| |
| /* Tuple object implementation */ |
| |
| #include "Python.h" |
| #include "pycore_abstract.h" // _PyIndex_Check() |
| #include "pycore_accu.h" |
| #include "pycore_gc.h" // _PyObject_GC_IS_TRACKED() |
| #include "pycore_object.h" |
| |
| /*[clinic input] |
| class tuple "PyTupleObject *" "&PyTuple_Type" |
| [clinic start generated code]*/ |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=f051ba3cfdf9a189]*/ |
| |
| #include "clinic/tupleobject.c.h" |
| |
| /* Speed optimization to avoid frequent malloc/free of small tuples */ |
| #ifndef PyTuple_MAXSAVESIZE |
| #define PyTuple_MAXSAVESIZE 20 /* Largest tuple to save on free list */ |
| #endif |
| #ifndef PyTuple_MAXFREELIST |
| #define PyTuple_MAXFREELIST 2000 /* Maximum number of tuples of each size to save */ |
| #endif |
| |
| /* bpo-40521: tuple free lists are shared by all interpreters. */ |
| #ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS |
| # undef PyTuple_MAXSAVESIZE |
| # define PyTuple_MAXSAVESIZE 0 |
| #endif |
| |
| #if PyTuple_MAXSAVESIZE > 0 |
| /* Entries 1 up to PyTuple_MAXSAVESIZE are free lists, entry 0 is the empty |
| tuple () of which at most one instance will be allocated. |
| */ |
| static PyTupleObject *free_list[PyTuple_MAXSAVESIZE]; |
| static int numfree[PyTuple_MAXSAVESIZE]; |
| #endif |
| |
| static inline void |
| tuple_gc_track(PyTupleObject *op) |
| { |
| _PyObject_GC_TRACK(op); |
| } |
| |
| /* Print summary info about the state of the optimized allocator */ |
| void |
| _PyTuple_DebugMallocStats(FILE *out) |
| { |
| #if PyTuple_MAXSAVESIZE > 0 |
| int i; |
| char buf[128]; |
| for (i = 1; i < PyTuple_MAXSAVESIZE; i++) { |
| PyOS_snprintf(buf, sizeof(buf), |
| "free %d-sized PyTupleObject", i); |
| _PyDebugAllocatorStats(out, |
| buf, |
| numfree[i], _PyObject_VAR_SIZE(&PyTuple_Type, i)); |
| } |
| #endif |
| } |
| |
| /* Allocate an uninitialized tuple object. Before making it public following |
| steps must be done: |
| - initialize its items |
| - call tuple_gc_track() on it |
| Because the empty tuple is always reused and it's already tracked by GC, |
| this function must not be called with size == 0 (unless from PyTuple_New() |
| which wraps this function). |
| */ |
| static PyTupleObject * |
| tuple_alloc(Py_ssize_t size) |
| { |
| PyTupleObject *op; |
| if (size < 0) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| #if PyTuple_MAXSAVESIZE > 0 |
| if (size < PyTuple_MAXSAVESIZE && (op = free_list[size]) != NULL) { |
| assert(size != 0); |
| free_list[size] = (PyTupleObject *) op->ob_item[0]; |
| numfree[size]--; |
| /* Inline PyObject_InitVar */ |
| #ifdef Py_TRACE_REFS |
| Py_SIZE(op) = size; |
| Py_TYPE(op) = &PyTuple_Type; |
| #endif |
| _Py_NewReference((PyObject *)op); |
| } |
| else |
| #endif |
| { |
| /* Check for overflow */ |
| if ((size_t)size > ((size_t)PY_SSIZE_T_MAX - (sizeof(PyTupleObject) - |
| sizeof(PyObject *))) / sizeof(PyObject *)) { |
| return (PyTupleObject *)PyErr_NoMemory(); |
| } |
| op = PyObject_GC_NewVar(PyTupleObject, &PyTuple_Type, size); |
| if (op == NULL) |
| return NULL; |
| } |
| return op; |
| } |
