| |
| /* Complex object implementation */ |
| |
| /* Borrows heavily from floatobject.c */ |
| |
| /* Submitted by Jim Hugunin */ |
| |
| #include "Python.h" |
| #include "pycore_long.h" // _PyLong_GetZero() |
| #include "pycore_object.h" // _PyObject_Init() |
| #include "structmember.h" // PyMemberDef |
| |
| |
| /*[clinic input] |
| class complex "PyComplexObject *" "&PyComplex_Type" |
| [clinic start generated code]*/ |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=819e057d2d10f5ec]*/ |
| |
| #include "clinic/complexobject.c.h" |
| |
| /* elementary operations on complex numbers */ |
| |
| static Py_complex c_1 = {1., 0.}; |
| |
| Py_complex |
| _Py_c_sum(Py_complex a, Py_complex b) |
| { |
| Py_complex r; |
| r.real = a.real + b.real; |
| r.imag = a.imag + b.imag; |
| return r; |
| } |
| |
| Py_complex |
| _Py_c_diff(Py_complex a, Py_complex b) |
| { |
| Py_complex r; |
| r.real = a.real - b.real; |
| r.imag = a.imag - b.imag; |
| return r; |
| } |
| |
| Py_complex |
| _Py_c_neg(Py_complex a) |
| { |
| Py_complex r; |
| r.real = -a.real; |
| r.imag = -a.imag; |
| return r; |
| } |
| |
| Py_complex |
| _Py_c_prod(Py_complex a, Py_complex b) |
| { |
| Py_complex r; |
| r.real = a.real*b.real - a.imag*b.imag; |
| r.imag = a.real*b.imag + a.imag*b.real; |
| return r; |
| } |
| |
| /* Avoid bad optimization on Windows ARM64 until the compiler is fixed */ |
| #ifdef _M_ARM64 |
| #pragma optimize("", off) |
| #endif |
| Py_complex |
| _Py_c_quot(Py_complex a, Py_complex b) |
| { |
| /****************************************************************** |
| This was the original algorithm. It's grossly prone to spurious |
| overflow and underflow errors. It also merrily divides by 0 despite |
| checking for that(!). The code still serves a doc purpose here, as |
| the algorithm following is a simple by-cases transformation of this |
| one: |
| |
| Py_complex r; |
| double d = b.real*b.real + b.imag*b.imag; |
| if (d == 0.) |
| errno = EDOM; |
| r.real = (a.real*b.real + a.imag*b.imag)/d; |
| r.imag = (a.imag*b.real - a.real*b.imag)/d; |
| return r; |
| ******************************************************************/ |
| |
| /* This algorithm is better, and is pretty obvious: first divide the |
| * numerators and denominator by whichever of {b.real, b.imag} has |
| * larger magnitude. The earliest reference I found was to CACM |
| * Algorithm 116 (Complex Division, Robert L. Smith, Stanford |
| * University). As usual, though, we're still ignoring all IEEE |
| * endcases. |
| */ |
| Py_complex r; /* the result */ |
| const double abs_breal = b.real < 0 ? -b.real : b.real; |
| const double abs_bimag = b.imag < 0 ? -b.imag : b.imag; |
| |
| if (abs_breal >= abs_bimag) { |
| /* divide tops and bottom by b.real */ |
| if (abs_breal == 0.0) { |
| errno = EDOM; |
| r.real = r.imag = 0.0; |
| } |
| else { |
| const double ratio = b.imag / b.real; |
| const double denom = b.real + b.imag * ratio; |
| r.real = (a.real + a.imag * ratio) / denom; |
| r.imag = (a.imag - a.real * ratio) / denom; |
| } |
| } |
| else if (abs_bimag >= abs_breal) { |
| /* divide tops and bottom by b.imag */ |
| const double ratio = b.real / b.imag; |
| const double denom = b.real * ratio + b.imag; |
| assert(b.imag != 0.0); |
| r.real = (a.real * ratio + a.imag) / denom; |
| r.imag = (a.imag * ratio - a.real) / denom; |
| } |
| else { |
| /* At least one of b.real or b.imag is a NaN */ |
