| /* Random objects */ |
| |
| /* ------------------------------------------------------------------ |
| The code in this module was based on a download from: |
| http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html |
| |
| It was modified in 2002 by Raymond Hettinger as follows: |
| |
| * the principal computational lines untouched. |
| |
| * renamed genrand_res53() to random_random() and wrapped |
| in python calling/return code. |
| |
| * genrand_int32() and the helper functions, init_genrand() |
| and init_by_array(), were declared static, wrapped in |
| Python calling/return code. also, their global data |
| references were replaced with structure references. |
| |
| * unused functions from the original were deleted. |
| new, original C python code was added to implement the |
| Random() interface. |
| |
| The following are the verbatim comments from the original code: |
| |
| A C-program for MT19937, with initialization improved 2002/1/26. |
| Coded by Takuji Nishimura and Makoto Matsumoto. |
| |
| Before using, initialize the state by using init_genrand(seed) |
| or init_by_array(init_key, key_length). |
| |
| Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| 1. Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| 2. Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| 3. The names of its contributors may not be used to endorse or promote |
| products derived from this software without specific prior written |
| permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| Any feedback is very welcome. |
| http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html |
| email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) |
| */ |
| |
| /* ---------------------------------------------------------------*/ |
| |
| #include "Python.h" |
| #include <time.h> /* for seeding to current time */ |
| #ifdef HAVE_PROCESS_H |
| # include <process.h> /* needed for getpid() */ |
| #endif |
| |
| /* Period parameters -- These are all magic. Don't change. */ |
| #define N 624 |
| #define M 397 |
| #define MATRIX_A 0x9908b0dfU /* constant vector a */ |
| #define UPPER_MASK 0x80000000U /* most significant w-r bits */ |
| #define LOWER_MASK 0x7fffffffU /* least significant r bits */ |
| |
| typedef struct { |
| PyObject_HEAD |
| int index; |
| uint32_t state[N]; |
| } RandomObject; |
| |
| static PyTypeObject Random_Type; |
| |
| #define RandomObject_Check(v) (Py_TYPE(v) == &Random_Type) |
| |
| #include "clinic/_randommodule.c.h" |
| |
| /*[clinic input] |
| module _random |
| class _random.Random "RandomObject *" "&Random_Type" |
| [clinic start generated code]*/ |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=f79898ae7847c321]*/ |
| |
| /* Random methods */ |
| |
| |
| /* generates a random number on [0,0xffffffff]-interval */ |
| static uint32_t |
| genrand_int32(RandomObject *self) |
| { |
| uint32_t y; |
| static const uint32_t mag01[2] = {0x0U, MATRIX_A}; |
| /* mag01[x] = x * MATRIX_A for x=0,1 */ |
| uint32_t *mt; |
| |
| mt = self->state; |
| if (self->index >= N) { /* generate N words at one time */ |
| int kk; |
| |
| for (kk=0;kk<N-M;kk++) { |
| y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); |
| mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1U]; |
| } |
| for (;kk<N-1;kk++) { |
| y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); |
| mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1U]; |
| } |
| y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); |
| mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1U]; |
| |
| self->index = 0; |
| } |
| |
| y = mt[self->index++]; |
| y ^= (y >> 11); |
| y ^= (y << 7) & 0x9d2c5680U; |
| y ^= (y << 15) & 0xefc60000U; |
| y ^= (y >> 18); |
| return y; |
| } |
| |
| /* random_random is the function named genrand_res53 in the original code; |
| * generates a random number on [0,1) with 53-bit resolution; note that |
| * 9007199254740992 == 2**53; I assume they're spelling "/2**53" as |
