| /* Math module -- standard C math library functions, pi and e */ | 
 |  | 
 | /* Here are some comments from Tim Peters, extracted from the | 
 |    discussion attached to http://bugs.python.org/issue1640.  They | 
 |    describe the general aims of the math module with respect to | 
 |    special values, IEEE-754 floating-point exceptions, and Python | 
 |    exceptions. | 
 |  | 
 | These are the "spirit of 754" rules: | 
 |  | 
 | 1. If the mathematical result is a real number, but of magnitude too | 
 | large to approximate by a machine float, overflow is signaled and the | 
 | result is an infinity (with the appropriate sign). | 
 |  | 
 | 2. If the mathematical result is a real number, but of magnitude too | 
 | small to approximate by a machine float, underflow is signaled and the | 
 | result is a zero (with the appropriate sign). | 
 |  | 
 | 3. At a singularity (a value x such that the limit of f(y) as y | 
 | approaches x exists and is an infinity), "divide by zero" is signaled | 
 | and the result is an infinity (with the appropriate sign).  This is | 
 | complicated a little by that the left-side and right-side limits may | 
 | not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 | 
 | from the positive or negative directions.  In that specific case, the | 
 | sign of the zero determines the result of 1/0. | 
 |  | 
 | 4. At a point where a function has no defined result in the extended | 
 | reals (i.e., the reals plus an infinity or two), invalid operation is | 
 | signaled and a NaN is returned. | 
 |  | 
 | And these are what Python has historically /tried/ to do (but not | 
 | always successfully, as platform libm behavior varies a lot): | 
 |  | 
 | For #1, raise OverflowError. | 
 |  | 
 | For #2, return a zero (with the appropriate sign if that happens by | 
 | accident ;-)). | 
 |  | 
 | For #3 and #4, raise ValueError.  It may have made sense to raise | 
 | Python's ZeroDivisionError in #3, but historically that's only been | 
 | raised for division by zero and mod by zero. | 
 |  | 
 | */ | 
 |  | 
 | /* | 
 |    In general, on an IEEE-754 platform the aim is to follow the C99 | 
 |    standard, including Annex 'F', whenever possible.  Where the | 
 |    standard recommends raising the 'divide-by-zero' or 'invalid' | 
 |    floating-point exceptions, Python should raise a ValueError.  Where | 
 |    the standard recommends raising 'overflow', Python should raise an | 
 |    OverflowError.  In all other circumstances a value should be | 
 |    returned. | 
 |  */ | 
 |  | 
 | #include "Python.h" | 
 | #include "_math.h" | 
 |  | 
 | /* | 
 |    sin(pi*x), giving accurate results for all finite x (especially x | 
 |    integral or close to an integer).  This is here for use in the | 
 |    reflection formula for the gamma function.  It conforms to IEEE | 
 |    754-2008 for finite arguments, but not for infinities or nans. | 
 | */ | 
 |  | 
 | static const double pi = 3.141592653589793238462643383279502884197; | 
 | static const double sqrtpi = 1.772453850905516027298167483341145182798; | 
 | static const double logpi = 1.144729885849400174143427351353058711647; | 
 |  | 
 | static double | 
 | sinpi(double x) | 
 | { | 
 |     double y, r; | 
 |     int n; | 
 |     /* this function should only ever be called for finite arguments */ | 
 |     assert(Py_IS_FINITE(x)); | 
 |     y = fmod(fabs(x), 2.0); | 
 |     n = (int)round(2.0*y); | 
 |     assert(0 <= n && n <= 4); | 
 |     switch (n) { | 
 |     case 0: | 
 |         r = sin(pi*y); | 
 |         break; | 
 |     case 1: | 
 |         r = cos(pi*(y-0.5)); | 
 |         break; | 
 |     case 2: | 
 |         /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give | 
 |            -0.0 instead of 0.0 when y == 1.0. */ | 
 |         r = sin(pi*(1.0-y)); | 
 |         break; | 
 |     case 3: | 
 |         r = -cos(pi*(y-1.5)); | 
 |         break; | 
 |     case 4: | 
 |         r = sin(pi*(y-2.0)); | 
 |         break; | 
 |     default: | 
 |         assert(0);  /* should never get here */ | 
 |         r = -1.23e200; /* silence gcc warning */ | 
 |     } | 
 |     return copysign(1.0, x)*r; | 
 | } | 
 |  | 
 | /* Implementation of the real gamma function.  In extensive but non-exhaustive | 
 |    random tests, this function proved accurate to within <= 10 ulps across the | 
 |    entire float domain.  Note that accuracy may depend on the quality of the | 
 |    system math functions, the pow function in particular.  Special cases | 
 |    follow C99 annex F.  The parameters and method are tailored to platforms | 
 |    whose double format is the IEEE 754 binary64 format. | 
 |  | 
 |    Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 | 
 |    and g=6.024680040776729583740234375; these parameters are amongst those | 
 |    used by the Boost library.  Following Boost (again), we re-express the | 
 |    Lanczos sum as a rational function, and compute it that way.  The | 
 |    coefficients below were computed independently using MPFR, and have been | 
 |    double-checked against the coefficients in the Boost source code. | 
 |  | 
 |    For x < 0.0 we use the reflection formula. | 
 |  | 
 |    There's one minor tweak that deserves explanation: Lanczos' formula for | 
 |    Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x | 
 |    values, x+g-0.5 can be represented exactly.  However, in cases where it | 
 |    can't be represented exactly the small error in x+g-0.5 can be magnified | 
 |    significantly by the pow and exp calls, especially for large x.  A cheap | 
 |    correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error | 
 |    involved in the computation of x+g-0.5 (that is, e = computed value of | 
 |    x+g-0.5 - exact value of x+g-0.5).  Here's the proof: | 
 |  | 
 |    Correction factor | 
 |    ----------------- | 
 |    Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 | 
 |    double, and e is tiny.  Then: | 
 |  | 
 |      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) | 
 |      = pow(y, x-0.5)/exp(y) * C, | 
 |  | 
 |    where the correction_factor C is given by | 
 |  | 
 |      C = pow(1-e/y, x-0.5) * exp(e) | 
 |  | 
 |    Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: | 
 |  | 
 |      C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y | 
 |  | 
 |    But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and | 
 |  | 
 |      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), | 
 |  | 
 |    Note that for accuracy, when computing r*C it's better to do | 
 |  | 
 |      r + e*g/y*r; | 
 |  | 
 |    than | 
 |  | 
 |      r * (1 + e*g/y); | 
 |  | 
 |    since the addition in the latter throws away most of the bits of | 
 |    information in e*g/y. | 
 | */ | 
 |  | 
 | #define LANCZOS_N 13 | 
 | static const double lanczos_g = 6.024680040776729583740234375; | 
 | static const double lanczos_g_minus_half = 5.524680040776729583740234375; | 
 | static const double lanczos_num_coeffs[LANCZOS_N] = { | 
 |     23531376880.410759688572007674451636754734846804940, | 
 |     42919803642.649098768957899047001988850926355848959, | 
 |     35711959237.355668049440185451547166705960488635843, | 
 |     17921034426.037209699919755754458931112671403265390, | 
 |     6039542586.3520280050642916443072979210699388420708, | 
 |     1439720407.3117216736632230727949123939715485786772, | 
 |     248874557.86205415651146038641322942321632125127801, | 
 |     31426415.585400194380614231628318205362874684987640, | 
 |     2876370.6289353724412254090516208496135991145378768, | 
 |     186056.26539522349504029498971604569928220784236328, | 
 |     8071.6720023658162106380029022722506138218516325024, | 
 |     210.82427775157934587250973392071336271166969580291, | 
 |     2.5066282746310002701649081771338373386264310793408 | 
 | }; | 
 |  | 
 | /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ | 
 | static const double lanczos_den_coeffs[LANCZOS_N] = { | 
 |     0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, | 
 |     13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; | 
 |  | 
 | /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ | 
 | #define NGAMMA_INTEGRAL 23 | 
 | static const double gamma_integral[NGAMMA_INTEGRAL] = { | 
 |     1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, | 
 |     3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, | 
 |     1307674368000.0, 20922789888000.0, 355687428096000.0, | 
 |     6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, | 
 |     51090942171709440000.0, 1124000727777607680000.0, | 
 | }; | 
 |  | 
 | /* Lanczos' sum L_g(x), for positive x */ | 
 |  | 
 | static double | 
 | lanczos_sum(double x) | 
 | { | 
 |     double num = 0.0, den = 0.0; | 
 |     int i; | 
 |     assert(x > 0.0); | 
 |     /* evaluate the rational function lanczos_sum(x).  For large | 
 |        x, the obvious algorithm risks overflow, so we instead | 
 |        rescale the denominator and numerator of the rational | 
 |        function by x**(1-LANCZOS_N) and treat this as a | 
 |        rational function in 1/x.  This also reduces the error for | 
 |        larger x values.  The choice of cutoff point (5.0 below) is | 
 |        somewhat arbitrary; in tests, smaller cutoff values than | 
 |        this resulted in lower accuracy. */ | 
 |     if (x < 5.0) { | 
 |         for (i = LANCZOS_N; --i >= 0; ) { | 
 |             num = num * x + lanczos_num_coeffs[i]; | 
 |             den = den * x + lanczos_den_coeffs[i]; | 
 |         } | 
 |     } | 
 |     else { | 
 |         for (i = 0; i < LANCZOS_N; i++) { | 
