| #include "Python.h" |
| #ifdef MS_WINDOWS |
| #include <windows.h> |
| #endif |
| |
| #if defined(__APPLE__) |
| #include <mach/mach_time.h> /* mach_absolute_time(), mach_timebase_info() */ |
| #endif |
| |
| /* To millisecond (10^-3) */ |
| #define SEC_TO_MS 1000 |
| |
| /* To microseconds (10^-6) */ |
| #define MS_TO_US 1000 |
| #define SEC_TO_US (SEC_TO_MS * MS_TO_US) |
| |
| /* To nanoseconds (10^-9) */ |
| #define US_TO_NS 1000 |
| #define MS_TO_NS (MS_TO_US * US_TO_NS) |
| #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) |
| |
| /* Conversion from nanoseconds */ |
| #define NS_TO_MS (1000 * 1000) |
| #define NS_TO_US (1000) |
| |
| static void |
| error_time_t_overflow(void) |
| { |
| PyErr_SetString(PyExc_OverflowError, |
| "timestamp out of range for platform time_t"); |
| } |
| |
| time_t |
| _PyLong_AsTime_t(PyObject *obj) |
| { |
| #if defined(HAVE_LONG_LONG) && SIZEOF_TIME_T == SIZEOF_LONG_LONG |
| PY_LONG_LONG val; |
| val = PyLong_AsLongLong(obj); |
| #else |
| long val; |
| assert(sizeof(time_t) <= sizeof(long)); |
| val = PyLong_AsLong(obj); |
| #endif |
| if (val == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) |
| error_time_t_overflow(); |
| return -1; |
| } |
| return (time_t)val; |
| } |
| |
| PyObject * |
| _PyLong_FromTime_t(time_t t) |
| { |
| #if defined(HAVE_LONG_LONG) && SIZEOF_TIME_T == SIZEOF_LONG_LONG |
| return PyLong_FromLongLong((PY_LONG_LONG)t); |
| #else |
| assert(sizeof(time_t) <= sizeof(long)); |
| return PyLong_FromLong((long)t); |
| #endif |
| } |
| |
| static int |
| _PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator, |
| double denominator, _PyTime_round_t round) |
| { |
| assert(denominator <= LONG_MAX); |
| if (PyFloat_Check(obj)) { |
| double d, intpart, err; |
| /* volatile avoids unsafe optimization on float enabled by gcc -O3 */ |
| volatile double floatpart; |
| |
| d = PyFloat_AsDouble(obj); |
| floatpart = modf(d, &intpart); |
| if (floatpart < 0) { |
| floatpart = 1.0 + floatpart; |
| intpart -= 1.0; |
| } |
| |
| floatpart *= denominator; |
| if (round == _PyTime_ROUND_CEILING) { |
| floatpart = ceil(floatpart); |
| if (floatpart >= denominator) { |
| floatpart = 0.0; |
| intpart += 1.0; |
| } |
| } |
| else { |
| floatpart = floor(floatpart); |
| } |
| |
| *sec = (time_t)intpart; |
| err = intpart - (double)*sec; |
| if (err <= -1.0 || err >= 1.0) { |
| error_time_t_overflow(); |
| return -1; |
| } |
| |
| *numerator = (long)floatpart; |
| return 0; |
| } |
| else { |
| *sec = _PyLong_AsTime_t(obj); |
| if (*sec == (time_t)-1 && PyErr_Occurred()) |
| return -1; |
| *numerator = 0; |
| return 0; |
| } |
| } |
| |
| int |
| _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) |
| { |
| if (PyFloat_Check(obj)) { |
| double d, intpart, err; |
| |
| d = PyFloat_AsDouble(obj); |
| if (round == _PyTime_ROUND_CEILING) |
| d = ceil(d); |
| else |
| d = floor(d); |
| (void)modf(d, &intpart); |
| |
| *sec = (time_t)intpart; |
| err = intpart - (double)*sec; |
| if (err <= -1.0 || err >= 1.0) { |
| error_time_t_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| else { |
| *sec = _PyLong_AsTime_t(obj); |
| if (*sec == (time_t)-1 && PyErr_Occurred()) |
| return -1; |
| return 0; |