| r.real = r.imag = Py_NAN; |
| } |
| return r; |
| } |
| #ifdef _M_ARM64 |
| #pragma optimize("", on) |
| #endif |
| |
| Py_complex |
| _Py_c_pow(Py_complex a, Py_complex b) |
| { |
| Py_complex r; |
| double vabs,len,at,phase; |
| if (b.real == 0. && b.imag == 0.) { |
| r.real = 1.; |
| r.imag = 0.; |
| } |
| else if (a.real == 0. && a.imag == 0.) { |
| if (b.imag != 0. || b.real < 0.) |
| errno = EDOM; |
| r.real = 0.; |
| r.imag = 0.; |
| } |
| else { |
| vabs = hypot(a.real,a.imag); |
| len = pow(vabs,b.real); |
| at = atan2(a.imag, a.real); |
| phase = at*b.real; |
| if (b.imag != 0.0) { |
| len /= exp(at*b.imag); |
| phase += b.imag*log(vabs); |
| } |
| r.real = len*cos(phase); |
| r.imag = len*sin(phase); |
| } |
| return r; |
| } |
| |
| static Py_complex |
| c_powu(Py_complex x, long n) |
| { |
| Py_complex r, p; |
| long mask = 1; |
| r = c_1; |
| p = x; |
| while (mask > 0 && n >= mask) { |
| if (n & mask) |
| r = _Py_c_prod(r,p); |
| mask <<= 1; |
| p = _Py_c_prod(p,p); |
| } |
| return r; |
| } |
| |
| static Py_complex |
| c_powi(Py_complex x, long n) |
| { |
| Py_complex cn; |
| |
| if (n > 100 || n < -100) { |
| cn.real = (double) n; |
| cn.imag = 0.; |
| return _Py_c_pow(x,cn); |
| } |
| else if (n > 0) |
| return c_powu(x,n); |
| else |
| return _Py_c_quot(c_1, c_powu(x,-n)); |
| |
| } |
| |
| double |
| _Py_c_abs(Py_complex z) |
| { |
| /* sets errno = ERANGE on overflow; otherwise errno = 0 */ |
| double result; |
| |
| if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { |
| /* C99 rules: if either the real or the imaginary part is an |
| infinity, return infinity, even if the other part is a |
| NaN. */ |
| if (Py_IS_INFINITY(z.real)) { |
| result = fabs(z.real); |
| errno = 0; |
| return result; |
| } |
| if (Py_IS_INFINITY(z.imag)) { |
| result = fabs(z.imag); |
| errno = 0; |
| return result; |
| } |
| /* either the real or imaginary part is a NaN, |
| and neither is infinite. Result should be NaN. */ |
| return Py_NAN; |
| } |
| result = hypot(z.real, z.imag); |
| if (!Py_IS_FINITE(result)) |
| errno = ERANGE; |
| else |
| errno = 0; |
| return result; |
| } |
| |
| static PyObject * |
| complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval) |
| { |
| PyObject *op; |
| |
| op = type->tp_alloc(type, 0); |
| if (op != NULL) |
| ((PyComplexObject *)op)->cval = cval; |
| return op; |
| } |
| |
| PyObject * |
| PyComplex_FromCComplex(Py_complex cval) |
| { |
| /* Inline PyObject_New */ |
| PyComplexObject *op = PyObject_MALLOC(sizeof(PyComplexObject)); |
| if (op == NULL) { |
| return PyErr_NoMemory(); |
| } |
| _PyObject_Init((PyObject*)op, &PyComplex_Type); |
| op->cval = cval; |
| return (PyObject *) op; |
| } |
| |
| static PyObject * |
| complex_subtype_from_doubles(PyTypeObject *type, double real, double imag) |
| { |
| Py_complex c; |
| c.real = real; |
| c.imag = imag; |
| return complex_subtype_from_c_complex(type, c); |
| } |
| |
| PyObject * |
| PyComplex_FromDoubles(double real, double imag) |
| { |
| Py_complex c; |
| c.real = real; |
| c.imag = imag; |
| return PyComplex_FromCComplex(c); |
| } |
| |
| double |
| PyComplex_RealAsDouble(PyObject *op) |
| { |
| if (PyComplex_Check(op)) { |
| return ((PyComplexObject *)op)->cval.real; |
| } |
| else { |
| return PyFloat_AsDouble(op); |
| } |
| } |
| |
| double |
| PyComplex_ImagAsDouble(PyObject *op) |
| { |
| if (PyComplex_Check(op)) { |
| return ((PyComplexObject *)op)->cval.imag; |