 |             num = num / x + lanczos_num_coeffs[i]; | 
 |             den = den / x + lanczos_den_coeffs[i]; | 
 |         } | 
 |     } | 
 |     return num/den; | 
 | } | 
 |  | 
 | static double | 
 | m_tgamma(double x) | 
 | { | 
 |     double absx, r, y, z, sqrtpow; | 
 |  | 
 |     /* special cases */ | 
 |     if (!Py_IS_FINITE(x)) { | 
 |         if (Py_IS_NAN(x) || x > 0.0) | 
 |             return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */ | 
 |         else { | 
 |             errno = EDOM; | 
 |             return Py_NAN;  /* tgamma(-inf) = nan, invalid */ | 
 |         } | 
 |     } | 
 |     if (x == 0.0) { | 
 |         errno = EDOM; | 
 |         /* tgamma(+-0.0) = +-inf, divide-by-zero */ | 
 |         return copysign(Py_HUGE_VAL, x); | 
 |     } | 
 |  | 
 |     /* integer arguments */ | 
 |     if (x == floor(x)) { | 
 |         if (x < 0.0) { | 
 |             errno = EDOM;  /* tgamma(n) = nan, invalid for */ | 
 |             return Py_NAN; /* negative integers n */ | 
 |         } | 
 |         if (x <= NGAMMA_INTEGRAL) | 
 |             return gamma_integral[(int)x - 1]; | 
 |     } | 
 |     absx = fabs(x); | 
 |  | 
 |     /* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */ | 
 |     if (absx < 1e-20) { | 
 |         r = 1.0/x; | 
 |         if (Py_IS_INFINITY(r)) | 
 |             errno = ERANGE; | 
 |         return r; | 
 |     } | 
 |  | 
 |     /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for | 
 |        x > 200, and underflows to +-0.0 for x < -200, not a negative | 
 |        integer. */ | 
 |     if (absx > 200.0) { | 
 |         if (x < 0.0) { | 
 |             return 0.0/sinpi(x); | 
 |         } | 
 |         else { | 
 |             errno = ERANGE; | 
 |             return Py_HUGE_VAL; | 
 |         } | 
 |     } | 
 |  | 
 |     y = absx + lanczos_g_minus_half; | 
 |     /* compute error in sum */ | 
 |     if (absx > lanczos_g_minus_half) { | 
 |         /* note: the correction can be foiled by an optimizing | 
 |            compiler that (incorrectly) thinks that an expression like | 
 |            a + b - a - b can be optimized to 0.0.  This shouldn't | 
 |            happen in a standards-conforming compiler. */ | 
 |         double q = y - absx; | 
 |         z = q - lanczos_g_minus_half; | 
 |     } | 
 |     else { | 
 |         double q = y - lanczos_g_minus_half; | 
 |         z = q - absx; | 
 |     } | 
 |     z = z * lanczos_g / y; | 
 |     if (x < 0.0) { | 
 |         r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx); | 
 |         r -= z * r; | 
 |         if (absx < 140.0) { | 
 |             r /= pow(y, absx - 0.5); | 
 |         } | 
 |         else { | 
 |             sqrtpow = pow(y, absx / 2.0 - 0.25); | 
 |             r /= sqrtpow; | 
 |             r /= sqrtpow; | 
 |         } | 
 |     } | 
 |     else { | 
 |         r = lanczos_sum(absx) / exp(y); | 
 |         r += z * r; | 
 |         if (absx < 140.0) { | 
 |             r *= pow(y, absx - 0.5); | 
 |         } | 
 |         else { | 
 |             sqrtpow = pow(y, absx / 2.0 - 0.25); | 
 |             r *= sqrtpow; | 
 |             r *= sqrtpow; | 
 |         } | 
 |     } | 
 |     if (Py_IS_INFINITY(r)) | 
 |         errno = ERANGE; | 
 |     return r; | 
 | } | 
 |  | 
 | /* | 
 |    lgamma:  natural log of the absolute value of the Gamma function. | 
 |    For large arguments, Lanczos' formula works extremely well here. | 
 | */ | 
 |  | 
 | static double | 
 | m_lgamma(double x) | 
 | { | 
 |     double r, absx; | 
 |  | 
 |     /* special cases */ | 
 |     if (!Py_IS_FINITE(x)) { | 
 |         if (Py_IS_NAN(x)) | 
 |             return x;  /* lgamma(nan) = nan */ | 
 |         else | 
 |             return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ | 
 |     } | 
 |  | 
 |     /* integer arguments */ | 
 |     if (x == floor(x) && x <= 2.0) { | 
 |         if (x <= 0.0) { | 
 |             errno = EDOM;  /* lgamma(n) = inf, divide-by-zero for */ | 
 |             return Py_HUGE_VAL; /* integers n <= 0 */ | 
 |         } | 
 |         else { | 
 |             return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ | 
 |         } | 
 |     } | 
 |  | 
 |     absx = fabs(x); | 
 |     /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ | 
 |     if (absx < 1e-20) | 
 |         return -log(absx); | 
 |  | 
 |     /* Lanczos' formula.  We could save a fraction of a ulp in accuracy by | 
 |        having a second set of numerator coefficients for lanczos_sum that | 
 |        absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g | 
 |        subtraction below; it's probably not worth it. */ | 
 |     r = log(lanczos_sum(absx)) - lanczos_g; | 
 |     r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1); | 
 |     if (x < 0.0) | 
 |         /* Use reflection formula to get value for negative x. */ | 
 |         r = logpi - log(fabs(sinpi(absx))) - log(absx) - r; | 
 |     if (Py_IS_INFINITY(r)) | 
 |         errno = ERANGE; | 
 |     return r; | 
 | } | 
 |  | 
 | /* | 
 |    Implementations of the error function erf(x) and the complementary error | 
 |    function erfc(x). | 
 |  | 
 |    Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed., | 
 |    Cambridge University Press), we use a series approximation for erf for | 
 |    small x, and a continued fraction approximation for erfc(x) for larger x; | 
 |    combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), | 
 |    this gives us erf(x) and erfc(x) for all x. | 
 |  | 
 |    The series expansion used is: | 
 |  | 
 |       erf(x) = x*exp(-x*x)/sqrt(pi) * [ | 
 |                      2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...] | 
 |  | 
 |    The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k). | 
 |    This series converges well for smallish x, but slowly for larger x. | 
 |  | 
 |    The continued fraction expansion used is: | 
 |  | 
 |       erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - ) | 
 |                               3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...] | 
 |  | 
 |    after the first term, the general term has the form: | 
 |  | 
 |       k*(k-0.5)/(2*k+0.5 + x**2 - ...). | 
 |  | 
 |    This expansion converges fast for larger x, but convergence becomes | 
 |    infinitely slow as x approaches 0.0.  The (somewhat naive) continued | 
 |    fraction evaluation algorithm used below also risks overflow for large x; | 
 |    but for large x, erfc(x) == 0.0 to within machine precision.  (For | 
 |    example, erfc(30.0) is approximately 2.56e-393). | 
 |  | 
 |    Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and | 
 |    continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) < | 
 |    ERFC_CONTFRAC_CUTOFF.  ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the | 
 |    numbers of terms to use for the relevant expansions.  */ | 
 |  | 
 | #define ERF_SERIES_CUTOFF 1.5 | 
 | #define ERF_SERIES_TERMS 25 | 
 | #define ERFC_CONTFRAC_CUTOFF 30.0 | 
 | #define ERFC_CONTFRAC_TERMS 50 | 
 |  | 
 | /* | 
 |    Error function, via power series. | 
 |  | 
 |    Given a finite float x, return an approximation to erf(x). | 
 |    Converges reasonably fast for small x. | 
 | */ | 
 |  | 
 | static double | 
 | m_erf_series(double x) | 
 | { | 
 |     double x2, acc, fk, result; | 
 |     int i, saved_errno; | 
 |  | 
 |     x2 = x * x; | 
 |     acc = 0.0; | 
 |     fk = (double)ERF_SERIES_TERMS + 0.5; | 
 |     for (i = 0; i < ERF_SERIES_TERMS; i++) { | 
 |         acc = 2.0 + x2 * acc / fk; | 
 |         fk -= 1.0; | 
 |     } | 
 |     /* Make sure the exp call doesn't affect errno; | 
 |        see m_erfc_contfrac for more. */ | 
 |     saved_errno = errno; | 
 |     result = acc * x * exp(-x2) / sqrtpi; | 
 |     errno = saved_errno; | 
 |     return result; | 
 | } | 
 |  | 
 | /* | 
 |    Complementary error function, via continued fraction expansion. | 
 |  | 
 |    Given a positive float x, return an approximation to erfc(x).  Converges | 
 |    reasonably fast for x large (say, x > 2.0), and should be safe from | 
 |    overflow if x and nterms are not too large.  On an IEEE 754 machine, with x | 
 |    <= 30.0, we're safe up to nterms = 100.  For x >= 30.0, erfc(x) is smaller | 
 |    than the smallest representable nonzero float.  */ | 
 |  | 
 | static double | 
 | m_erfc_contfrac(double x) | 
 | { | 
 |     double x2, a, da, p, p_last, q, q_last, b, result; | 
 |     int i, saved_errno; | 
 |  | 
 |     if (x >= ERFC_CONTFRAC_CUTOFF) | 
 |         return 0.0; | 
 |  | 
 |     x2 = x*x; | 
 |     a = 0.0; | 
 |     da = 0.5; | 
 |     p = 1.0; p_last = 0.0; | 
 |     q = da + x2; q_last = 1.0; | 
 |     for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) { | 
 |         double temp; | 
 |         a += da; | 
 |         da += 2.0; | 
 |         b = da + x2; | 
 |         temp = p; p = b*p - a*p_last; p_last = temp; | 
 |         temp = q; q = b*q - a*q_last; q_last = temp; | 
 |     } | 
 |     /* Issue #8986: On some platforms, exp sets errno on underflow to zero; | 
 |        save the current errno value so that we can restore it later. */ | 
 |     saved_errno = errno; | 
 |     result = p / q * x * exp(-x2) / sqrtpi; | 
 |     errno = saved_errno; | 
 |     return result; | 
 | } | 
 |  | 
 | /* Error function erf(x), for general x */ | 
 |  | 
 | static double | 
 | m_erf(double x) | 
 | { | 
 |     double absx, cf; | 
 |  | 
 |     if (Py_IS_NAN(x)) | 
 |         return x; | 
 |     absx = fabs(x); | 
 |     if (absx < ERF_SERIES_CUTOFF) | 
 |         return m_erf_series(x); | 