| } |
| } |
| |
| int |
| _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, |
| _PyTime_round_t round) |
| { |
| return _PyTime_ObjectToDenominator(obj, sec, nsec, 1e9, round); |
| } |
| |
| int |
| _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, |
| _PyTime_round_t round) |
| { |
| return _PyTime_ObjectToDenominator(obj, sec, usec, 1e6, round); |
| } |
| |
| static void |
| _PyTime_overflow(void) |
| { |
| PyErr_SetString(PyExc_OverflowError, |
| "timestamp too large to convert to C _PyTime_t"); |
| } |
| |
| _PyTime_t |
| _PyTime_FromSeconds(int seconds) |
| { |
| _PyTime_t t; |
| /* ensure that integer overflow cannot happen, int type should have 32 |
| bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30 |
| bits). */ |
| assert((seconds >= 0 && seconds <= _PyTime_MAX / SEC_TO_NS) |
| || (seconds < 0 && seconds >= _PyTime_MIN / SEC_TO_NS)); |
| t = (_PyTime_t)seconds * SEC_TO_NS; |
| return t; |
| } |
| |
| _PyTime_t |
| _PyTime_FromNanoseconds(PY_LONG_LONG ns) |
| { |
| _PyTime_t t; |
| assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t)); |
| t = Py_SAFE_DOWNCAST(ns, PY_LONG_LONG, _PyTime_t); |
| return t; |
| } |
| |
| #ifdef HAVE_CLOCK_GETTIME |
| static int |
| _PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts, int raise) |
| { |
| _PyTime_t t; |
| int res = 0; |
| |
| t = (_PyTime_t)ts->tv_sec * SEC_TO_NS; |
| if (t / SEC_TO_NS != ts->tv_sec) { |
| if (raise) |
| _PyTime_overflow(); |
| res = -1; |
| } |
| |
| t += ts->tv_nsec; |
| |
| *tp = t; |
| return res; |
| } |
| #elif !defined(MS_WINDOWS) |
| static int |
| _PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv, int raise) |
| { |
| _PyTime_t t; |
| int res = 0; |
| |
| t = (_PyTime_t)tv->tv_sec * SEC_TO_NS; |
| if (t / SEC_TO_NS != tv->tv_sec) { |
| if (raise) |
| _PyTime_overflow(); |
| res = -1; |
| } |
| |
| t += (_PyTime_t)tv->tv_usec * US_TO_NS; |
| |
| *tp = t; |
| return res; |
| } |
| #endif |
| |
| static int |
| _PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round, |
| long to_nanoseconds) |
| { |
| if (PyFloat_Check(obj)) { |
| /* volatile avoids unsafe optimization on float enabled by gcc -O3 */ |
| volatile double d, err; |
| |
| /* convert to a number of nanoseconds */ |
| d = PyFloat_AsDouble(obj); |
| d *= to_nanoseconds; |
| |
| if (round == _PyTime_ROUND_CEILING) |
| d = ceil(d); |
| else |
| d = floor(d); |
| |
| *t = (_PyTime_t)d; |
| err = d - (double)*t; |
| if (fabs(err) >= 1.0) { |
| _PyTime_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| else { |
| #ifdef HAVE_LONG_LONG |
| PY_LONG_LONG sec; |
| sec = PyLong_AsLongLong(obj); |
| assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t)); |
| #else |
| long sec; |
| sec = PyLong_AsLong(obj); |
| assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t)); |
| #endif |
| if (sec == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) |
| _PyTime_overflow(); |
| return -1; |
| } |
| *t = sec * to_nanoseconds; |
| if (*t / to_nanoseconds != sec) { |
| _PyTime_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| } |
| |
| int |
| _PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) |
| { |
| return _PyTime_FromObject(t, obj, round, SEC_TO_NS); |
| } |