| } |
| else { |
| return 0.0; |
| } |
| } |
| |
| static PyObject * |
| try_complex_special_method(PyObject *op) |
| { |
| PyObject *f; |
| _Py_IDENTIFIER(__complex__); |
| |
| f = _PyObject_LookupSpecial(op, &PyId___complex__); |
| if (f) { |
| PyObject *res = _PyObject_CallNoArg(f); |
| Py_DECREF(f); |
| if (!res || PyComplex_CheckExact(res)) { |
| return res; |
| } |
| if (!PyComplex_Check(res)) { |
| PyErr_Format(PyExc_TypeError, |
| "__complex__ returned non-complex (type %.200s)", |
| Py_TYPE(res)->tp_name); |
| Py_DECREF(res); |
| return NULL; |
| } |
| /* Issue #29894: warn if 'res' not of exact type complex. */ |
| if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, |
| "__complex__ returned non-complex (type %.200s). " |
| "The ability to return an instance of a strict subclass of complex " |
| "is deprecated, and may be removed in a future version of Python.", |
| Py_TYPE(res)->tp_name)) { |
| Py_DECREF(res); |
| return NULL; |
| } |
| return res; |
| } |
| return NULL; |
| } |
| |
| Py_complex |
| PyComplex_AsCComplex(PyObject *op) |
| { |
| Py_complex cv; |
| PyObject *newop = NULL; |
| |
| assert(op); |
| /* If op is already of type PyComplex_Type, return its value */ |
| if (PyComplex_Check(op)) { |
| return ((PyComplexObject *)op)->cval; |
| } |
| /* If not, use op's __complex__ method, if it exists */ |
| |
| /* return -1 on failure */ |
| cv.real = -1.; |
| cv.imag = 0.; |
| |
| newop = try_complex_special_method(op); |
| |
| if (newop) { |
| cv = ((PyComplexObject *)newop)->cval; |
| Py_DECREF(newop); |
| return cv; |
| } |
| else if (PyErr_Occurred()) { |
| return cv; |
| } |
| /* If neither of the above works, interpret op as a float giving the |
| real part of the result, and fill in the imaginary part as 0. */ |
| else { |
| /* PyFloat_AsDouble will return -1 on failure */ |
| cv.real = PyFloat_AsDouble(op); |
| return cv; |
| } |
| } |
| |
| static PyObject * |
| complex_repr(PyComplexObject *v) |
| { |
| int precision = 0; |
| char format_code = 'r'; |
| PyObject *result = NULL; |
| |
| /* If these are non-NULL, they'll need to be freed. */ |
| char *pre = NULL; |
| char *im = NULL; |
| |
| /* These do not need to be freed. re is either an alias |
| for pre or a pointer to a constant. lead and tail |
| are pointers to constants. */ |
| const char *re = NULL; |
| const char *lead = ""; |
| const char *tail = ""; |
| |
| if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) { |
| /* Real part is +0: just output the imaginary part and do not |
| include parens. */ |
| re = ""; |
| im = PyOS_double_to_string(v->cval.imag, format_code, |
| precision, 0, NULL); |
| if (!im) { |
| PyErr_NoMemory(); |
| goto done; |
| } |
| } else { |
| /* Format imaginary part with sign, real part without. Include |
| parens in the result. */ |
| pre = PyOS_double_to_string(v->cval.real, format_code, |
| precision, 0, NULL); |
| if (!pre) { |
| PyErr_NoMemory(); |
| goto done; |
| } |
| re = pre; |
| |
| im = PyOS_double_to_string(v->cval.imag, format_code, |
| precision, Py_DTSF_SIGN, NULL); |
| if (!im) { |
| PyErr_NoMemory(); |
| goto done; |
| } |
| lead = "("; |
| tail = ")"; |
| } |
| result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail); |
| done: |
| PyMem_Free(im); |
| PyMem_Free(pre); |
| |
| return result; |
| } |
| |
| static Py_hash_t |
| complex_hash(PyComplexObject *v) |
| { |
| Py_uhash_t hashreal, hashimag, combined; |
