| from test.test_support import run_unittest | 
 | import unittest | 
 | import cmath, math | 
 |  | 
 | class CMathTests(unittest.TestCase): | 
 |     # list of all functions in cmath | 
 |     test_functions = [getattr(cmath, fname) for fname in [ | 
 |             'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', | 
 |             'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh', | 
 |             'sqrt', 'tan', 'tanh']] | 
 |     # test first and second arguments independently for 2-argument log | 
 |     test_functions.append(lambda x : cmath.log(x, 1729. + 0j)) | 
 |     test_functions.append(lambda x : cmath.log(14.-27j, x)) | 
 |  | 
 |     def cAssertAlmostEqual(self, a, b, rel_eps = 1e-10, abs_eps = 1e-100): | 
 |         """Check that two complex numbers are almost equal.""" | 
 |         # the two complex numbers are considered almost equal if | 
 |         # either the relative error is <= rel_eps or the absolute error | 
 |         # is tiny, <= abs_eps. | 
 |         if a == b == 0: | 
 |             return | 
 |         absolute_error = abs(a-b) | 
 |         relative_error = absolute_error/max(abs(a), abs(b)) | 
 |         if relative_error > rel_eps and absolute_error > abs_eps: | 
 |             self.fail("%s and %s are not almost equal" % (a, b)) | 
 |  | 
 |     def test_constants(self): | 
 |         e_expected = 2.71828182845904523536 | 
 |         pi_expected = 3.14159265358979323846 | 
 |         self.assertAlmostEqual(cmath.pi, pi_expected, places=9, | 
 |             msg="cmath.pi is %s; should be %s" % (cmath.pi, pi_expected)) | 
 |         self.assertAlmostEqual(cmath.e,  e_expected, places=9, | 
 |             msg="cmath.e is %s; should be %s" % (cmath.e, e_expected)) | 
 |  | 
 |     def test_user_object(self): | 
 |         # Test automatic calling of __complex__ and __float__ by cmath | 
 |         # functions | 
 |  | 
 |         # some random values to use as test values; we avoid values | 
 |         # for which any of the functions in cmath is undefined | 
 |         # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow | 
 |         cx_arg = 4.419414439 + 1.497100113j | 
 |         flt_arg = -6.131677725 | 
 |  | 
 |         # a variety of non-complex numbers, used to check that | 
 |         # non-complex return values from __complex__ give an error | 
 |         non_complexes = ["not complex", 1, 5, 2., None, | 
 |                          object(), NotImplemented] | 
 |  | 
 |         # Now we introduce a variety of classes whose instances might | 
 |         # end up being passed to the cmath functions | 
 |  | 
 |         # usual case: new-style class implementing __complex__ | 
 |         class MyComplex(object): | 
 |             def __init__(self, value): | 
 |                 self.value = value | 
 |             def __complex__(self): | 
 |                 return self.value | 
 |  | 
 |         # old-style class implementing __complex__ | 
 |         class MyComplexOS: | 
 |             def __init__(self, value): | 
 |                 self.value = value | 
 |             def __complex__(self): | 
 |                 return self.value | 
 |  | 
 |         # classes for which __complex__ raises an exception | 
 |         class SomeException(Exception): | 
 |             pass | 
 |         class MyComplexException(object): | 
 |             def __complex__(self): | 
 |                 raise SomeException | 
 |         class MyComplexExceptionOS: | 
 |             def __complex__(self): | 
 |                 raise SomeException | 
 |  | 
 |         # some classes not providing __float__ or __complex__ | 
 |         class NeitherComplexNorFloat(object): | 
 |             pass | 
 |         class NeitherComplexNorFloatOS: | 
 |             pass | 
 |         class MyInt(object): | 
 |             def __int__(self): return 2 | 
 |             def __long__(self): return 2 | 
 |             def __index__(self): return 2 | 
 |         class MyIntOS: | 
 |             def __int__(self): return 2 | 
 |             def __long__(self): return 2 | 
 |             def __index__(self): return 2 | 
 |  | 
 |         # other possible combinations of __float__ and __complex__ | 
 |         # that should work | 
 |         class FloatAndComplex(object): | 
 |             def __float__(self): | 
 |                 return flt_arg | 
 |             def __complex__(self): | 
 |                 return cx_arg | 
 |         class FloatAndComplexOS: | 
 |             def __float__(self): | 
 |                 return flt_arg | 