| |
| int |
| _PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) |
| { |
| return _PyTime_FromObject(t, obj, round, MS_TO_NS); |
| } |
| |
| double |
| _PyTime_AsSecondsDouble(_PyTime_t t) |
| { |
| _PyTime_t sec, ns; |
| /* Divide using integers to avoid rounding issues on the integer part. |
| 1e-9 cannot be stored exactly in IEEE 64-bit. */ |
| sec = t / SEC_TO_NS; |
| ns = t % SEC_TO_NS; |
| return (double)sec + (double)ns * 1e-9; |
| } |
| |
| PyObject * |
| _PyTime_AsNanosecondsObject(_PyTime_t t) |
| { |
| #ifdef HAVE_LONG_LONG |
| assert(sizeof(PY_LONG_LONG) >= sizeof(_PyTime_t)); |
| return PyLong_FromLongLong((PY_LONG_LONG)t); |
| #else |
| assert(sizeof(long) >= sizeof(_PyTime_t)); |
| return PyLong_FromLong((long)t); |
| #endif |
| } |
| |
| static _PyTime_t |
| _PyTime_Divide(const _PyTime_t t, const _PyTime_t k, |
| const _PyTime_round_t round) |
| { |
| assert(k > 1); |
| if (round == _PyTime_ROUND_CEILING) { |
| if (t >= 0) |
| return (t + k - 1) / k; |
| else |
| return t / k; |
| } |
| else { |
| if (t >= 0) |
| return t / k; |
| else |
| return (t - (k - 1)) / k; |
| } |
| } |
| |
| _PyTime_t |
| _PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round) |
| { |
| return _PyTime_Divide(t, NS_TO_MS, round); |
| } |
| |
| _PyTime_t |
| _PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round) |
| { |
| return _PyTime_Divide(t, NS_TO_US, round); |
| } |
| |
| static int |
| _PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us, |
| _PyTime_round_t round) |
| { |
| _PyTime_t secs, ns; |
| int usec; |
| int res = 0; |
| |
| secs = t / SEC_TO_NS; |
| ns = t % SEC_TO_NS; |
| |
| usec = (int)_PyTime_Divide(ns, US_TO_NS, round); |
| if (usec < 0) { |
| usec += SEC_TO_US; |
| if (secs != _PyTime_MIN) |
| secs -= 1; |
| else |
| res = -1; |
| } |
| else if (usec >= SEC_TO_US) { |
| usec -= SEC_TO_US; |
| if (secs != _PyTime_MAX) |
| secs += 1; |
| else |
| res = -1; |
| } |
| assert(0 <= usec && usec < SEC_TO_US); |
| |
| *p_secs = secs; |
| *p_us = usec; |
| |
| return res; |
| } |
| |
| static int |
| _PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv, |
| _PyTime_round_t round, int raise) |
| { |
| _PyTime_t secs; |
| int us; |
| int res; |
| |
| res = _PyTime_AsTimeval_impl(t, &secs, &us, round); |
| |
| #ifdef MS_WINDOWS |
| tv->tv_sec = (long)secs; |
| #else |
| tv->tv_sec = secs; |
| #endif |
| tv->tv_usec = us; |
| |
| if (res < 0 || (_PyTime_t)tv->tv_sec != secs) { |
| if (raise) |
| error_time_t_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| _PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) |
| { |
| return _PyTime_AsTimevalStruct_impl(t, tv, round, 1); |
| } |
| |
| int |
| _PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) |
| { |
| return _PyTime_AsTimevalStruct_impl(t, tv, round, 0); |
| } |
| |
| int |
| _PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us, |
| _PyTime_round_t round) |
| { |
| _PyTime_t secs; |
| int res; |
| |
| res = _PyTime_AsTimeval_impl(t, &secs, us, round); |
| |
| *p_secs = secs; |
| |
| if (res < 0 || (_PyTime_t)*p_secs != secs) { |
| error_time_t_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) |
| int |
| _PyTime_AsTimespec(_PyTime_t t, struct timespec *ts) |