 |     else { | 
 |         cf = m_erfc_contfrac(absx); | 
 |         return x > 0.0 ? 1.0 - cf : cf - 1.0; | 
 |     } | 
 | } | 
 |  | 
 | /* Complementary error function erfc(x), for general x. */ | 
 |  | 
 | static double | 
 | m_erfc(double x) | 
 | { | 
 |     double absx, cf; | 
 |  | 
 |     if (Py_IS_NAN(x)) | 
 |         return x; | 
 |     absx = fabs(x); | 
 |     if (absx < ERF_SERIES_CUTOFF) | 
 |         return 1.0 - m_erf_series(x); | 
 |     else { | 
 |         cf = m_erfc_contfrac(absx); | 
 |         return x > 0.0 ? cf : 2.0 - cf; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |    wrapper for atan2 that deals directly with special cases before | 
 |    delegating to the platform libm for the remaining cases.  This | 
 |    is necessary to get consistent behaviour across platforms. | 
 |    Windows, FreeBSD and alpha Tru64 are amongst platforms that don't | 
 |    always follow C99. | 
 | */ | 
 |  | 
 | static double | 
 | m_atan2(double y, double x) | 
 | { | 
 |     if (Py_IS_NAN(x) || Py_IS_NAN(y)) | 
 |         return Py_NAN; | 
 |     if (Py_IS_INFINITY(y)) { | 
 |         if (Py_IS_INFINITY(x)) { | 
 |             if (copysign(1., x) == 1.) | 
 |                 /* atan2(+-inf, +inf) == +-pi/4 */ | 
 |                 return copysign(0.25*Py_MATH_PI, y); | 
 |             else | 
 |                 /* atan2(+-inf, -inf) == +-pi*3/4 */ | 
 |                 return copysign(0.75*Py_MATH_PI, y); | 
 |         } | 
 |         /* atan2(+-inf, x) == +-pi/2 for finite x */ | 
 |         return copysign(0.5*Py_MATH_PI, y); | 
 |     } | 
 |     if (Py_IS_INFINITY(x) || y == 0.) { | 
 |         if (copysign(1., x) == 1.) | 
 |             /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ | 
 |             return copysign(0., y); | 
 |         else | 
 |             /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ | 
 |             return copysign(Py_MATH_PI, y); | 
 |     } | 
 |     return atan2(y, x); | 
 | } | 
 |  | 
 | /* | 
 |     Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), | 
 |     log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with | 
 |     special values directly, passing positive non-special values through to | 
 |     the system log/log10. | 
 |  */ | 
 |  | 
 | static double | 
 | m_log(double x) | 
 | { | 
 |     if (Py_IS_FINITE(x)) { | 
 |         if (x > 0.0) | 
 |             return log(x); | 
 |         errno = EDOM; | 
 |         if (x == 0.0) | 
 |             return -Py_HUGE_VAL; /* log(0) = -inf */ | 
 |         else | 
 |             return Py_NAN; /* log(-ve) = nan */ | 
 |     } | 
 |     else if (Py_IS_NAN(x)) | 
 |         return x; /* log(nan) = nan */ | 
 |     else if (x > 0.0) | 
 |         return x; /* log(inf) = inf */ | 
 |     else { | 
 |         errno = EDOM; | 
 |         return Py_NAN; /* log(-inf) = nan */ | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |    log2: log to base 2. | 
 |  | 
 |    Uses an algorithm that should: | 
 |  | 
 |      (a) produce exact results for powers of 2, and | 
 |      (b) give a monotonic log2 (for positive finite floats), | 
 |          assuming that the system log is monotonic. | 
 | */ | 
 |  | 
 | static double | 
 | m_log2(double x) | 
 | { | 
 |     if (!Py_IS_FINITE(x)) { | 
 |         if (Py_IS_NAN(x)) | 
 |             return x; /* log2(nan) = nan */ | 
 |         else if (x > 0.0) | 
 |             return x; /* log2(+inf) = +inf */ | 
 |         else { | 
 |             errno = EDOM; | 
 |             return Py_NAN; /* log2(-inf) = nan, invalid-operation */ | 
 |         } | 
 |     } | 
 |  | 
 |     if (x > 0.0) { | 
 | #ifdef HAVE_LOG2 | 
 |         return log2(x); | 
 | #else | 
 |         double m; | 
 |         int e; | 
 |         m = frexp(x, &e); | 
 |         /* We want log2(m * 2**e) == log(m) / log(2) + e.  Care is needed when | 
 |          * x is just greater than 1.0: in that case e is 1, log(m) is negative, | 
 |          * and we get significant cancellation error from the addition of | 
 |          * log(m) / log(2) to e.  The slight rewrite of the expression below | 
 |          * avoids this problem. | 
 |          */ | 
 |         if (x >= 1.0) { | 
 |             return log(2.0 * m) / log(2.0) + (e - 1); | 
 |         } | 
 |         else { | 
 |             return log(m) / log(2.0) + e; | 
 |         } | 
 | #endif | 
 |     } | 
 |     else if (x == 0.0) { | 
 |         errno = EDOM; | 
 |         return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */ | 
 |     } | 
 |     else { | 
 |         errno = EDOM; | 
 |         return Py_NAN; /* log2(-inf) = nan, invalid-operation */ | 
 |     } | 
 | } | 
 |  | 
 | static double | 
 | m_log10(double x) | 
 | { | 
 |     if (Py_IS_FINITE(x)) { | 
 |         if (x > 0.0) | 
 |             return log10(x); | 
 |         errno = EDOM; | 
 |         if (x == 0.0) | 
 |             return -Py_HUGE_VAL; /* log10(0) = -inf */ | 
 |         else | 
 |             return Py_NAN; /* log10(-ve) = nan */ | 
 |     } | 
 |     else if (Py_IS_NAN(x)) | 
 |         return x; /* log10(nan) = nan */ | 
 |     else if (x > 0.0) | 
 |         return x; /* log10(inf) = inf */ | 
 |     else { | 
 |         errno = EDOM; | 
 |         return Py_NAN; /* log10(-inf) = nan */ | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | /* Call is_error when errno != 0, and where x is the result libm | 
 |  * returned.  is_error will usually set up an exception and return | 
 |  * true (1), but may return false (0) without setting up an exception. | 
 |  */ | 
 | static int | 
 | is_error(double x) | 
 | { | 
 |     int result = 1;     /* presumption of guilt */ | 
 |     assert(errno);      /* non-zero errno is a precondition for calling */ | 
 |     if (errno == EDOM) | 
 |         PyErr_SetString(PyExc_ValueError, "math domain error"); | 
 |  | 
 |     else if (errno == ERANGE) { | 
 |         /* ANSI C generally requires libm functions to set ERANGE | 
 |          * on overflow, but also generally *allows* them to set | 
 |          * ERANGE on underflow too.  There's no consistency about | 
 |          * the latter across platforms. | 
 |          * Alas, C99 never requires that errno be set. | 
 |          * Here we suppress the underflow errors (libm functions | 
 |          * should return a zero on underflow, and +- HUGE_VAL on | 
 |          * overflow, so testing the result for zero suffices to | 
 |          * distinguish the cases). | 
 |          * | 
 |          * On some platforms (Ubuntu/ia64) it seems that errno can be | 
 |          * set to ERANGE for subnormal results that do *not* underflow | 
 |          * to zero.  So to be safe, we'll ignore ERANGE whenever the | 
 |          * function result is less than one in absolute value. | 
 |          */ | 
 |         if (fabs(x) < 1.0) | 
 |             result = 0; | 
 |         else | 
 |             PyErr_SetString(PyExc_OverflowError, | 
 |                             "math range error"); | 
 |     } | 
 |     else | 
 |         /* Unexpected math error */ | 
 |         PyErr_SetFromErrno(PyExc_ValueError); | 
 |     return result; | 
 | } | 
 |  | 
 | /* | 
 |    math_1 is used to wrap a libm function f that takes a double | 
 |    arguments and returns a double. | 
 |  | 
 |    The error reporting follows these rules, which are designed to do | 
 |    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | 
 |    platforms. | 
 |  | 
 |    - a NaN result from non-NaN inputs causes ValueError to be raised | 
 |    - an infinite result from finite inputs causes OverflowError to be | 
 |      raised if can_overflow is 1, or raises ValueError if can_overflow | 
 |      is 0. | 
 |    - if the result is finite and errno == EDOM then ValueError is | 
 |      raised | 
 |    - if the result is finite and nonzero and errno == ERANGE then | 
 |      OverflowError is raised | 
 |  | 
 |    The last rule is used to catch overflow on platforms which follow | 
 |    C89 but for which HUGE_VAL is not an infinity. | 
 |  | 
 |    For the majority of one-argument functions these rules are enough | 
 |    to ensure that Python's functions behave as specified in 'Annex F' | 
 |    of the C99 standard, with the 'invalid' and 'divide-by-zero' | 
 |    floating-point exceptions mapping to Python's ValueError and the | 
 |    'overflow' floating-point exception mapping to OverflowError. | 
 |    math_1 only works for functions that don't have singularities *and* | 
 |    the possibility of overflow; fortunately, that covers everything we | 
 |    care about right now. | 
 | */ | 
 |  | 
 | static PyObject * | 
 | math_1_to_whatever(PyObject *arg, double (*func) (double), | 
 |                    PyObject *(*from_double_func) (double), | 
 |                    int can_overflow) | 
 | { | 
 |     double x, r; | 
 |     x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     errno = 0; | 
 |     PyFPE_START_PROTECT("in math_1", return 0); | 
 |     r = (*func)(x); | 
 |     PyFPE_END_PROTECT(r); | 
 |     if (Py_IS_NAN(r) && !Py_IS_NAN(x)) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "math domain error"); /* invalid arg */ | 
 |         return NULL; | 
 |     } | 
 |     if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) { | 
 |         if (can_overflow) | 
 |             PyErr_SetString(PyExc_OverflowError, | 
 |                             "math range error"); /* overflow */ | 
 |         else | 
 |             PyErr_SetString(PyExc_ValueError, | 
 |                             "math domain error"); /* singularity */ | 
 |         return NULL; | 