| * multiply-by-reciprocal in the (likely vain) hope that the compiler will |
| * optimize the division away at compile-time. 67108864 is 2**26. In |
| * effect, a contains 27 random bits shifted left 26, and b fills in the |
| * lower 26 bits of the 53-bit numerator. |
| * The original code credited Isaku Wada for this algorithm, 2002/01/09. |
| */ |
| |
| /*[clinic input] |
| _random.Random.random |
| |
| self: self(type="RandomObject *") |
| |
| random() -> x in the interval [0, 1). |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| _random_Random_random_impl(RandomObject *self) |
| /*[clinic end generated code: output=117ff99ee53d755c input=afb2a59cbbb00349]*/ |
| { |
| uint32_t a=genrand_int32(self)>>5, b=genrand_int32(self)>>6; |
| return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0)); |
| } |
| |
| /* initializes mt[N] with a seed */ |
| static void |
| init_genrand(RandomObject *self, uint32_t s) |
| { |
| int mti; |
| uint32_t *mt; |
| |
| mt = self->state; |
| mt[0]= s; |
| for (mti=1; mti<N; mti++) { |
| mt[mti] = |
| (1812433253U * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); |
| /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ |
| /* In the previous versions, MSBs of the seed affect */ |
| /* only MSBs of the array mt[]. */ |
| /* 2002/01/09 modified by Makoto Matsumoto */ |
| } |
| self->index = mti; |
| return; |
| } |
| |
| /* initialize by an array with array-length */ |
| /* init_key is the array for initializing keys */ |
| /* key_length is its length */ |
| static void |
| init_by_array(RandomObject *self, uint32_t init_key[], size_t key_length) |
| { |
| size_t i, j, k; /* was signed in the original code. RDH 12/16/2002 */ |
| uint32_t *mt; |
| |
| mt = self->state; |
| init_genrand(self, 19650218U); |
| i=1; j=0; |
| k = (N>key_length ? N : key_length); |
| for (; k; k--) { |
| mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525U)) |
| + init_key[j] + (uint32_t)j; /* non linear */ |
| i++; j++; |
| if (i>=N) { mt[0] = mt[N-1]; i=1; } |
| if (j>=key_length) j=0; |
| } |
| for (k=N-1; k; k--) { |
| mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941U)) |
| - (uint32_t)i; /* non linear */ |
| i++; |
| if (i>=N) { mt[0] = mt[N-1]; i=1; } |
| } |
| |
| mt[0] = 0x80000000U; /* MSB is 1; assuring non-zero initial array */ |
| } |
| |
| /* |
| * The rest is Python-specific code, neither part of, nor derived from, the |
| * Twister download. |
| */ |
| |
| static int |
| random_seed_urandom(RandomObject *self) |
| { |
| PY_UINT32_T key[N]; |
| |
| if (_PyOS_URandomNonblock(key, sizeof(key)) < 0) { |
| return -1; |
| } |
| init_by_array(self, key, Py_ARRAY_LENGTH(key)); |
| return 0; |
| } |
| |
| static void |
| random_seed_time_pid(RandomObject *self) |
| { |
| _PyTime_t now; |
| uint32_t key[5]; |
| |
| now = _PyTime_GetSystemClock(); |
| key[0] = (PY_UINT32_T)(now & 0xffffffffU); |
| key[1] = (PY_UINT32_T)(now >> 32); |
| |
| key[2] = (PY_UINT32_T)getpid(); |
| |
| now = _PyTime_GetMonotonicClock(); |
| key[3] = (PY_UINT32_T)(now & 0xffffffffU); |
| key[4] = (PY_UINT32_T)(now >> 32); |
| |
| init_by_array(self, key, Py_ARRAY_LENGTH(key)); |
| } |
| |
| static PyObject * |
| random_seed(RandomObject *self, PyObject *arg) |
| { |
| PyObject *result = NULL; /* guilty until proved innocent */ |
| PyObject *n = NULL; |
| uint32_t *key = NULL; |
| size_t bits, keyused; |
| int res; |
| |
| if (arg == NULL || arg == Py_None) { |
| if (random_seed_urandom(self) < 0) { |
| PyErr_Clear(); |
| |
| /* Reading system entropy failed, fall back on the worst entropy: |
| use the current time and process identifier. */ |
| random_seed_time_pid(self); |
| } |
| Py_RETURN_NONE; |
| } |
| |
| /* This algorithm relies on the number being unsigned. |
| * So: if the arg is a PyLong, use its absolute value. |
| * Otherwise use its hash value, cast to unsigned. |
| */ |
| if (PyLong_Check(arg)) { |
| /* Calling int.__abs__() prevents calling arg.__abs__(), which might |