| hashreal = (Py_uhash_t)_Py_HashDouble(v->cval.real); |
| if (hashreal == (Py_uhash_t)-1) |
| return -1; |
| hashimag = (Py_uhash_t)_Py_HashDouble(v->cval.imag); |
| if (hashimag == (Py_uhash_t)-1) |
| return -1; |
| /* Note: if the imaginary part is 0, hashimag is 0 now, |
| * so the following returns hashreal unchanged. This is |
| * important because numbers of different types that |
| * compare equal must have the same hash value, so that |
| * hash(x + 0*j) must equal hash(x). |
| */ |
| combined = hashreal + _PyHASH_IMAG * hashimag; |
| if (combined == (Py_uhash_t)-1) |
| combined = (Py_uhash_t)-2; |
| return (Py_hash_t)combined; |
| } |
| |
| /* This macro may return! */ |
| #define TO_COMPLEX(obj, c) \ |
| if (PyComplex_Check(obj)) \ |
| c = ((PyComplexObject *)(obj))->cval; \ |
| else if (to_complex(&(obj), &(c)) < 0) \ |
| return (obj) |
| |
| static int |
| to_complex(PyObject **pobj, Py_complex *pc) |
| { |
| PyObject *obj = *pobj; |
| |
| pc->real = pc->imag = 0.0; |
| if (PyLong_Check(obj)) { |
| pc->real = PyLong_AsDouble(obj); |
| if (pc->real == -1.0 && PyErr_Occurred()) { |
| *pobj = NULL; |
| return -1; |
| } |
| return 0; |
| } |
| if (PyFloat_Check(obj)) { |
| pc->real = PyFloat_AsDouble(obj); |
| return 0; |
| } |
| Py_INCREF(Py_NotImplemented); |
| *pobj = Py_NotImplemented; |
| return -1; |
| } |
| |
| |
| static PyObject * |
| complex_add(PyObject *v, PyObject *w) |
| { |
| Py_complex result; |
| Py_complex a, b; |
| TO_COMPLEX(v, a); |
| TO_COMPLEX(w, b); |
| result = _Py_c_sum(a, b); |
| return PyComplex_FromCComplex(result); |
| } |
| |
| static PyObject * |
| complex_sub(PyObject *v, PyObject *w) |
| { |
| Py_complex result; |
| Py_complex a, b; |
| TO_COMPLEX(v, a); |
| TO_COMPLEX(w, b); |
| result = _Py_c_diff(a, b); |
| return PyComplex_FromCComplex(result); |
| } |
| |
| static PyObject * |
| complex_mul(PyObject *v, PyObject *w) |
| { |
| Py_complex result; |
| Py_complex a, b; |
| TO_COMPLEX(v, a); |
| TO_COMPLEX(w, b); |
| result = _Py_c_prod(a, b); |
| return PyComplex_FromCComplex(result); |
| } |
| |
| static PyObject * |
| complex_div(PyObject *v, PyObject *w) |
| { |
| Py_complex quot; |
| Py_complex a, b; |
| TO_COMPLEX(v, a); |
| TO_COMPLEX(w, b); |
| errno = 0; |
| quot = _Py_c_quot(a, b); |
| if (errno == EDOM) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero"); |
| return NULL; |
| } |
| return PyComplex_FromCComplex(quot); |
| } |
| |
| static PyObject * |
| complex_pow(PyObject *v, PyObject *w, PyObject *z) |
| { |
| Py_complex p; |
| Py_complex exponent; |
| long int_exponent; |
| Py_complex a, b; |
| TO_COMPLEX(v, a); |
| TO_COMPLEX(w, b); |
| |
| if (z != Py_None) { |
| PyErr_SetString(PyExc_ValueError, "complex modulo"); |
| return NULL; |
| } |
| errno = 0; |
| exponent = b; |
| int_exponent = (long)exponent.real; |
| if (exponent.imag == 0. && exponent.real == int_exponent) |
| p = c_powi(a, int_exponent); |
| else |
| p = _Py_c_pow(a, exponent); |
| |
| Py_ADJUST_ERANGE2(p.real, p.imag); |
| if (errno == EDOM) { |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "0.0 to a negative or complex power"); |
| return NULL; |
| } |
| else if (errno == ERANGE) { |
| PyErr_SetString(PyExc_OverflowError, |
| "complex exponentiation"); |
| return NULL; |
| } |
| return PyComplex_FromCComplex(p); |
| } |
| |
| static PyObject * |
| complex_neg(PyComplexObject *v) |
| { |
| Py_complex neg; |
| neg.real = -v->cval.real; |