| |
| PyObject * |
| PyTuple_New(Py_ssize_t size) |
| { |
| PyTupleObject *op; |
| #if PyTuple_MAXSAVESIZE > 0 |
| if (size == 0 && free_list[0]) { |
| op = free_list[0]; |
| Py_INCREF(op); |
| return (PyObject *) op; |
| } |
| #endif |
| op = tuple_alloc(size); |
| if (op == NULL) { |
| return NULL; |
| } |
| for (Py_ssize_t i = 0; i < size; i++) { |
| op->ob_item[i] = NULL; |
| } |
| #if PyTuple_MAXSAVESIZE > 0 |
| if (size == 0) { |
| free_list[0] = op; |
| ++numfree[0]; |
| Py_INCREF(op); /* extra INCREF so that this is never freed */ |
| } |
| #endif |
| tuple_gc_track(op); |
| return (PyObject *) op; |
| } |
| |
| Py_ssize_t |
| PyTuple_Size(PyObject *op) |
| { |
| if (!PyTuple_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| else |
| return Py_SIZE(op); |
| } |
| |
| PyObject * |
| PyTuple_GetItem(PyObject *op, Py_ssize_t i) |
| { |
| if (!PyTuple_Check(op)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| if (i < 0 || i >= Py_SIZE(op)) { |
| PyErr_SetString(PyExc_IndexError, "tuple index out of range"); |
| return NULL; |
| } |
| return ((PyTupleObject *)op) -> ob_item[i]; |
| } |
| |
| int |
| PyTuple_SetItem(PyObject *op, Py_ssize_t i, PyObject *newitem) |
| { |
| PyObject **p; |
| if (!PyTuple_Check(op) || Py_REFCNT(op) != 1) { |
| Py_XDECREF(newitem); |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (i < 0 || i >= Py_SIZE(op)) { |
| Py_XDECREF(newitem); |
| PyErr_SetString(PyExc_IndexError, |
| "tuple assignment index out of range"); |
| return -1; |
| } |
| p = ((PyTupleObject *)op) -> ob_item + i; |
| Py_XSETREF(*p, newitem); |
| return 0; |
| } |
| |
| void |
| _PyTuple_MaybeUntrack(PyObject *op) |
| { |
| PyTupleObject *t; |
| Py_ssize_t i, n; |
| |
| if (!PyTuple_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op)) |
| return; |
| t = (PyTupleObject *) op; |
| n = Py_SIZE(t); |
| for (i = 0; i < n; i++) { |
| PyObject *elt = PyTuple_GET_ITEM(t, i); |
| /* Tuple with NULL elements aren't |
| fully constructed, don't untrack |
| them yet. */ |
| if (!elt || |
| _PyObject_GC_MAY_BE_TRACKED(elt)) |
| return; |
| } |
| _PyObject_GC_UNTRACK(op); |
| } |
| |
| PyObject * |
| PyTuple_Pack(Py_ssize_t n, ...) |
| { |
| Py_ssize_t i; |
| PyObject *o; |
| PyObject **items; |
| va_list vargs; |
| |
| if (n == 0) { |
| return PyTuple_New(0); |
| } |
| |
| va_start(vargs, n); |
| PyTupleObject *result = tuple_alloc(n); |
| if (result == NULL) { |
| va_end(vargs); |
| return NULL; |
| } |
| items = result->ob_item; |
| for (i = 0; i < n; i++) { |
| o = va_arg(vargs, PyObject *); |
| Py_INCREF(o); |
| items[i] = o; |
| } |
| va_end(vargs); |
| tuple_gc_track(result); |
| return (PyObject *)result; |
| } |
| |
| |
| /* Methods */ |
| |
| static void |
| tupledealloc(PyTupleObject *op) |
| { |
| Py_ssize_t i; |
| Py_ssize_t len = Py_SIZE(op); |
| PyObject_GC_UnTrack(op); |
| Py_TRASHCAN_BEGIN(op, tupledealloc) |
| if (len > 0) { |
| i = len; |
| while (--i >= 0) |
| Py_XDECREF(op->ob_item[i]); |
| #if PyTuple_MAXSAVESIZE > 0 |
| if (len < PyTuple_MAXSAVESIZE && |
| numfree[len] < PyTuple_MAXFREELIST && |
| Py_IS_TYPE(op, &PyTuple_Type)) |
