
| return NULL; |
| PyStructSequence_SET_ITEM(long_info, field++, |
| PyInt_FromLong(PyLong_SHIFT)); |
| PyStructSequence_SET_ITEM(long_info, field++, |
| PyInt_FromLong(sizeof(digit))); |
| if (PyErr_Occurred()) { |
| Py_CLEAR(long_info); |
| return NULL; |
| } |
| return long_info; |
| } |
| |
| int |
| _PyLong_Init(void) |
| { |
| /* initialize long_info */ |
| if (Long_InfoType.tp_name == 0) |
| PyStructSequence_InitType(&Long_InfoType, &long_info_desc); |
| return 1; |
| } |