| neg.imag = -v->cval.imag; |
| return PyComplex_FromCComplex(neg); |
| } |
| |
| static PyObject * |
| complex_pos(PyComplexObject *v) |
| { |
| if (PyComplex_CheckExact(v)) { |
| Py_INCREF(v); |
| return (PyObject *)v; |
| } |
| else |
| return PyComplex_FromCComplex(v->cval); |
| } |
| |
| static PyObject * |
| complex_abs(PyComplexObject *v) |
| { |
| double result; |
| |
| result = _Py_c_abs(v->cval); |
| |
| if (errno == ERANGE) { |
| PyErr_SetString(PyExc_OverflowError, |
| "absolute value too large"); |
| return NULL; |
| } |
| return PyFloat_FromDouble(result); |
| } |
| |
| static int |
| complex_bool(PyComplexObject *v) |
| { |
| return v->cval.real != 0.0 || v->cval.imag != 0.0; |
| } |
| |
| static PyObject * |
| complex_richcompare(PyObject *v, PyObject *w, int op) |
| { |
| PyObject *res; |
| Py_complex i; |
| int equal; |
| |
| if (op != Py_EQ && op != Py_NE) { |
| goto Unimplemented; |
| } |
| |
| assert(PyComplex_Check(v)); |
| TO_COMPLEX(v, i); |
| |
| if (PyLong_Check(w)) { |
| /* Check for 0.0 imaginary part first to avoid the rich |
| * comparison when possible. |
| */ |
| if (i.imag == 0.0) { |
| PyObject *j, *sub_res; |
| j = PyFloat_FromDouble(i.real); |
| if (j == NULL) |
| return NULL; |
| |
| sub_res = PyObject_RichCompare(j, w, op); |
| Py_DECREF(j); |
| return sub_res; |
| } |
| else { |
| equal = 0; |
| } |
| } |
| else if (PyFloat_Check(w)) { |
| equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0); |
| } |
| else if (PyComplex_Check(w)) { |
| Py_complex j; |
| |
| TO_COMPLEX(w, j); |
| equal = (i.real == j.real && i.imag == j.imag); |
| } |
| else { |
| goto Unimplemented; |
| } |
| |
| if (equal == (op == Py_EQ)) |
| res = Py_True; |
| else |
| res = Py_False; |
| |
| Py_INCREF(res); |
| return res; |
| |
| Unimplemented: |
| Py_RETURN_NOTIMPLEMENTED; |
| } |
| |
| /*[clinic input] |
| complex.conjugate |
| |
| Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| complex_conjugate_impl(PyComplexObject *self) |
| /*[clinic end generated code: output=5059ef162edfc68e input=5fea33e9747ec2c4]*/ |
| { |
| Py_complex c = self->cval; |
| c.imag = -c.imag; |
| return PyComplex_FromCComplex(c); |
| } |
| |
| /*[clinic input] |
| complex.__getnewargs__ |
| |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| complex___getnewargs___impl(PyComplexObject *self) |
| /*[clinic end generated code: output=689b8206e8728934 input=539543e0a50533d7]*/ |
| { |
| Py_complex c = self->cval; |
| return Py_BuildValue("(dd)", c.real, c.imag); |
| } |
| |
| |
| /*[clinic input] |
| complex.__format__ |
| |
| format_spec: unicode |
| / |
| |
| Convert to a string according to format_spec. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| complex___format___impl(PyComplexObject *self, PyObject *format_spec) |
| /*[clinic end generated code: output=bfcb60df24cafea0 input=014ef5488acbe1d5]*/ |
| { |
| _PyUnicodeWriter writer; |
| int ret; |
| _PyUnicodeWriter_Init(&writer); |
| ret = _PyComplex_FormatAdvancedWriter( |
| &writer, |
| (PyObject *)self, |
| format_spec, 0, PyUnicode_GET_LENGTH(format_spec)); |
| if (ret == -1) { |
| _PyUnicodeWriter_Dealloc(&writer); |
| return NULL; |
| } |
| return _PyUnicodeWriter_Finish(&writer); |
| } |
| |
| static PyMethodDef complex_methods[] = { |
| COMPLEX_CONJUGATE_METHODDEF |
| COMPLEX___GETNEWARGS___METHODDEF |
| COMPLEX___FORMAT___METHODDEF |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyMemberDef complex_members[] = { |