| { |
| op->ob_item[0] = (PyObject *) free_list[len]; |
| numfree[len]++; |
| free_list[len] = op; |
| goto done; /* return */ |
| } |
| #endif |
| } |
| Py_TYPE(op)->tp_free((PyObject *)op); |
| #if PyTuple_MAXSAVESIZE > 0 |
| done: |
| #endif |
| Py_TRASHCAN_END |
| } |
| |
| static PyObject * |
| tuplerepr(PyTupleObject *v) |
| { |
| Py_ssize_t i, n; |
| _PyUnicodeWriter writer; |
| |
| n = Py_SIZE(v); |
| if (n == 0) |
| return PyUnicode_FromString("()"); |
| |
| /* While not mutable, it is still possible to end up with a cycle in a |
| tuple through an object that stores itself within a tuple (and thus |
| infinitely asks for the repr of itself). This should only be |
| possible within a type. */ |
| i = Py_ReprEnter((PyObject *)v); |
| if (i != 0) { |
| return i > 0 ? PyUnicode_FromString("(...)") : NULL; |
| } |
| |
| _PyUnicodeWriter_Init(&writer); |
| writer.overallocate = 1; |
| if (Py_SIZE(v) > 1) { |
| /* "(" + "1" + ", 2" * (len - 1) + ")" */ |
| writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1; |
| } |
| else { |
| /* "(1,)" */ |
| writer.min_length = 4; |
| } |
| |
| if (_PyUnicodeWriter_WriteChar(&writer, '(') < 0) |
| goto error; |
| |
| /* Do repr() on each element. */ |
| for (i = 0; i < n; ++i) { |
| PyObject *s; |
| |
| if (i > 0) { |
| if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0) |
| goto error; |
| } |
| |
| s = PyObject_Repr(v->ob_item[i]); |
| if (s == NULL) |
| goto error; |
| |
| if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) { |
| Py_DECREF(s); |
| goto error; |
| } |
| Py_DECREF(s); |
| } |
| |
| writer.overallocate = 0; |
| if (n > 1) { |
| if (_PyUnicodeWriter_WriteChar(&writer, ')') < 0) |
| goto error; |
| } |
| else { |
| if (_PyUnicodeWriter_WriteASCIIString(&writer, ",)", 2) < 0) |
| goto error; |
| } |
| |
| Py_ReprLeave((PyObject *)v); |
| return _PyUnicodeWriter_Finish(&writer); |
| |
| error: |
| _PyUnicodeWriter_Dealloc(&writer); |
| Py_ReprLeave((PyObject *)v); |
| return NULL; |
| } |
| |
| |
| /* Hash for tuples. This is a slightly simplified version of the xxHash |
| non-cryptographic hash: |
| - we do not use any parallellism, there is only 1 accumulator. |
| - we drop the final mixing since this is just a permutation of the |
| output space: it does not help against collisions. |
| - at the end, we mangle the length with a single constant. |
| For the xxHash specification, see |
| https://github.com/Cyan4973/xxHash/blob/master/doc/xxhash_spec.md |
| |
| Below are the official constants from the xxHash specification. Optimizing |
| compilers should emit a single "rotate" instruction for the |
| _PyHASH_XXROTATE() expansion. If that doesn't happen for some important |
| platform, the macro could be changed to expand to a platform-specific rotate |
| spelling instead. |
| */ |
| #if SIZEOF_PY_UHASH_T > 4 |
| #define _PyHASH_XXPRIME_1 ((Py_uhash_t)11400714785074694791ULL) |
| #define _PyHASH_XXPRIME_2 ((Py_uhash_t)14029467366897019727ULL) |
| #define _PyHASH_XXPRIME_5 ((Py_uhash_t)2870177450012600261ULL) |
| #define _PyHASH_XXROTATE(x) ((x << 31) | (x >> 33)) /* Rotate left 31 bits */ |