 |     } | 
 |     if (Py_IS_FINITE(r) && errno && is_error(r)) | 
 |         /* this branch unnecessary on most platforms */ | 
 |         return NULL; | 
 |  | 
 |     return (*from_double_func)(r); | 
 | } | 
 |  | 
 | /* variant of math_1, to be used when the function being wrapped is known to | 
 |    set errno properly (that is, errno = EDOM for invalid or divide-by-zero, | 
 |    errno = ERANGE for overflow). */ | 
 |  | 
 | static PyObject * | 
 | math_1a(PyObject *arg, double (*func) (double)) | 
 | { | 
 |     double x, r; | 
 |     x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     errno = 0; | 
 |     PyFPE_START_PROTECT("in math_1a", return 0); | 
 |     r = (*func)(x); | 
 |     PyFPE_END_PROTECT(r); | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | /* | 
 |    math_2 is used to wrap a libm function f that takes two double | 
 |    arguments and returns a double. | 
 |  | 
 |    The error reporting follows these rules, which are designed to do | 
 |    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | 
 |    platforms. | 
 |  | 
 |    - a NaN result from non-NaN inputs causes ValueError to be raised | 
 |    - an infinite result from finite inputs causes OverflowError to be | 
 |      raised. | 
 |    - if the result is finite and errno == EDOM then ValueError is | 
 |      raised | 
 |    - if the result is finite and nonzero and errno == ERANGE then | 
 |      OverflowError is raised | 
 |  | 
 |    The last rule is used to catch overflow on platforms which follow | 
 |    C89 but for which HUGE_VAL is not an infinity. | 
 |  | 
 |    For most two-argument functions (copysign, fmod, hypot, atan2) | 
 |    these rules are enough to ensure that Python's functions behave as | 
 |    specified in 'Annex F' of the C99 standard, with the 'invalid' and | 
 |    'divide-by-zero' floating-point exceptions mapping to Python's | 
 |    ValueError and the 'overflow' floating-point exception mapping to | 
 |    OverflowError. | 
 | */ | 
 |  | 
 | static PyObject * | 
 | math_1(PyObject *arg, double (*func) (double), int can_overflow) | 
 | { | 
 |     return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow); | 
 | } | 
 |  | 
 | static PyObject * | 
 | math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow) | 
 | { | 
 |     return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow); | 
 | } | 
 |  | 
 | static PyObject * | 
 | math_2(PyObject *args, double (*func) (double, double), char *funcname) | 
 | { | 
 |     PyObject *ox, *oy; | 
 |     double x, y, r; | 
 |     if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) | 
 |         return NULL; | 
 |     x = PyFloat_AsDouble(ox); | 
 |     y = PyFloat_AsDouble(oy); | 
 |     if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) | 
 |         return NULL; | 
 |     errno = 0; | 
 |     PyFPE_START_PROTECT("in math_2", return 0); | 
 |     r = (*func)(x, y); | 
 |     PyFPE_END_PROTECT(r); | 
 |     if (Py_IS_NAN(r)) { | 
 |         if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
 |             errno = EDOM; | 
 |         else | 
 |             errno = 0; | 
 |     } | 
 |     else if (Py_IS_INFINITY(r)) { | 
 |         if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) | 
 |             errno = ERANGE; | 
 |         else | 
 |             errno = 0; | 
 |     } | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     else | 
 |         return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | #define FUNC1(funcname, func, can_overflow, docstring)                  \ | 
 |     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
 |         return math_1(args, func, can_overflow);                            \ | 
 |     }\ | 
 |     PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
 |  | 
 | #define FUNC1A(funcname, func, docstring)                               \ | 
 |     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
 |         return math_1a(args, func);                                     \ | 
 |     }\ | 
 |     PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
 |  | 
 | #define FUNC2(funcname, func, docstring) \ | 
 |     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
 |         return math_2(args, func, #funcname); \ | 
 |     }\ | 
 |     PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
 |  | 
 | FUNC1(acos, acos, 0, | 
 |       "acos(x)\n\nReturn the arc cosine (measured in radians) of x.") | 
 | FUNC1(acosh, m_acosh, 0, | 
 |       "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.") | 
 | FUNC1(asin, asin, 0, | 
 |       "asin(x)\n\nReturn the arc sine (measured in radians) of x.") | 
 | FUNC1(asinh, m_asinh, 0, | 
 |       "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.") | 
 | FUNC1(atan, atan, 0, | 
 |       "atan(x)\n\nReturn the arc tangent (measured in radians) of x.") | 
 | FUNC2(atan2, m_atan2, | 
 |       "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" | 
 |       "Unlike atan(y/x), the signs of both x and y are considered.") | 
 | FUNC1(atanh, m_atanh, 0, | 
 |       "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.") | 
 |  | 
 | static PyObject * math_ceil(PyObject *self, PyObject *number) { | 
 |     _Py_IDENTIFIER(__ceil__); | 
 |     PyObject *method, *result; | 
 |  | 
 |     method = _PyObject_LookupSpecial(number, &PyId___ceil__); | 
 |     if (method == NULL) { | 
 |         if (PyErr_Occurred()) | 
 |             return NULL; | 
 |         return math_1_to_int(number, ceil, 0); | 
 |     } | 
 |     result = PyObject_CallFunctionObjArgs(method, NULL); | 
 |     Py_DECREF(method); | 
 |     return result; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_ceil_doc, | 
 |              "ceil(x)\n\nReturn the ceiling of x as an int.\n" | 
 |              "This is the smallest integral value >= x."); | 
 |  | 
 | FUNC2(copysign, copysign, | 
 |       "copysign(x, y)\n\nReturn a float with the magnitude (absolute value) " | 
 |       "of x but the sign \nof y. On platforms that support signed zeros, " | 
 |       "copysign(1.0, -0.0) \nreturns -1.0.\n") | 
 | FUNC1(cos, cos, 0, | 
 |       "cos(x)\n\nReturn the cosine of x (measured in radians).") | 
 | FUNC1(cosh, cosh, 1, | 
 |       "cosh(x)\n\nReturn the hyperbolic cosine of x.") | 
 | FUNC1A(erf, m_erf, | 
 |        "erf(x)\n\nError function at x.") | 
 | FUNC1A(erfc, m_erfc, | 
 |        "erfc(x)\n\nComplementary error function at x.") | 
 | FUNC1(exp, exp, 1, | 
 |       "exp(x)\n\nReturn e raised to the power of x.") | 
 | FUNC1(expm1, m_expm1, 1, | 
 |       "expm1(x)\n\nReturn exp(x)-1.\n" | 
 |       "This function avoids the loss of precision involved in the direct " | 
 |       "evaluation of exp(x)-1 for small x.") | 
 | FUNC1(fabs, fabs, 0, | 
 |       "fabs(x)\n\nReturn the absolute value of the float x.") | 
 |  | 
 | static PyObject * math_floor(PyObject *self, PyObject *number) { | 
 |     _Py_IDENTIFIER(__floor__); | 
 |     PyObject *method, *result; | 
 |  | 
 |     method = _PyObject_LookupSpecial(number, &PyId___floor__); | 
 |     if (method == NULL) { | 
 |         if (PyErr_Occurred()) | 
 |             return NULL; | 
 |         return math_1_to_int(number, floor, 0); | 
 |     } | 
 |     result = PyObject_CallFunctionObjArgs(method, NULL); | 
 |     Py_DECREF(method); | 
 |     return result; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_floor_doc, | 
 |              "floor(x)\n\nReturn the floor of x as an int.\n" | 
 |              "This is the largest integral value <= x."); | 
 |  | 
 | FUNC1A(gamma, m_tgamma, | 
 |       "gamma(x)\n\nGamma function at x.") | 
 | FUNC1A(lgamma, m_lgamma, | 
 |       "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.") | 
 | FUNC1(log1p, m_log1p, 0, | 
 |       "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n" | 
 |       "The result is computed in a way which is accurate for x near zero.") | 
 | FUNC1(sin, sin, 0, | 
 |       "sin(x)\n\nReturn the sine of x (measured in radians).") | 
 | FUNC1(sinh, sinh, 1, | 
 |       "sinh(x)\n\nReturn the hyperbolic sine of x.") | 
 | FUNC1(sqrt, sqrt, 0, | 
 |       "sqrt(x)\n\nReturn the square root of x.") | 
 | FUNC1(tan, tan, 0, | 
 |       "tan(x)\n\nReturn the tangent of x (measured in radians).") | 
 | FUNC1(tanh, tanh, 0, | 
 |       "tanh(x)\n\nReturn the hyperbolic tangent of x.") | 
 |  | 
 | /* Precision summation function as msum() by Raymond Hettinger in | 
 |    <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, | 
 |    enhanced with the exact partials sum and roundoff from Mark | 
 |    Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. | 
 |    See those links for more details, proofs and other references. | 
 |  | 
 |    Note 1: IEEE 754R floating point semantics are assumed, | 
 |    but the current implementation does not re-establish special | 
 |    value semantics across iterations (i.e. handling -Inf + Inf). | 
 |  | 
 |    Note 2:  No provision is made for intermediate overflow handling; | 
 |    therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while | 
 |    sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the | 
 |    overflow of the first partial sum. | 
 |  | 
 |    Note 3: The intermediate values lo, yr, and hi are declared volatile so | 
 |    aggressive compilers won't algebraically reduce lo to always be exactly 0.0. | 
 |    Also, the volatile declaration forces the values to be stored in memory as | 
 |    regular doubles instead of extended long precision (80-bit) values.  This | 
 |    prevents double rounding because any addition or subtraction of two doubles | 