| {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, |
| "the real part of a complex number"}, |
| {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, |
| "the imaginary part of a complex number"}, |
| {0}, |
| }; |
| |
| static PyObject * |
| complex_from_string_inner(const char *s, Py_ssize_t len, void *type) |
| { |
| double x=0.0, y=0.0, z; |
| int got_bracket=0; |
| const char *start; |
| char *end; |
| |
| /* position on first nonblank */ |
| start = s; |
| while (Py_ISSPACE(*s)) |
| s++; |
| if (*s == '(') { |
| /* Skip over possible bracket from repr(). */ |
| got_bracket = 1; |
| s++; |
| while (Py_ISSPACE(*s)) |
| s++; |
| } |
| |
| /* a valid complex string usually takes one of the three forms: |
| |
| <float> - real part only |
| <float>j - imaginary part only |
| <float><signed-float>j - real and imaginary parts |
| |
| where <float> represents any numeric string that's accepted by the |
| float constructor (including 'nan', 'inf', 'infinity', etc.), and |
| <signed-float> is any string of the form <float> whose first |
| character is '+' or '-'. |
| |
| For backwards compatibility, the extra forms |
| |
| <float><sign>j |
| <sign>j |
| j |
| |
| are also accepted, though support for these forms may be removed from |
| a future version of Python. |
| */ |
| |
| /* first look for forms starting with <float> */ |
| z = PyOS_string_to_double(s, &end, NULL); |
| if (z == -1.0 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_ValueError)) |
| PyErr_Clear(); |
| else |
| return NULL; |
| } |
| if (end != s) { |
| /* all 4 forms starting with <float> land here */ |
| s = end; |
| if (*s == '+' || *s == '-') { |
| /* <float><signed-float>j | <float><sign>j */ |
| x = z; |
| y = PyOS_string_to_double(s, &end, NULL); |
| if (y == -1.0 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_ValueError)) |
| PyErr_Clear(); |
| else |
| return NULL; |
| } |
| if (end != s) |
| /* <float><signed-float>j */ |
| s = end; |
| else { |
| /* <float><sign>j */ |
| y = *s == '+' ? 1.0 : -1.0; |
| s++; |
| } |
| if (!(*s == 'j' || *s == 'J')) |
| goto parse_error; |
| s++; |
| } |
| else if (*s == 'j' || *s == 'J') { |
| /* <float>j */ |
| s++; |
| y = z; |
| } |
| else |
| /* <float> */ |
| x = z; |
| } |
| else { |
| /* not starting with <float>; must be <sign>j or j */ |
| if (*s == '+' || *s == '-') { |
| /* <sign>j */ |
| y = *s == '+' ? 1.0 : -1.0; |
| s++; |
| } |
| else |
| /* j */ |
| y = 1.0; |
| if (!(*s == 'j' || *s == 'J')) |
| goto parse_error; |
| s++; |
| } |
| |
| /* trailing whitespace and closing bracket */ |
| while (Py_ISSPACE(*s)) |
| s++; |
| if (got_bracket) { |
| /* if there was an opening parenthesis, then the corresponding |
| closing parenthesis should be right here */ |
| if (*s != ')') |
| goto parse_error; |
| s++; |
| while (Py_ISSPACE(*s)) |
| s++; |
| } |
| |
| /* we should now be at the end of the string */ |
| if (s-start != len) |
| goto parse_error; |
| |
| return complex_subtype_from_doubles((PyTypeObject *)type, x, y); |
| |
| parse_error: |
| PyErr_SetString(PyExc_ValueError, |
| "complex() arg is a malformed string"); |
| return NULL; |
| } |
| |
| static PyObject * |
| complex_subtype_from_string(PyTypeObject *type, PyObject *v) |
| { |
| const char *s; |
| PyObject *s_buffer = NULL, *result = NULL; |
| Py_ssize_t len; |
| |
| if (PyUnicode_Check(v)) { |
| s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v); |