| return an invalid value. See issue #31478. */ |
| n = PyLong_Type.tp_as_number->nb_absolute(arg); |
| } |
| else { |
| Py_hash_t hash = PyObject_Hash(arg); |
| if (hash == -1) |
| goto Done; |
| n = PyLong_FromSize_t((size_t)hash); |
| } |
| if (n == NULL) |
| goto Done; |
| |
| /* Now split n into 32-bit chunks, from the right. */ |
| bits = _PyLong_NumBits(n); |
| if (bits == (size_t)-1 && PyErr_Occurred()) |
| goto Done; |
| |
| /* Figure out how many 32-bit chunks this gives us. */ |
| keyused = bits == 0 ? 1 : (bits - 1) / 32 + 1; |
| |
| /* Convert seed to byte sequence. */ |
| key = (uint32_t *)PyMem_Malloc((size_t)4 * keyused); |
| if (key == NULL) { |
| PyErr_NoMemory(); |
| goto Done; |
| } |
| res = _PyLong_AsByteArray((PyLongObject *)n, |
| (unsigned char *)key, keyused * 4, |
| PY_LITTLE_ENDIAN, |
| 0); /* unsigned */ |
| if (res == -1) { |
| goto Done; |
| } |
| |
| #if PY_BIG_ENDIAN |
| { |
| size_t i, j; |
| /* Reverse an array. */ |
| for (i = 0, j = keyused - 1; i < j; i++, j--) { |
| uint32_t tmp = key[i]; |
| key[i] = key[j]; |
| key[j] = tmp; |
| } |
| } |
| #endif |
| init_by_array(self, key, keyused); |
| |
| Py_INCREF(Py_None); |
| result = Py_None; |
| |
| Done: |
| Py_XDECREF(n); |
| PyMem_Free(key); |
| return result; |
| } |
| |
| /*[clinic input] |
| _random.Random.seed |
| |
| self: self(type="RandomObject *") |
| n: object = None |
| / |
| |
| seed([n]) -> None. |
| |
| Defaults to use urandom and falls back to a combination |
| of the current time and the process identifier. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| _random_Random_seed_impl(RandomObject *self, PyObject *n) |
| /*[clinic end generated code: output=0fad1e16ba883681 input=78d6ef0d52532a54]*/ |
| { |
| return random_seed(self, n); |
| } |
| |
| /*[clinic input] |
| _random.Random.getstate |
| |
| self: self(type="RandomObject *") |
| |
| getstate() -> tuple containing the current state. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| _random_Random_getstate_impl(RandomObject *self) |
| /*[clinic end generated code: output=bf6cef0c092c7180 input=b937a487928c0e89]*/ |
| { |
| PyObject *state; |
| PyObject *element; |
| int i; |
| |
| state = PyTuple_New(N+1); |
| if (state == NULL) |
| return NULL; |
| for (i=0; i<N ; i++) { |
| element = PyLong_FromUnsignedLong(self->state[i]); |
| if (element == NULL) |
| goto Fail; |
| PyTuple_SET_ITEM(state, i, element); |
| } |
| element = PyLong_FromLong((long)(self->index)); |
| if (element == NULL) |
| goto Fail; |
| PyTuple_SET_ITEM(state, i, element); |
| return state; |
| |
| Fail: |
| Py_DECREF(state); |
| return NULL; |
| } |
| |
| |
| /*[clinic input] |
| _random.Random.setstate |
| |
| self: self(type="RandomObject *") |
| state: object |
| / |
| |
| setstate(state) -> None. Restores generator state. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| _random_Random_setstate(RandomObject *self, PyObject *state) |
| /*[clinic end generated code: output=fd1c3cd0037b6681 input=b3b4efbb1bc66af8]*/ |
| { |
| int i; |
| unsigned long element; |
| long index; |
| uint32_t new_state[N]; |
| |
| if (!PyTuple_Check(state)) { |
| PyErr_SetString(PyExc_TypeError, |
| "state vector must be a tuple"); |
| return NULL; |
| } |
| if (PyTuple_Size(state) != N+1) { |
| PyErr_SetString(PyExc_ValueError, |
| "state vector is the wrong size"); |
| return NULL; |
| } |
| |
| for (i=0; i<N ; i++) { |
| element = PyLong_AsUnsignedLong(PyTuple_GET_ITEM(state, i)); |
| if (element == (unsigned long)-1 && PyErr_Occurred()) |
| return NULL; |
| new_state[i] = (uint32_t)element; |
| } |
| |
| index = PyLong_AsLong(PyTuple_GET_ITEM(state, i)); |
| if (index == -1 && PyErr_Occurred()) |
| return NULL; |
| if (index < 0 || index > N) { |
| PyErr_SetString(PyExc_ValueError, "invalid state"); |
| return NULL; |
| } |
| self->index = (int)index; |
| for (i = 0; i < N; i++) |
| self->state[i] = new_state[i]; |
| |
| Py_RETURN_NONE; |