 |    can be resolved exactly into double-sized hi and lo values.  As long as the | 
 |    hi value gets forced into a double before yr and lo are computed, the extra | 
 |    bits in downstream extended precision operations (x87 for example) will be | 
 |    exactly zero and therefore can be losslessly stored back into a double, | 
 |    thereby preventing double rounding. | 
 |  | 
 |    Note 4: A similar implementation is in Modules/cmathmodule.c. | 
 |    Be sure to update both when making changes. | 
 |  | 
 |    Note 5: The signature of math.fsum() differs from __builtin__.sum() | 
 |    because the start argument doesn't make sense in the context of | 
 |    accurate summation.  Since the partials table is collapsed before | 
 |    returning a result, sum(seq2, start=sum(seq1)) may not equal the | 
 |    accurate result returned by sum(itertools.chain(seq1, seq2)). | 
 | */ | 
 |  | 
 | #define NUM_PARTIALS  32  /* initial partials array size, on stack */ | 
 |  | 
 | /* Extend the partials array p[] by doubling its size. */ | 
 | static int                          /* non-zero on error */ | 
 | _fsum_realloc(double **p_ptr, Py_ssize_t  n, | 
 |              double  *ps,    Py_ssize_t *m_ptr) | 
 | { | 
 |     void *v = NULL; | 
 |     Py_ssize_t m = *m_ptr; | 
 |  | 
 |     m += m;  /* double */ | 
 |     if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) { | 
 |         double *p = *p_ptr; | 
 |         if (p == ps) { | 
 |             v = PyMem_Malloc(sizeof(double) * m); | 
 |             if (v != NULL) | 
 |                 memcpy(v, ps, sizeof(double) * n); | 
 |         } | 
 |         else | 
 |             v = PyMem_Realloc(p, sizeof(double) * m); | 
 |     } | 
 |     if (v == NULL) {        /* size overflow or no memory */ | 
 |         PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); | 
 |         return 1; | 
 |     } | 
 |     *p_ptr = (double*) v; | 
 |     *m_ptr = m; | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Full precision summation of a sequence of floats. | 
 |  | 
 |    def msum(iterable): | 
 |        partials = []  # sorted, non-overlapping partial sums | 
 |        for x in iterable: | 
 |            i = 0 | 
 |            for y in partials: | 
 |                if abs(x) < abs(y): | 
 |                    x, y = y, x | 
 |                hi = x + y | 
 |                lo = y - (hi - x) | 
 |                if lo: | 
 |                    partials[i] = lo | 
 |                    i += 1 | 
 |                x = hi | 
 |            partials[i:] = [x] | 
 |        return sum_exact(partials) | 
 |  | 
 |    Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo | 
 |    are exactly equal to x+y.  The inner loop applies hi/lo summation to each | 
 |    partial so that the list of partial sums remains exact. | 
 |  | 
 |    Sum_exact() adds the partial sums exactly and correctly rounds the final | 
 |    result (using the round-half-to-even rule).  The items in partials remain | 
 |    non-zero, non-special, non-overlapping and strictly increasing in | 
 |    magnitude, but possibly not all having the same sign. | 
 |  | 
 |    Depends on IEEE 754 arithmetic guarantees and half-even rounding. | 
 | */ | 
 |  | 
 | static PyObject* | 
 | math_fsum(PyObject *self, PyObject *seq) | 
 | { | 
 |     PyObject *item, *iter, *sum = NULL; | 
 |     Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; | 
 |     double x, y, t, ps[NUM_PARTIALS], *p = ps; | 
 |     double xsave, special_sum = 0.0, inf_sum = 0.0; | 
 |     volatile double hi, yr, lo; | 
 |  | 
 |     iter = PyObject_GetIter(seq); | 
 |     if (iter == NULL) | 
 |         return NULL; | 
 |  | 
 |     PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL) | 
 |  | 
 |     for(;;) {           /* for x in iterable */ | 
 |         assert(0 <= n && n <= m); | 
 |         assert((m == NUM_PARTIALS && p == ps) || | 
 |                (m >  NUM_PARTIALS && p != NULL)); | 
 |  | 
 |         item = PyIter_Next(iter); | 
 |         if (item == NULL) { | 
 |             if (PyErr_Occurred()) | 
 |                 goto _fsum_error; | 
 |             break; | 
 |         } | 
 |         x = PyFloat_AsDouble(item); | 
 |         Py_DECREF(item); | 
 |         if (PyErr_Occurred()) | 
 |             goto _fsum_error; | 
 |  | 
 |         xsave = x; | 
 |         for (i = j = 0; j < n; j++) {       /* for y in partials */ | 
 |             y = p[j]; | 
 |             if (fabs(x) < fabs(y)) { | 
 |                 t = x; x = y; y = t; | 
 |             } | 
 |             hi = x + y; | 
 |             yr = hi - x; | 
 |             lo = y - yr; | 
 |             if (lo != 0.0) | 
 |                 p[i++] = lo; | 
 |             x = hi; | 
 |         } | 
 |  | 
 |         n = i;                              /* ps[i:] = [x] */ | 
 |         if (x != 0.0) { | 
 |             if (! Py_IS_FINITE(x)) { | 
 |                 /* a nonfinite x could arise either as | 
 |                    a result of intermediate overflow, or | 
 |                    as a result of a nan or inf in the | 
 |                    summands */ | 
 |                 if (Py_IS_FINITE(xsave)) { | 
 |                     PyErr_SetString(PyExc_OverflowError, | 
 |                           "intermediate overflow in fsum"); | 
 |                     goto _fsum_error; | 
 |                 } | 
 |                 if (Py_IS_INFINITY(xsave)) | 
 |                     inf_sum += xsave; | 
 |                 special_sum += xsave; | 
 |                 /* reset partials */ | 
 |                 n = 0; | 
 |             } | 
 |             else if (n >= m && _fsum_realloc(&p, n, ps, &m)) | 
 |                 goto _fsum_error; | 
 |             else | 
 |                 p[n++] = x; | 
 |         } | 
 |     } | 
 |  | 
 |     if (special_sum != 0.0) { | 
 |         if (Py_IS_NAN(inf_sum)) | 
 |             PyErr_SetString(PyExc_ValueError, | 
 |                             "-inf + inf in fsum"); | 
 |         else | 
 |             sum = PyFloat_FromDouble(special_sum); | 
 |         goto _fsum_error; | 
 |     } | 
 |  | 
 |     hi = 0.0; | 
 |     if (n > 0) { | 
 |         hi = p[--n]; | 
 |         /* sum_exact(ps, hi) from the top, stop when the sum becomes | 
 |            inexact. */ | 
 |         while (n > 0) { | 
 |             x = hi; | 
 |             y = p[--n]; | 
 |             assert(fabs(y) < fabs(x)); | 
 |             hi = x + y; | 
 |             yr = hi - x; | 
 |             lo = y - yr; | 
 |             if (lo != 0.0) | 
 |                 break; | 
 |         } | 
 |         /* Make half-even rounding work across multiple partials. | 
 |            Needed so that sum([1e-16, 1, 1e16]) will round-up the last | 
 |            digit to two instead of down to zero (the 1e-16 makes the 1 | 
 |            slightly closer to two).  With a potential 1 ULP rounding | 
 |            error fixed-up, math.fsum() can guarantee commutativity. */ | 
 |         if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || | 
 |                       (lo > 0.0 && p[n-1] > 0.0))) { | 
 |             y = lo * 2.0; | 
 |             x = hi + y; | 
 |             yr = x - hi; | 
 |             if (y == yr) | 
 |                 hi = x; | 
 |         } | 
 |     } | 
 |     sum = PyFloat_FromDouble(hi); | 
 |  | 
 | _fsum_error: | 
 |     PyFPE_END_PROTECT(hi) | 
 |     Py_DECREF(iter); | 
 |     if (p != ps) | 
 |         PyMem_Free(p); | 
 |     return sum; | 
 | } | 
 |  | 
 | #undef NUM_PARTIALS | 
 |  | 
 | PyDoc_STRVAR(math_fsum_doc, | 
 | "fsum(iterable)\n\n\ | 
 | Return an accurate floating point sum of values in the iterable.\n\ | 
 | Assumes IEEE-754 floating point arithmetic."); | 
 |  | 
 | /* Return the smallest integer k such that n < 2**k, or 0 if n == 0. | 
 |  * Equivalent to floor(lg(x))+1.  Also equivalent to: bitwidth_of_type - | 
 |  * count_leading_zero_bits(x) | 
 |  */ | 
 |  | 
 | /* XXX: This routine does more or less the same thing as | 
 |  * bits_in_digit() in Objects/longobject.c.  Someday it would be nice to | 
 |  * consolidate them.  On BSD, there's a library function called fls() | 
 |  * that we could use, and GCC provides __builtin_clz(). | 
 |  */ | 
 |  | 
 | static unsigned long | 
 | bit_length(unsigned long n) | 
 | { | 
 |     unsigned long len = 0; | 
 |     while (n != 0) { | 
 |         ++len; | 
 |         n >>= 1; | 
 |     } | 
 |     return len; | 
 | } | 
 |  | 
 | static unsigned long | 
 | count_set_bits(unsigned long n) | 
 | { | 
 |     unsigned long count = 0; | 
 |     while (n != 0) { | 
 |         ++count; | 
 |         n &= n - 1; /* clear least significant bit */ | 
 |     } | 
 |     return count; | 
 | } | 
 |  | 
 | /* Divide-and-conquer factorial algorithm | 
 |  * | 
 |  * Based on the formula and psuedo-code provided at: | 
 |  * http://www.luschny.de/math/factorial/binarysplitfact.html | 
 |  * | 
 |  * Faster algorithms exist, but they're more complicated and depend on | 
 |  * a fast prime factorization algorithm. | 
 |  * | 
 |  * Notes on the algorithm | 
 |  * ---------------------- | 
 |  * | 
 |  * factorial(n) is written in the form 2**k * m, with m odd.  k and m are | 
 |  * computed separately, and then combined using a left shift. | 
 |  * | 
 |  * The function factorial_odd_part computes the odd part m (i.e., the greatest | 
 |  * odd divisor) of factorial(n), using the formula: | 
 |  * | 
 |  *   factorial_odd_part(n) = | 
 |  * | 
 |  *        product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j | 
 |  * | 
 |  * Example: factorial_odd_part(20) = | 
 |  * | 