| if (s_buffer == NULL) { |
| return NULL; |
| } |
| assert(PyUnicode_IS_ASCII(s_buffer)); |
| /* Simply get a pointer to existing ASCII characters. */ |
| s = PyUnicode_AsUTF8AndSize(s_buffer, &len); |
| assert(s != NULL); |
| } |
| else { |
| PyErr_Format(PyExc_TypeError, |
| "complex() argument must be a string or a number, not '%.200s'", |
| Py_TYPE(v)->tp_name); |
| return NULL; |
| } |
| |
| result = _Py_string_to_number_with_underscores(s, len, "complex", v, type, |
| complex_from_string_inner); |
| Py_DECREF(s_buffer); |
| return result; |
| } |
| |
| /*[clinic input] |
| @classmethod |
| complex.__new__ as complex_new |
| real as r: object(c_default="NULL") = 0 |
| imag as i: object(c_default="NULL") = 0 |
| |
| Create a complex number from a real part and an optional imaginary part. |
| |
| This is equivalent to (real + imag*1j) where imag defaults to 0. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i) |
| /*[clinic end generated code: output=b6c7dd577b537dc1 input=f4c667f2596d4fd1]*/ |
| { |
| PyObject *tmp; |
| PyNumberMethods *nbr, *nbi = NULL; |
| Py_complex cr, ci; |
| int own_r = 0; |
| int cr_is_complex = 0; |
| int ci_is_complex = 0; |
| |
| if (r == NULL) { |
| r = _PyLong_GetZero(); |
| } |
| |
| /* Special-case for a single argument when type(arg) is complex. */ |
| if (PyComplex_CheckExact(r) && i == NULL && |
| type == &PyComplex_Type) { |
| /* Note that we can't know whether it's safe to return |
| a complex *subclass* instance as-is, hence the restriction |
| to exact complexes here. If either the input or the |
| output is a complex subclass, it will be handled below |
| as a non-orthogonal vector. */ |
| Py_INCREF(r); |
| return r; |
| } |
| if (PyUnicode_Check(r)) { |
| if (i != NULL) { |
| PyErr_SetString(PyExc_TypeError, |
| "complex() can't take second arg" |
| " if first is a string"); |
| return NULL; |
| } |
| return complex_subtype_from_string(type, r); |
| } |
| if (i != NULL && PyUnicode_Check(i)) { |
| PyErr_SetString(PyExc_TypeError, |
| "complex() second arg can't be a string"); |
| return NULL; |
| } |
| |
| tmp = try_complex_special_method(r); |
| if (tmp) { |
| r = tmp; |
| own_r = 1; |
| } |
| else if (PyErr_Occurred()) { |
| return NULL; |
| } |
| |
| nbr = Py_TYPE(r)->tp_as_number; |
| if (nbr == NULL || |
| (nbr->nb_float == NULL && nbr->nb_index == NULL && !PyComplex_Check(r))) |
| { |
| PyErr_Format(PyExc_TypeError, |
| "complex() first argument must be a string or a number, " |
| "not '%.200s'", |
| Py_TYPE(r)->tp_name); |
| if (own_r) { |
| Py_DECREF(r); |
| } |
| return NULL; |
| } |
| if (i != NULL) { |
| nbi = Py_TYPE(i)->tp_as_number; |
| if (nbi == NULL || |
| (nbi->nb_float == NULL && nbi->nb_index == NULL && !PyComplex_Check(i))) |
| { |
| PyErr_Format(PyExc_TypeError, |
| "complex() second argument must be a number, " |
| "not '%.200s'", |
| Py_TYPE(i)->tp_name); |
| if (own_r) { |
| Py_DECREF(r); |
| } |
| return NULL; |
| } |
| } |
| |
| /* If we get this far, then the "real" and "imag" parts should |
| both be treated as numbers, and the constructor should return a |
| complex number equal to (real + imag*1j). |
| |
| Note that we do NOT assume the input to already be in canonical |
| form; the "real" and "imag" parts might themselves be complex |
| numbers, which slightly complicates the code below. */ |
| if (PyComplex_Check(r)) { |
| /* Note that if r is of a complex subtype, we're only |