| { |
| _PyTime_t secs, nsec; |
| |
| secs = t / SEC_TO_NS; |
| nsec = t % SEC_TO_NS; |
| if (nsec < 0) { |
| nsec += SEC_TO_NS; |
| secs -= 1; |
| } |
| ts->tv_sec = (time_t)secs; |
| if ((_PyTime_t)ts->tv_sec != secs) { |
| _PyTime_overflow(); |
| return -1; |
| } |
| ts->tv_nsec = nsec; |
| |
| assert(0 <= ts->tv_nsec && ts->tv_nsec <= 999999999); |
| return 0; |
| } |
| #endif |
| |
| static int |
| pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise) |
| { |
| #ifdef MS_WINDOWS |
| FILETIME system_time; |
| ULARGE_INTEGER large; |
| |
| assert(info == NULL || raise); |
| |
| GetSystemTimeAsFileTime(&system_time); |
| large.u.LowPart = system_time.dwLowDateTime; |
| large.u.HighPart = system_time.dwHighDateTime; |
| /* 11,644,473,600,000,000,000: number of nanoseconds between |
| the 1st january 1601 and the 1st january 1970 (369 years + 89 leap |
| days). */ |
| *tp = large.QuadPart * 100 - 11644473600000000000; |
| if (info) { |
| DWORD timeAdjustment, timeIncrement; |
| BOOL isTimeAdjustmentDisabled, ok; |
| |
| info->implementation = "GetSystemTimeAsFileTime()"; |
| info->monotonic = 0; |
| ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, |
| &isTimeAdjustmentDisabled); |
| if (!ok) { |
| PyErr_SetFromWindowsErr(0); |
| return -1; |
| } |
| info->resolution = timeIncrement * 1e-7; |
| info->adjustable = 1; |
| } |
| |
| #else /* MS_WINDOWS */ |
| int err; |
| #ifdef HAVE_CLOCK_GETTIME |
| struct timespec ts; |
| #else |
| struct timeval tv; |
| #endif |
| |
| assert(info == NULL || raise); |
| |
| #ifdef HAVE_CLOCK_GETTIME |
| err = clock_gettime(CLOCK_REALTIME, &ts); |
| if (err) { |
| if (raise) |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| if (_PyTime_FromTimespec(tp, &ts, raise) < 0) |
| return -1; |
| |
| if (info) { |
| struct timespec res; |
| info->implementation = "clock_gettime(CLOCK_REALTIME)"; |
| info->monotonic = 0; |
| info->adjustable = 1; |
| if (clock_getres(CLOCK_REALTIME, &res) == 0) |
| info->resolution = res.tv_sec + res.tv_nsec * 1e-9; |
| else |
| info->resolution = 1e-9; |
| } |
| #else /* HAVE_CLOCK_GETTIME */ |
| |
| /* test gettimeofday() */ |
| #ifdef GETTIMEOFDAY_NO_TZ |
| err = gettimeofday(&tv); |
| #else |
| err = gettimeofday(&tv, (struct timezone *)NULL); |
| #endif |
| if (err) { |
| if (raise) |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| if (_PyTime_FromTimeval(tp, &tv, raise) < 0) |
| return -1; |
| |
| if (info) { |
| info->implementation = "gettimeofday()"; |
| info->resolution = 1e-6; |
| info->monotonic = 0; |
| info->adjustable = 1; |
| } |
| #endif /* !HAVE_CLOCK_GETTIME */ |
| #endif /* !MS_WINDOWS */ |
| return 0; |
| } |
| |
| _PyTime_t |
| _PyTime_GetSystemClock(void) |
| { |
| _PyTime_t t; |
| if (pygettimeofday(&t, NULL, 0) < 0) { |
| /* should not happen, _PyTime_Init() checked the clock at startup */ |
| assert(0); |
| |
| /* use a fixed value instead of a random value from the stack */ |
| t = 0; |
| } |
| return t; |
| } |
| |
| int |
| _PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info) |
| { |
| return pygettimeofday(t, info, 1); |
| } |
| |
| |
| static int |
| pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise) |
| { |