 |  *        (1) * | 
 |  *        (1) * | 
 |  *        (1 * 3 * 5) * | 
 |  *        (1 * 3 * 5 * 7 * 9) | 
 |  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) | 
 |  * | 
 |  * Here i goes from large to small: the first term corresponds to i=4 (any | 
 |  * larger i gives an empty product), and the last term corresponds to i=0. | 
 |  * Each term can be computed from the last by multiplying by the extra odd | 
 |  * numbers required: e.g., to get from the penultimate term to the last one, | 
 |  * we multiply by (11 * 13 * 15 * 17 * 19). | 
 |  * | 
 |  * To see a hint of why this formula works, here are the same numbers as above | 
 |  * but with the even parts (i.e., the appropriate powers of 2) included.  For | 
 |  * each subterm in the product for i, we multiply that subterm by 2**i: | 
 |  * | 
 |  *   factorial(20) = | 
 |  * | 
 |  *        (16) * | 
 |  *        (8) * | 
 |  *        (4 * 12 * 20) * | 
 |  *        (2 * 6 * 10 * 14 * 18) * | 
 |  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) | 
 |  * | 
 |  * The factorial_partial_product function computes the product of all odd j in | 
 |  * range(start, stop) for given start and stop.  It's used to compute the | 
 |  * partial products like (11 * 13 * 15 * 17 * 19) in the example above.  It | 
 |  * operates recursively, repeatedly splitting the range into two roughly equal | 
 |  * pieces until the subranges are small enough to be computed using only C | 
 |  * integer arithmetic. | 
 |  * | 
 |  * The two-valuation k (i.e., the exponent of the largest power of 2 dividing | 
 |  * the factorial) is computed independently in the main math_factorial | 
 |  * function.  By standard results, its value is: | 
 |  * | 
 |  *    two_valuation = n//2 + n//4 + n//8 + .... | 
 |  * | 
 |  * It can be shown (e.g., by complete induction on n) that two_valuation is | 
 |  * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of | 
 |  * '1'-bits in the binary expansion of n. | 
 |  */ | 
 |  | 
 | /* factorial_partial_product: Compute product(range(start, stop, 2)) using | 
 |  * divide and conquer.  Assumes start and stop are odd and stop > start. | 
 |  * max_bits must be >= bit_length(stop - 2). */ | 
 |  | 
 | static PyObject * | 
 | factorial_partial_product(unsigned long start, unsigned long stop, | 
 |                           unsigned long max_bits) | 
 | { | 
 |     unsigned long midpoint, num_operands; | 
 |     PyObject *left = NULL, *right = NULL, *result = NULL; | 
 |  | 
 |     /* If the return value will fit an unsigned long, then we can | 
 |      * multiply in a tight, fast loop where each multiply is O(1). | 
 |      * Compute an upper bound on the number of bits required to store | 
 |      * the answer. | 
 |      * | 
 |      * Storing some integer z requires floor(lg(z))+1 bits, which is | 
 |      * conveniently the value returned by bit_length(z).  The | 
 |      * product x*y will require at most | 
 |      * bit_length(x) + bit_length(y) bits to store, based | 
 |      * on the idea that lg product = lg x + lg y. | 
 |      * | 
 |      * We know that stop - 2 is the largest number to be multiplied.  From | 
 |      * there, we have: bit_length(answer) <= num_operands * | 
 |      * bit_length(stop - 2) | 
 |      */ | 
 |  | 
 |     num_operands = (stop - start) / 2; | 
 |     /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the | 
 |      * unlikely case of an overflow in num_operands * max_bits. */ | 
 |     if (num_operands <= 8 * SIZEOF_LONG && | 
 |         num_operands * max_bits <= 8 * SIZEOF_LONG) { | 
 |         unsigned long j, total; | 
 |         for (total = start, j = start + 2; j < stop; j += 2) | 
 |             total *= j; | 
 |         return PyLong_FromUnsignedLong(total); | 
 |     } | 
 |  | 
 |     /* find midpoint of range(start, stop), rounded up to next odd number. */ | 
 |     midpoint = (start + num_operands) | 1; | 
 |     left = factorial_partial_product(start, midpoint, | 
 |                                      bit_length(midpoint - 2)); | 
 |     if (left == NULL) | 
 |         goto error; | 
 |     right = factorial_partial_product(midpoint, stop, max_bits); | 
 |     if (right == NULL) | 
 |         goto error; | 
 |     result = PyNumber_Multiply(left, right); | 
 |  | 
 |   error: | 
 |     Py_XDECREF(left); | 
 |     Py_XDECREF(right); | 
 |     return result; | 
 | } | 
 |  | 
 | /* factorial_odd_part:  compute the odd part of factorial(n). */ | 
 |  | 
 | static PyObject * | 
 | factorial_odd_part(unsigned long n) | 
 | { | 
 |     long i; | 
 |     unsigned long v, lower, upper; | 
 |     PyObject *partial, *tmp, *inner, *outer; | 
 |  | 
 |     inner = PyLong_FromLong(1); | 
 |     if (inner == NULL) | 
 |         return NULL; | 
 |     outer = inner; | 
 |     Py_INCREF(outer); | 
 |  | 
 |     upper = 3; | 
 |     for (i = bit_length(n) - 2; i >= 0; i--) { | 
 |         v = n >> i; | 
 |         if (v <= 2) | 
 |             continue; | 
 |         lower = upper; | 
 |         /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */ | 
 |         upper = (v + 1) | 1; | 
 |         /* Here inner is the product of all odd integers j in the range (0, | 
 |            n/2**(i+1)].  The factorial_partial_product call below gives the | 
 |            product of all odd integers j in the range (n/2**(i+1), n/2**i]. */ | 
 |         partial = factorial_partial_product(lower, upper, bit_length(upper-2)); | 
 |         /* inner *= partial */ | 
 |         if (partial == NULL) | 
 |             goto error; | 
 |         tmp = PyNumber_Multiply(inner, partial); | 
 |         Py_DECREF(partial); | 
 |         if (tmp == NULL) | 
 |             goto error; | 
 |         Py_DECREF(inner); | 
 |         inner = tmp; | 
 |         /* Now inner is the product of all odd integers j in the range (0, | 
 |            n/2**i], giving the inner product in the formula above. */ | 
 |  | 
 |         /* outer *= inner; */ | 
 |         tmp = PyNumber_Multiply(outer, inner); | 
 |         if (tmp == NULL) | 
 |             goto error; | 
 |         Py_DECREF(outer); | 
 |         outer = tmp; | 
 |     } | 
 |     Py_DECREF(inner); | 
 |     return outer; | 
 |  | 
 |   error: | 
 |     Py_DECREF(outer); | 
 |     Py_DECREF(inner); | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* Lookup table for small factorial values */ | 
 |  | 
 | static const unsigned long SmallFactorials[] = { | 
 |     1, 1, 2, 6, 24, 120, 720, 5040, 40320, | 
 |     362880, 3628800, 39916800, 479001600, | 
 | #if SIZEOF_LONG >= 8 | 
 |     6227020800, 87178291200, 1307674368000, | 
 |     20922789888000, 355687428096000, 6402373705728000, | 
 |     121645100408832000, 2432902008176640000 | 
 | #endif | 
 | }; | 
 |  | 
 | static PyObject * | 
 | math_factorial(PyObject *self, PyObject *arg) | 
 | { | 
 |     long x; | 
 |     PyObject *result, *odd_part, *two_valuation; | 
 |  | 
 |     if (PyFloat_Check(arg)) { | 
 |         PyObject *lx; | 
 |         double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg); | 
 |         if (!(Py_IS_FINITE(dx) && dx == floor(dx))) { | 
 |             PyErr_SetString(PyExc_ValueError, | 
 |                             "factorial() only accepts integral values"); | 
 |             return NULL; | 
 |         } | 
 |         lx = PyLong_FromDouble(dx); | 
 |         if (lx == NULL) | 
 |             return NULL; | 
 |         x = PyLong_AsLong(lx); | 
 |         Py_DECREF(lx); | 
 |     } | 
 |     else | 
 |         x = PyLong_AsLong(arg); | 
 |  | 
 |     if (x == -1 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     if (x < 0) { | 
 |         PyErr_SetString(PyExc_ValueError, | 
 |                         "factorial() not defined for negative values"); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     /* use lookup table if x is small */ | 
 |     if (x < (long)Py_ARRAY_LENGTH(SmallFactorials)) | 
 |         return PyLong_FromUnsignedLong(SmallFactorials[x]); | 
 |  | 
 |     /* else express in the form odd_part * 2**two_valuation, and compute as | 
 |        odd_part << two_valuation. */ | 
 |     odd_part = factorial_odd_part(x); | 
 |     if (odd_part == NULL) | 
 |         return NULL; | 
 |     two_valuation = PyLong_FromLong(x - count_set_bits(x)); | 
 |     if (two_valuation == NULL) { | 
 |         Py_DECREF(odd_part); | 
 |         return NULL; | 
 |     } | 
 |     result = PyNumber_Lshift(odd_part, two_valuation); | 
 |     Py_DECREF(two_valuation); | 
 |     Py_DECREF(odd_part); | 
 |     return result; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_factorial_doc, | 
 | "factorial(x) -> Integral\n" | 
 | "\n" | 
 | "Find x!. Raise a ValueError if x is negative or non-integral."); | 
 |  | 
 | static PyObject * | 
 | math_trunc(PyObject *self, PyObject *number) | 
 | { | 
 |     _Py_IDENTIFIER(__trunc__); | 
 |     PyObject *trunc, *result; | 
 |  | 
 |     if (Py_TYPE(number)->tp_dict == NULL) { | 
 |         if (PyType_Ready(Py_TYPE(number)) < 0) | 
 |             return NULL; | 
 |     } | 
 |  | 
 |     trunc = _PyObject_LookupSpecial(number, &PyId___trunc__); | 
 |     if (trunc == NULL) { | 
 |         if (!PyErr_Occurred()) | 
 |             PyErr_Format(PyExc_TypeError, | 
 |                          "type %.100s doesn't define __trunc__ method", | 
 |                          Py_TYPE(number)->tp_name); | 
 |         return NULL; | 
 |     } | 
 |     result = PyObject_CallFunctionObjArgs(trunc, NULL); | 
 |     Py_DECREF(trunc); | 
 |     return result; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_trunc_doc, | 