| retaining its real & imag parts here, and the return |
| value is (properly) of the builtin complex type. */ |
| cr = ((PyComplexObject*)r)->cval; |
| cr_is_complex = 1; |
| if (own_r) { |
| Py_DECREF(r); |
| } |
| } |
| else { |
| /* The "real" part really is entirely real, and contributes |
| nothing in the imaginary direction. |
| Just treat it as a double. */ |
| tmp = PyNumber_Float(r); |
| if (own_r) { |
| /* r was a newly created complex number, rather |
| than the original "real" argument. */ |
| Py_DECREF(r); |
| } |
| if (tmp == NULL) |
| return NULL; |
| assert(PyFloat_Check(tmp)); |
| cr.real = PyFloat_AsDouble(tmp); |
| cr.imag = 0.0; |
| Py_DECREF(tmp); |
| } |
| if (i == NULL) { |
| ci.real = cr.imag; |
| } |
| else if (PyComplex_Check(i)) { |
| ci = ((PyComplexObject*)i)->cval; |
| ci_is_complex = 1; |
| } else { |
| /* The "imag" part really is entirely imaginary, and |
| contributes nothing in the real direction. |
| Just treat it as a double. */ |
| tmp = PyNumber_Float(i); |
| if (tmp == NULL) |
| return NULL; |
| ci.real = PyFloat_AsDouble(tmp); |
| Py_DECREF(tmp); |
| } |
| /* If the input was in canonical form, then the "real" and "imag" |
| parts are real numbers, so that ci.imag and cr.imag are zero. |
| We need this correction in case they were not real numbers. */ |
| |
| if (ci_is_complex) { |
| cr.real -= ci.imag; |
| } |
| if (cr_is_complex && i != NULL) { |
| ci.real += cr.imag; |
| } |
| return complex_subtype_from_doubles(type, cr.real, ci.real); |
| } |
| |
| static PyNumberMethods complex_as_number = { |
| (binaryfunc)complex_add, /* nb_add */ |
| (binaryfunc)complex_sub, /* nb_subtract */ |
| (binaryfunc)complex_mul, /* nb_multiply */ |
| 0, /* nb_remainder */ |
| 0, /* nb_divmod */ |
| (ternaryfunc)complex_pow, /* nb_power */ |
| (unaryfunc)complex_neg, /* nb_negative */ |
| (unaryfunc)complex_pos, /* nb_positive */ |
| (unaryfunc)complex_abs, /* nb_absolute */ |
| (inquiry)complex_bool, /* nb_bool */ |
| 0, /* nb_invert */ |
| 0, /* nb_lshift */ |
| 0, /* nb_rshift */ |
| 0, /* nb_and */ |
| 0, /* nb_xor */ |
| 0, /* nb_or */ |
| 0, /* nb_int */ |
| 0, /* nb_reserved */ |
| 0, /* nb_float */ |
| 0, /* nb_inplace_add */ |
| 0, /* nb_inplace_subtract */ |
| 0, /* nb_inplace_multiply*/ |
| 0, /* nb_inplace_remainder */ |
| 0, /* nb_inplace_power */ |
| 0, /* nb_inplace_lshift */ |
| 0, /* nb_inplace_rshift */ |
| 0, /* nb_inplace_and */ |
| 0, /* nb_inplace_xor */ |
| 0, /* nb_inplace_or */ |
| 0, /* nb_floor_divide */ |
| (binaryfunc)complex_div, /* nb_true_divide */ |
| 0, /* nb_inplace_floor_divide */ |
| 0, /* nb_inplace_true_divide */ |
| }; |
| |
| PyTypeObject PyComplex_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "complex", |
| sizeof(PyComplexObject), |
| 0, |
| 0, /* tp_dealloc */ |
| 0, /* tp_vectorcall_offset */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_as_async */ |
| (reprfunc)complex_repr, /* tp_repr */ |
| &complex_as_number, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)complex_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| complex_new__doc__, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| complex_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| complex_methods, /* tp_methods */ |
| complex_members, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| PyType_GenericAlloc, /* tp_alloc */ |
| complex_new, /* tp_new */ |
| PyObject_Del, /* tp_free */ |
| }; |