| #else |
| #define _PyHASH_XXPRIME_1 ((Py_uhash_t)2654435761UL) |
| #define _PyHASH_XXPRIME_2 ((Py_uhash_t)2246822519UL) |
| #define _PyHASH_XXPRIME_5 ((Py_uhash_t)374761393UL) |
| #define _PyHASH_XXROTATE(x) ((x << 13) | (x >> 19)) /* Rotate left 13 bits */ |
| #endif |
| |
| /* Tests have shown that it's not worth to cache the hash value, see |
| https://bugs.python.org/issue9685 */ |
| static Py_hash_t |
| tuplehash(PyTupleObject *v) |
| { |
| Py_ssize_t i, len = Py_SIZE(v); |
| PyObject **item = v->ob_item; |
| |
| Py_uhash_t acc = _PyHASH_XXPRIME_5; |
| for (i = 0; i < len; i++) { |
| Py_uhash_t lane = PyObject_Hash(item[i]); |
| if (lane == (Py_uhash_t)-1) { |
| return -1; |
| } |
| acc += lane * _PyHASH_XXPRIME_2; |
| acc = _PyHASH_XXROTATE(acc); |
| acc *= _PyHASH_XXPRIME_1; |
| } |
| |
| /* Add input length, mangled to keep the historical value of hash(()). */ |
| acc += len ^ (_PyHASH_XXPRIME_5 ^ 3527539UL); |
| |
| if (acc == (Py_uhash_t)-1) { |
| return 1546275796; |
| } |
| return acc; |
| } |
| |
| static Py_ssize_t |
| tuplelength(PyTupleObject *a) |
| { |
| return Py_SIZE(a); |
| } |
| |
| static int |
| tuplecontains(PyTupleObject *a, PyObject *el) |
| { |
| Py_ssize_t i; |
| int cmp; |
| |
| for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i) |
| cmp = PyObject_RichCompareBool(PyTuple_GET_ITEM(a, i), el, Py_EQ); |
| return cmp; |
| } |
| |
| static PyObject * |
| tupleitem(PyTupleObject *a, Py_ssize_t i) |
| { |
| if (i < 0 || i >= Py_SIZE(a)) { |
| PyErr_SetString(PyExc_IndexError, "tuple index out of range"); |
| return NULL; |
| } |
| Py_INCREF(a->ob_item[i]); |
| return a->ob_item[i]; |
| } |
| |
| PyObject * |
| _PyTuple_FromArray(PyObject *const *src, Py_ssize_t n) |
| { |
| if (n == 0) { |
| return PyTuple_New(0); |
| } |
| |
| PyTupleObject *tuple = tuple_alloc(n); |
| if (tuple == NULL) { |
| return NULL; |
| } |
| PyObject **dst = tuple->ob_item; |
| for (Py_ssize_t i = 0; i < n; i++) { |
| PyObject *item = src[i]; |
| Py_INCREF(item); |
| dst[i] = item; |
| } |
| tuple_gc_track(tuple); |
| return (PyObject *)tuple; |
| } |
| |
| static PyObject * |
| tupleslice(PyTupleObject *a, Py_ssize_t ilow, |
| Py_ssize_t ihigh) |
| { |
| if (ilow < 0) |
| ilow = 0; |
| if (ihigh > Py_SIZE(a)) |
| ihigh = Py_SIZE(a); |
| if (ihigh < ilow) |
| ihigh = ilow; |
| if (ilow == 0 && ihigh == Py_SIZE(a) && PyTuple_CheckExact(a)) { |
| Py_INCREF(a); |
| return (PyObject *)a; |
| } |
| return _PyTuple_FromArray(a->ob_item + ilow, ihigh - ilow); |
| } |
| |
| PyObject * |
| PyTuple_GetSlice(PyObject *op, Py_ssize_t i, Py_ssize_t j) |
| { |
| if (op == NULL || !PyTuple_Check(op)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return tupleslice((PyTupleObject *)op, i, j); |
| } |
| |
| static PyObject * |
| tupleconcat(PyTupleObject *a, PyObject *bb) |
| { |
| Py_ssize_t size; |
| Py_ssize_t i; |
| PyObject **src, **dest; |
| PyTupleObject *np; |
| if (Py_SIZE(a) == 0 && PyTuple_CheckExact(bb)) { |
| Py_INCREF(bb); |
| return bb; |
| } |
| if (!PyTuple_Check(bb)) { |
| PyErr_Format(PyExc_TypeError, |