 | "trunc(x:Real) -> Integral\n" | 
 | "\n" | 
 | "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method."); | 
 |  | 
 | static PyObject * | 
 | math_frexp(PyObject *self, PyObject *arg) | 
 | { | 
 |     int i; | 
 |     double x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     /* deal with special cases directly, to sidestep platform | 
 |        differences */ | 
 |     if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { | 
 |         i = 0; | 
 |     } | 
 |     else { | 
 |         PyFPE_START_PROTECT("in math_frexp", return 0); | 
 |         x = frexp(x, &i); | 
 |         PyFPE_END_PROTECT(x); | 
 |     } | 
 |     return Py_BuildValue("(di)", x, i); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_frexp_doc, | 
 | "frexp(x)\n" | 
 | "\n" | 
 | "Return the mantissa and exponent of x, as pair (m, e).\n" | 
 | "m is a float and e is an int, such that x = m * 2.**e.\n" | 
 | "If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0."); | 
 |  | 
 | static PyObject * | 
 | math_ldexp(PyObject *self, PyObject *args) | 
 | { | 
 |     double x, r; | 
 |     PyObject *oexp; | 
 |     long exp; | 
 |     int overflow; | 
 |     if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp)) | 
 |         return NULL; | 
 |  | 
 |     if (PyLong_Check(oexp)) { | 
 |         /* on overflow, replace exponent with either LONG_MAX | 
 |            or LONG_MIN, depending on the sign. */ | 
 |         exp = PyLong_AsLongAndOverflow(oexp, &overflow); | 
 |         if (exp == -1 && PyErr_Occurred()) | 
 |             return NULL; | 
 |         if (overflow) | 
 |             exp = overflow < 0 ? LONG_MIN : LONG_MAX; | 
 |     } | 
 |     else { | 
 |         PyErr_SetString(PyExc_TypeError, | 
 |                         "Expected an int as second argument to ldexp."); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     if (x == 0. || !Py_IS_FINITE(x)) { | 
 |         /* NaNs, zeros and infinities are returned unchanged */ | 
 |         r = x; | 
 |         errno = 0; | 
 |     } else if (exp > INT_MAX) { | 
 |         /* overflow */ | 
 |         r = copysign(Py_HUGE_VAL, x); | 
 |         errno = ERANGE; | 
 |     } else if (exp < INT_MIN) { | 
 |         /* underflow to +-0 */ | 
 |         r = copysign(0., x); | 
 |         errno = 0; | 
 |     } else { | 
 |         errno = 0; | 
 |         PyFPE_START_PROTECT("in math_ldexp", return 0); | 
 |         r = ldexp(x, (int)exp); | 
 |         PyFPE_END_PROTECT(r); | 
 |         if (Py_IS_INFINITY(r)) | 
 |             errno = ERANGE; | 
 |     } | 
 |  | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_ldexp_doc, | 
 | "ldexp(x, i)\n\n\ | 
 | Return x * (2**i)."); | 
 |  | 
 | static PyObject * | 
 | math_modf(PyObject *self, PyObject *arg) | 
 | { | 
 |     double y, x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     /* some platforms don't do the right thing for NaNs and | 
 |        infinities, so we take care of special cases directly. */ | 
 |     if (!Py_IS_FINITE(x)) { | 
 |         if (Py_IS_INFINITY(x)) | 
 |             return Py_BuildValue("(dd)", copysign(0., x), x); | 
 |         else if (Py_IS_NAN(x)) | 
 |             return Py_BuildValue("(dd)", x, x); | 
 |     } | 
 |  | 
 |     errno = 0; | 
 |     PyFPE_START_PROTECT("in math_modf", return 0); | 
 |     x = modf(x, &y); | 
 |     PyFPE_END_PROTECT(x); | 
 |     return Py_BuildValue("(dd)", x, y); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_modf_doc, | 
 | "modf(x)\n" | 
 | "\n" | 
 | "Return the fractional and integer parts of x.  Both results carry the sign\n" | 
 | "of x and are floats."); | 
 |  | 
 | /* A decent logarithm is easy to compute even for huge ints, but libm can't | 
 |    do that by itself -- loghelper can.  func is log or log10, and name is | 
 |    "log" or "log10".  Note that overflow of the result isn't possible: an int | 
 |    can contain no more than INT_MAX * SHIFT bits, so has value certainly less | 
 |    than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is | 
 |    small enough to fit in an IEEE single.  log and log10 are even smaller. | 
 |    However, intermediate overflow is possible for an int if the number of bits | 
 |    in that int is larger than PY_SSIZE_T_MAX. */ | 
 |  | 
 | static PyObject* | 
 | loghelper(PyObject* arg, double (*func)(double), char *funcname) | 
 | { | 
 |     /* If it is int, do it ourselves. */ | 
 |     if (PyLong_Check(arg)) { | 
 |         double x, result; | 
 |         Py_ssize_t e; | 
 |  | 
 |         /* Negative or zero inputs give a ValueError. */ | 
 |         if (Py_SIZE(arg) <= 0) { | 
 |             PyErr_SetString(PyExc_ValueError, | 
 |                             "math domain error"); | 
 |             return NULL; | 
 |         } | 
 |  | 
 |         x = PyLong_AsDouble(arg); | 
 |         if (x == -1.0 && PyErr_Occurred()) { | 
 |             if (!PyErr_ExceptionMatches(PyExc_OverflowError)) | 
 |                 return NULL; | 
 |             /* Here the conversion to double overflowed, but it's possible | 
 |                to compute the log anyway.  Clear the exception and continue. */ | 
 |             PyErr_Clear(); | 
 |             x = _PyLong_Frexp((PyLongObject *)arg, &e); | 
 |             if (x == -1.0 && PyErr_Occurred()) | 
 |                 return NULL; | 
 |             /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ | 
 |             result = func(x) + func(2.0) * e; | 
 |         } | 
 |         else | 
 |             /* Successfully converted x to a double. */ | 
 |             result = func(x); | 
 |         return PyFloat_FromDouble(result); | 
 |     } | 
 |  | 
 |     /* Else let libm handle it by itself. */ | 
 |     return math_1(arg, func, 0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | math_log(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *arg; | 
 |     PyObject *base = NULL; | 
 |     PyObject *num, *den; | 
 |     PyObject *ans; | 
 |  | 
 |     if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base)) | 
 |         return NULL; | 
 |  | 
 |     num = loghelper(arg, m_log, "log"); | 
 |     if (num == NULL || base == NULL) | 
 |         return num; | 
 |  | 
 |     den = loghelper(base, m_log, "log"); | 
 |     if (den == NULL) { | 
 |         Py_DECREF(num); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     ans = PyNumber_TrueDivide(num, den); | 
 |     Py_DECREF(num); | 
 |     Py_DECREF(den); | 
 |     return ans; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_log_doc, | 
 | "log(x[, base])\n\n\ | 
 | Return the logarithm of x to the given base.\n\ | 
 | If the base not specified, returns the natural logarithm (base e) of x."); | 
 |  | 
 | static PyObject * | 
 | math_log2(PyObject *self, PyObject *arg) | 
 | { | 
 |     return loghelper(arg, m_log2, "log2"); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_log2_doc, | 
 | "log2(x)\n\nReturn the base 2 logarithm of x."); | 
 |  | 
 | static PyObject * | 
 | math_log10(PyObject *self, PyObject *arg) | 
 | { | 
 |     return loghelper(arg, m_log10, "log10"); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_log10_doc, | 
 | "log10(x)\n\nReturn the base 10 logarithm of x."); | 
 |  | 
 | static PyObject * | 
 | math_fmod(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *ox, *oy; | 
 |     double r, x, y; | 
 |     if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy)) | 
 |         return NULL; | 
 |     x = PyFloat_AsDouble(ox); | 
 |     y = PyFloat_AsDouble(oy); | 
 |     if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) | 
 |         return NULL; | 
 |     /* fmod(x, +/-Inf) returns x for finite x. */ | 
 |     if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) | 
 |         return PyFloat_FromDouble(x); | 
 |     errno = 0; | 
 |     PyFPE_START_PROTECT("in math_fmod", return 0); | 
 |     r = fmod(x, y); | 
 |     PyFPE_END_PROTECT(r); | 
 |     if (Py_IS_NAN(r)) { | 
 |         if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
 |             errno = EDOM; | 
 |         else | 
 |             errno = 0; | 
 |     } | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     else | 
 |         return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_fmod_doc, | 
 | "fmod(x, y)\n\nReturn fmod(x, y), according to platform C." | 
 | "  x % y may differ."); | 
 |  | 
 | static PyObject * | 
 | math_hypot(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *ox, *oy; | 
 |     double r, x, y; | 
 |     if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy)) | 
 |         return NULL; | 
 |     x = PyFloat_AsDouble(ox); | 
 |     y = PyFloat_AsDouble(oy); | 
 |     if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) | 
 |         return NULL; | 
 |     /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ | 
 |     if (Py_IS_INFINITY(x)) | 
 |         return PyFloat_FromDouble(fabs(x)); | 
 |     if (Py_IS_INFINITY(y)) | 
 |         return PyFloat_FromDouble(fabs(y)); | 
 |     errno = 0; | 
 |     PyFPE_START_PROTECT("in math_hypot", return 0); | 
 |     r = hypot(x, y); | 
 |     PyFPE_END_PROTECT(r); | 
 |     if (Py_IS_NAN(r)) { | 
 |         if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
 |             errno = EDOM; | 
 |         else | 
 |             errno = 0; | 
 |     } | 
 |     else if (Py_IS_INFINITY(r)) { | 
 |         if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) | 
 |             errno = ERANGE; | 
 |         else | 
 |             errno = 0; | 
 |     } | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     else | 
 |         return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_hypot_doc, | 