| #if defined(MS_WINDOWS) |
| ULONGLONG result; |
| |
| assert(info == NULL || raise); |
| |
| result = GetTickCount64(); |
| |
| *tp = result * MS_TO_NS; |
| if (*tp / MS_TO_NS != result) { |
| if (raise) { |
| _PyTime_overflow(); |
| return -1; |
| } |
| /* Hello, time traveler! */ |
| assert(0); |
| } |
| |
| if (info) { |
| DWORD timeAdjustment, timeIncrement; |
| BOOL isTimeAdjustmentDisabled, ok; |
| info->implementation = "GetTickCount64()"; |
| info->monotonic = 1; |
| ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, |
| &isTimeAdjustmentDisabled); |
| if (!ok) { |
| PyErr_SetFromWindowsErr(0); |
| return -1; |
| } |
| info->resolution = timeIncrement * 1e-7; |
| info->adjustable = 0; |
| } |
| |
| #elif defined(__APPLE__) |
| static mach_timebase_info_data_t timebase; |
| uint64_t time; |
| |
| if (timebase.denom == 0) { |
| /* According to the Technical Q&A QA1398, mach_timebase_info() cannot |
| fail: https://developer.apple.com/library/mac/#qa/qa1398/ */ |
| (void)mach_timebase_info(&timebase); |
| } |
| |
| time = mach_absolute_time(); |
| |
| /* apply timebase factor */ |
| time *= timebase.numer; |
| time /= timebase.denom; |
| |
| *tp = time; |
| |
| if (info) { |
| info->implementation = "mach_absolute_time()"; |
| info->resolution = (double)timebase.numer / timebase.denom * 1e-9; |
| info->monotonic = 1; |
| info->adjustable = 0; |
| } |
| |
| #else |
| struct timespec ts; |
| #ifdef CLOCK_HIGHRES |
| const clockid_t clk_id = CLOCK_HIGHRES; |
| const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; |
| #else |
| const clockid_t clk_id = CLOCK_MONOTONIC; |
| const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; |
| #endif |
| |
| assert(info == NULL || raise); |
| |
| if (clock_gettime(clk_id, &ts) != 0) { |
| if (raise) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return -1; |
| } |
| |
| if (info) { |
| struct timespec res; |
| info->monotonic = 1; |
| info->implementation = implementation; |
| info->adjustable = 0; |
| if (clock_getres(clk_id, &res) != 0) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| info->resolution = res.tv_sec + res.tv_nsec * 1e-9; |
| } |
| if (_PyTime_FromTimespec(tp, &ts, raise) < 0) |
| return -1; |
| #endif |
| return 0; |
| } |
| |
| _PyTime_t |
| _PyTime_GetMonotonicClock(void) |
| { |
| _PyTime_t t; |
| if (pymonotonic(&t, NULL, 0) < 0) { |
| /* should not happen, _PyTime_Init() checked that monotonic clock at |
| startup */ |
| assert(0); |
| |
| /* use a fixed value instead of a random value from the stack */ |
| t = 0; |
| } |
| return t; |
| } |
| |
| int |
| _PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info) |
| { |
| return pymonotonic(tp, info, 1); |
| } |
| |
| int |
| _PyTime_Init(void) |
| { |
| _PyTime_t t; |
| |
| /* ensure that the system clock works */ |
| if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0) |
| return -1; |
| |
| /* ensure that the operating system provides a monotonic clock */ |
| if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0) |
| return -1; |
| |
| /* check that _PyTime_FromSeconds() cannot overflow */ |
| assert(INT_MAX <= _PyTime_MAX / SEC_TO_NS); |
| assert(INT_MIN >= _PyTime_MIN / SEC_TO_NS); |
| return 0; |
| } |