 |             def __complex__(self): | 
 |                 return cx_arg | 
 |         class JustFloat(object): | 
 |             def __float__(self): | 
 |                 return flt_arg | 
 |         class JustFloatOS: | 
 |             def __float__(self): | 
 |                 return flt_arg | 
 |  | 
 |         for f in self.test_functions: | 
 |             # usual usage | 
 |             self.cAssertAlmostEqual(f(MyComplex(cx_arg)), f(cx_arg)) | 
 |             self.cAssertAlmostEqual(f(MyComplexOS(cx_arg)), f(cx_arg)) | 
 |             # other combinations of __float__ and __complex__ | 
 |             self.cAssertAlmostEqual(f(FloatAndComplex()), f(cx_arg)) | 
 |             self.cAssertAlmostEqual(f(FloatAndComplexOS()), f(cx_arg)) | 
 |             self.cAssertAlmostEqual(f(JustFloat()), f(flt_arg)) | 
 |             self.cAssertAlmostEqual(f(JustFloatOS()), f(flt_arg)) | 
 |             # TypeError should be raised for classes not providing | 
 |             # either __complex__ or __float__, even if they provide | 
 |             # __int__, __long__ or __index__.  An old-style class | 
 |             # currently raises AttributeError instead of a TypeError; | 
 |             # this could be considered a bug. | 
 |             self.assertRaises(TypeError, f, NeitherComplexNorFloat()) | 
 |             self.assertRaises(TypeError, f, MyInt()) | 
 |             self.assertRaises(Exception, f, NeitherComplexNorFloatOS()) | 
 |             self.assertRaises(Exception, f, MyIntOS()) | 
 |             # non-complex return value from __complex__ -> TypeError | 
 |             for bad_complex in non_complexes: | 
 |                 self.assertRaises(TypeError, f, MyComplex(bad_complex)) | 
 |                 self.assertRaises(TypeError, f, MyComplexOS(bad_complex)) | 
 |             # exceptions in __complex__ should be propagated correctly | 
 |             self.assertRaises(SomeException, f, MyComplexException()) | 
 |             self.assertRaises(SomeException, f, MyComplexExceptionOS()) | 
 |  | 
 |     def test_input_type(self): | 
 |         # ints and longs should be acceptable inputs to all cmath | 
 |         # functions, by virtue of providing a __float__ method | 
 |         for f in self.test_functions: | 
 |             for arg in [2, 2.]: | 
 |                 self.cAssertAlmostEqual(f(arg), f(arg.__float__())) | 
 |  | 
 |         # but strings should give a TypeError | 
 |         for f in self.test_functions: | 
 |             for arg in ["a", "long_string", "0", "1j", ""]: | 
 |                 self.assertRaises(TypeError, f, arg) | 
 |  | 
 |     def test_cmath_matches_math(self): | 
 |         # check that corresponding cmath and math functions are equal | 
 |         # for floats in the appropriate range | 
 |  | 
 |         # test_values in (0, 1) | 
 |         test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99] | 
 |  | 
 |         # test_values for functions defined on [-1., 1.] | 
 |         unit_interval = test_values + [-x for x in test_values] + \ | 
 |             [0., 1., -1.] | 
 |  | 
 |         # test_values for log, log10, sqrt | 
 |         positive = test_values + [1.] + [1./x for x in test_values] | 
 |         nonnegative = [0.] + positive | 
 |  | 
 |         # test_values for functions defined on the whole real line | 
 |         real_line = [0.] + positive + [-x for x in positive] | 
 |  | 
 |         test_functions = { | 
 |             'acos' : unit_interval, | 
 |             'asin' : unit_interval, | 
 |             'atan' : real_line, | 
 |             'cos' : real_line, | 
 |             'cosh' : real_line, | 
 |             'exp' : real_line, | 
 |             'log' : positive, | 
 |             'log10' : positive, | 
 |             'sin' : real_line, | 
 |             'sinh' : real_line, | 
 |             'sqrt' : nonnegative, | 
 |             'tan' : real_line, | 
 |             'tanh' : real_line} | 
 |  | 
 |         for fn, values in test_functions.items(): | 
 |             float_fn = getattr(math, fn) | 
 |             complex_fn = getattr(cmath, fn) | 
 |             for v in values: | 
 |                 self.cAssertAlmostEqual(float_fn(v), complex_fn(v)) | 
 |  | 
 |         # test two-argument version of log with various bases | 
 |         for base in [0.5, 2., 10.]: | 
 |             for v in positive: | 
 |                 self.cAssertAlmostEqual(cmath.log(v, base), math.log(v, base)) | 
 |  | 
 | def test_main(): | 
 |     run_unittest(CMathTests) | 
 |  | 
 | if __name__ == "__main__": | 
 |     test_main() |