 | "hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y)."); | 
 |  | 
 | /* pow can't use math_2, but needs its own wrapper: the problem is | 
 |    that an infinite result can arise either as a result of overflow | 
 |    (in which case OverflowError should be raised) or as a result of | 
 |    e.g. 0.**-5. (for which ValueError needs to be raised.) | 
 | */ | 
 |  | 
 | static PyObject * | 
 | math_pow(PyObject *self, PyObject *args) | 
 | { | 
 |     PyObject *ox, *oy; | 
 |     double r, x, y; | 
 |     int odd_y; | 
 |  | 
 |     if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) | 
 |         return NULL; | 
 |     x = PyFloat_AsDouble(ox); | 
 |     y = PyFloat_AsDouble(oy); | 
 |     if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) | 
 |         return NULL; | 
 |  | 
 |     /* deal directly with IEEE specials, to cope with problems on various | 
 |        platforms whose semantics don't exactly match C99 */ | 
 |     r = 0.; /* silence compiler warning */ | 
 |     if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { | 
 |         errno = 0; | 
 |         if (Py_IS_NAN(x)) | 
 |             r = y == 0. ? 1. : x; /* NaN**0 = 1 */ | 
 |         else if (Py_IS_NAN(y)) | 
 |             r = x == 1. ? 1. : y; /* 1**NaN = 1 */ | 
 |         else if (Py_IS_INFINITY(x)) { | 
 |             odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; | 
 |             if (y > 0.) | 
 |                 r = odd_y ? x : fabs(x); | 
 |             else if (y == 0.) | 
 |                 r = 1.; | 
 |             else /* y < 0. */ | 
 |                 r = odd_y ? copysign(0., x) : 0.; | 
 |         } | 
 |         else if (Py_IS_INFINITY(y)) { | 
 |             if (fabs(x) == 1.0) | 
 |                 r = 1.; | 
 |             else if (y > 0. && fabs(x) > 1.0) | 
 |                 r = y; | 
 |             else if (y < 0. && fabs(x) < 1.0) { | 
 |                 r = -y; /* result is +inf */ | 
 |                 if (x == 0.) /* 0**-inf: divide-by-zero */ | 
 |                     errno = EDOM; | 
 |             } | 
 |             else | 
 |                 r = 0.; | 
 |         } | 
 |     } | 
 |     else { | 
 |         /* let libm handle finite**finite */ | 
 |         errno = 0; | 
 |         PyFPE_START_PROTECT("in math_pow", return 0); | 
 |         r = pow(x, y); | 
 |         PyFPE_END_PROTECT(r); | 
 |         /* a NaN result should arise only from (-ve)**(finite | 
 |            non-integer); in this case we want to raise ValueError. */ | 
 |         if (!Py_IS_FINITE(r)) { | 
 |             if (Py_IS_NAN(r)) { | 
 |                 errno = EDOM; | 
 |             } | 
 |             /* | 
 |                an infinite result here arises either from: | 
 |                (A) (+/-0.)**negative (-> divide-by-zero) | 
 |                (B) overflow of x**y with x and y finite | 
 |             */ | 
 |             else if (Py_IS_INFINITY(r)) { | 
 |                 if (x == 0.) | 
 |                     errno = EDOM; | 
 |                 else | 
 |                     errno = ERANGE; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (errno && is_error(r)) | 
 |         return NULL; | 
 |     else | 
 |         return PyFloat_FromDouble(r); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_pow_doc, | 
 | "pow(x, y)\n\nReturn x**y (x to the power of y)."); | 
 |  | 
 | static const double degToRad = Py_MATH_PI / 180.0; | 
 | static const double radToDeg = 180.0 / Py_MATH_PI; | 
 |  | 
 | static PyObject * | 
 | math_degrees(PyObject *self, PyObject *arg) | 
 | { | 
 |     double x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return PyFloat_FromDouble(x * radToDeg); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_degrees_doc, | 
 | "degrees(x)\n\n\ | 
 | Convert angle x from radians to degrees."); | 
 |  | 
 | static PyObject * | 
 | math_radians(PyObject *self, PyObject *arg) | 
 | { | 
 |     double x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return PyFloat_FromDouble(x * degToRad); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_radians_doc, | 
 | "radians(x)\n\n\ | 
 | Convert angle x from degrees to radians."); | 
 |  | 
 | static PyObject * | 
 | math_isfinite(PyObject *self, PyObject *arg) | 
 | { | 
 |     double x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return PyBool_FromLong((long)Py_IS_FINITE(x)); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_isfinite_doc, | 
 | "isfinite(x) -> bool\n\n\ | 
 | Return True if x is neither an infinity nor a NaN, and False otherwise."); | 
 |  | 
 | static PyObject * | 
 | math_isnan(PyObject *self, PyObject *arg) | 
 | { | 
 |     double x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return PyBool_FromLong((long)Py_IS_NAN(x)); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_isnan_doc, | 
 | "isnan(x) -> bool\n\n\ | 
 | Return True if x is a NaN (not a number), and False otherwise."); | 
 |  | 
 | static PyObject * | 
 | math_isinf(PyObject *self, PyObject *arg) | 
 | { | 
 |     double x = PyFloat_AsDouble(arg); | 
 |     if (x == -1.0 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     return PyBool_FromLong((long)Py_IS_INFINITY(x)); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(math_isinf_doc, | 
 | "isinf(x) -> bool\n\n\ | 
 | Return True if x is a positive or negative infinity, and False otherwise."); | 
 |  | 
 | static PyMethodDef math_methods[] = { | 
 |     {"acos",            math_acos,      METH_O,         math_acos_doc}, | 
 |     {"acosh",           math_acosh,     METH_O,         math_acosh_doc}, | 
 |     {"asin",            math_asin,      METH_O,         math_asin_doc}, | 
 |     {"asinh",           math_asinh,     METH_O,         math_asinh_doc}, | 
 |     {"atan",            math_atan,      METH_O,         math_atan_doc}, | 
 |     {"atan2",           math_atan2,     METH_VARARGS,   math_atan2_doc}, | 
 |     {"atanh",           math_atanh,     METH_O,         math_atanh_doc}, | 
 |     {"ceil",            math_ceil,      METH_O,         math_ceil_doc}, | 
 |     {"copysign",        math_copysign,  METH_VARARGS,   math_copysign_doc}, | 
 |     {"cos",             math_cos,       METH_O,         math_cos_doc}, | 
 |     {"cosh",            math_cosh,      METH_O,         math_cosh_doc}, | 
 |     {"degrees",         math_degrees,   METH_O,         math_degrees_doc}, | 
 |     {"erf",             math_erf,       METH_O,         math_erf_doc}, | 
 |     {"erfc",            math_erfc,      METH_O,         math_erfc_doc}, | 
 |     {"exp",             math_exp,       METH_O,         math_exp_doc}, | 
 |     {"expm1",           math_expm1,     METH_O,         math_expm1_doc}, | 
 |     {"fabs",            math_fabs,      METH_O,         math_fabs_doc}, | 
 |     {"factorial",       math_factorial, METH_O,         math_factorial_doc}, | 
 |     {"floor",           math_floor,     METH_O,         math_floor_doc}, | 
 |     {"fmod",            math_fmod,      METH_VARARGS,   math_fmod_doc}, | 
 |     {"frexp",           math_frexp,     METH_O,         math_frexp_doc}, | 
 |     {"fsum",            math_fsum,      METH_O,         math_fsum_doc}, | 
 |     {"gamma",           math_gamma,     METH_O,         math_gamma_doc}, | 
 |     {"hypot",           math_hypot,     METH_VARARGS,   math_hypot_doc}, | 
 |     {"isfinite",        math_isfinite,  METH_O,         math_isfinite_doc}, | 
 |     {"isinf",           math_isinf,     METH_O,         math_isinf_doc}, | 
 |     {"isnan",           math_isnan,     METH_O,         math_isnan_doc}, | 
 |     {"ldexp",           math_ldexp,     METH_VARARGS,   math_ldexp_doc}, | 
 |     {"lgamma",          math_lgamma,    METH_O,         math_lgamma_doc}, | 
 |     {"log",             math_log,       METH_VARARGS,   math_log_doc}, | 
 |     {"log1p",           math_log1p,     METH_O,         math_log1p_doc}, | 
 |     {"log10",           math_log10,     METH_O,         math_log10_doc}, | 
 |     {"log2",            math_log2,      METH_O,         math_log2_doc}, | 
 |     {"modf",            math_modf,      METH_O,         math_modf_doc}, | 
 |     {"pow",             math_pow,       METH_VARARGS,   math_pow_doc}, | 
 |     {"radians",         math_radians,   METH_O,         math_radians_doc}, | 
 |     {"sin",             math_sin,       METH_O,         math_sin_doc}, | 
 |     {"sinh",            math_sinh,      METH_O,         math_sinh_doc}, | 
 |     {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc}, | 
 |     {"tan",             math_tan,       METH_O,         math_tan_doc}, | 
 |     {"tanh",            math_tanh,      METH_O,         math_tanh_doc}, | 
 |     {"trunc",           math_trunc,     METH_O,         math_trunc_doc}, | 
 |     {NULL,              NULL}           /* sentinel */ | 
 | }; | 
 |  | 
 |  | 
 | PyDoc_STRVAR(module_doc, | 
 | "This module is always available.  It provides access to the\n" | 
 | "mathematical functions defined by the C standard."); | 
 |  | 
 |  | 
 | static struct PyModuleDef mathmodule = { | 
 |     PyModuleDef_HEAD_INIT, | 
 |     "math", | 
 |     module_doc, | 
 |     -1, | 
 |     math_methods, | 
 |     NULL, | 
 |     NULL, | 
 |     NULL, | 
 |     NULL | 
 | }; | 
 |  | 
 | PyMODINIT_FUNC | 
 | PyInit_math(void) | 
 | { | 
 |     PyObject *m; | 
 |  | 
 |     m = PyModule_Create(&mathmodule); | 
 |     if (m == NULL) | 
 |         goto finally; | 
 |  | 
 |     PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); | 
 |     PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); | 
 |  | 
 |     finally: | 
 |     return m; | 
 | } |