| } |
| |
| /*[clinic input] |
| |
| _random.Random.getrandbits |
| |
| self: self(type="RandomObject *") |
| k: int |
| / |
| |
| getrandbits(k) -> x. Generates an int with k random bits. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| _random_Random_getrandbits_impl(RandomObject *self, int k) |
| /*[clinic end generated code: output=b402f82a2158887f input=8c0e6396dd176fc0]*/ |
| { |
| int i, words; |
| uint32_t r; |
| uint32_t *wordarray; |
| PyObject *result; |
| |
| if (k <= 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "number of bits must be greater than zero"); |
| return NULL; |
| } |
| |
| if (k <= 32) /* Fast path */ |
| return PyLong_FromUnsignedLong(genrand_int32(self) >> (32 - k)); |
| |
| words = (k - 1) / 32 + 1; |
| wordarray = (uint32_t *)PyMem_Malloc(words * 4); |
| if (wordarray == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| |
| /* Fill-out bits of long integer, by 32-bit words, from least significant |
| to most significant. */ |
| #if PY_LITTLE_ENDIAN |
| for (i = 0; i < words; i++, k -= 32) |
| #else |
| for (i = words - 1; i >= 0; i--, k -= 32) |
| #endif |
| { |
| r = genrand_int32(self); |
| if (k < 32) |
| r >>= (32 - k); /* Drop least significant bits */ |
| wordarray[i] = r; |
| } |
| |
| result = _PyLong_FromByteArray((unsigned char *)wordarray, words * 4, |
| PY_LITTLE_ENDIAN, 0 /* unsigned */); |
| PyMem_Free(wordarray); |
| return result; |
| } |
| |
| static PyObject * |
| random_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| RandomObject *self; |
| PyObject *tmp; |
| |
| if (type == &Random_Type && !_PyArg_NoKeywords("Random", kwds)) |
| return NULL; |
| |
| self = (RandomObject *)type->tp_alloc(type, 0); |
| if (self == NULL) |
| return NULL; |
| tmp = random_seed(self, args); |
| if (tmp == NULL) { |
| Py_DECREF(self); |
| return NULL; |
| } |
| Py_DECREF(tmp); |
| return (PyObject *)self; |
| } |
| |
| static PyMethodDef random_methods[] = { |
| _RANDOM_RANDOM_RANDOM_METHODDEF |
| _RANDOM_RANDOM_SEED_METHODDEF |
| _RANDOM_RANDOM_GETSTATE_METHODDEF |
| _RANDOM_RANDOM_SETSTATE_METHODDEF |
| _RANDOM_RANDOM_GETRANDBITS_METHODDEF |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyDoc_STRVAR(random_doc, |
| "Random() -> create a random number generator with its own internal state."); |
| |
| static PyTypeObject Random_Type = { |
| PyVarObject_HEAD_INIT(NULL, 0) |
| "_random.Random", /*tp_name*/ |
| sizeof(RandomObject), /*tp_basicsize*/ |
| 0, /*tp_itemsize*/ |
| /* methods */ |
| 0, /*tp_dealloc*/ |
| 0, /*tp_vectorcall_offset*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_as_async*/ |
| 0, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| 0, /*tp_hash*/ |
| 0, /*tp_call*/ |
| 0, /*tp_str*/ |
| PyObject_GenericGetAttr, /*tp_getattro*/ |
| 0, /*tp_setattro*/ |
| 0, /*tp_as_buffer*/ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ |
| random_doc, /*tp_doc*/ |
| 0, /*tp_traverse*/ |
| 0, /*tp_clear*/ |
| 0, /*tp_richcompare*/ |
| 0, /*tp_weaklistoffset*/ |
| 0, /*tp_iter*/ |
| 0, /*tp_iternext*/ |
| random_methods, /*tp_methods*/ |
| 0, /*tp_members*/ |
| 0, /*tp_getset*/ |
| 0, /*tp_base*/ |
| 0, /*tp_dict*/ |
| 0, /*tp_descr_get*/ |
| 0, /*tp_descr_set*/ |
| 0, /*tp_dictoffset*/ |
| 0, /*tp_init*/ |
| 0, /*tp_alloc*/ |
| random_new, /*tp_new*/ |
| PyObject_Free, /*tp_free*/ |
| 0, /*tp_is_gc*/ |
| }; |
| |
| PyDoc_STRVAR(module_doc, |
| "Module implements the Mersenne Twister random number generator."); |
| |
| |
| static struct PyModuleDef _randommodule = { |
| PyModuleDef_HEAD_INIT, |
| "_random", |
| module_doc, |
| -1, |
| NULL, |
| NULL, |
| NULL, |
| NULL, |
| NULL |
| }; |
| |
| PyMODINIT_FUNC |
| PyInit__random(void) |
| { |
| PyObject *m; |
| |
| if (PyType_Ready(&Random_Type) < 0) |
| return NULL; |
| m = PyModule_Create(&_randommodule); |
| if (m == NULL) |
| return NULL; |
| Py_INCREF(&Random_Type); |
| PyModule_AddObject(m, "Random", (PyObject *)&Random_Type); |
| return m; |
| } |