| "can only concatenate tuple (not \"%.200s\") to tuple", |
| Py_TYPE(bb)->tp_name); |
| return NULL; |
| } |
| #define b ((PyTupleObject *)bb) |
| if (Py_SIZE(b) == 0 && PyTuple_CheckExact(a)) { |
| Py_INCREF(a); |
| return (PyObject *)a; |
| } |
| if (Py_SIZE(a) > PY_SSIZE_T_MAX - Py_SIZE(b)) |
| return PyErr_NoMemory(); |
| size = Py_SIZE(a) + Py_SIZE(b); |
| if (size == 0) { |
| return PyTuple_New(0); |
| } |
| |
| np = tuple_alloc(size); |
| if (np == NULL) { |
| return NULL; |
| } |
| src = a->ob_item; |
| dest = np->ob_item; |
| for (i = 0; i < Py_SIZE(a); i++) { |
| PyObject *v = src[i]; |
| Py_INCREF(v); |
| dest[i] = v; |
| } |
| src = b->ob_item; |
| dest = np->ob_item + Py_SIZE(a); |
| for (i = 0; i < Py_SIZE(b); i++) { |
| PyObject *v = src[i]; |
| Py_INCREF(v); |
| dest[i] = v; |
| } |
| tuple_gc_track(np); |
| return (PyObject *)np; |
| #undef b |
| } |
| |
| static PyObject * |
| tuplerepeat(PyTupleObject *a, Py_ssize_t n) |
| { |
| Py_ssize_t i, j; |
| Py_ssize_t size; |
| PyTupleObject *np; |
| PyObject **p, **items; |
| if (Py_SIZE(a) == 0 || n == 1) { |
| if (PyTuple_CheckExact(a)) { |
| /* Since tuples are immutable, we can return a shared |
| copy in this case */ |
| Py_INCREF(a); |
| return (PyObject *)a; |
| } |
| } |
| if (Py_SIZE(a) == 0 || n <= 0) { |
| return PyTuple_New(0); |
| } |
| if (n > PY_SSIZE_T_MAX / Py_SIZE(a)) |
| return PyErr_NoMemory(); |
| size = Py_SIZE(a) * n; |
| np = tuple_alloc(size); |
| if (np == NULL) |
| return NULL; |
| p = np->ob_item; |
| items = a->ob_item; |
| for (i = 0; i < n; i++) { |
| for (j = 0; j < Py_SIZE(a); j++) { |
| *p = items[j]; |
| Py_INCREF(*p); |
| p++; |
| } |
| } |
| tuple_gc_track(np); |
| return (PyObject *) np; |
| } |
| |
| /*[clinic input] |
| tuple.index |
| |
| value: object |
| start: slice_index(accept={int}) = 0 |
| stop: slice_index(accept={int}, c_default="PY_SSIZE_T_MAX") = sys.maxsize |
| / |
| |
| Return first index of value. |
| |
| Raises ValueError if the value is not present. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| tuple_index_impl(PyTupleObject *self, PyObject *value, Py_ssize_t start, |
| Py_ssize_t stop) |
| /*[clinic end generated code: output=07b6f9f3cb5c33eb input=fb39e9874a21fe3f]*/ |
| { |
| Py_ssize_t i; |
| |
| if (start < 0) { |
| start += Py_SIZE(self); |
| if (start < 0) |
| start = 0; |
| } |
| if (stop < 0) { |
| stop += Py_SIZE(self); |
| } |
| else if (stop > Py_SIZE(self)) { |
| stop = Py_SIZE(self); |
| } |
| for (i = start; i < stop; i++) { |
| int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ); |
| if (cmp > 0) |
| return PyLong_FromSsize_t(i); |
| else if (cmp < 0) |
| return NULL; |
| } |
| PyErr_SetString(PyExc_ValueError, "tuple.index(x): x not in tuple"); |
| return NULL; |
| } |
| |
| /*[clinic input] |
| tuple.count |
| |
| value: object |
| / |
| |
| Return number of occurrences of value. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| tuple_count(PyTupleObject *self, PyObject *value) |
| /*[clinic end generated code: output=aa927affc5a97605 input=531721aff65bd772]*/ |
| { |
| Py_ssize_t count = 0; |
| Py_ssize_t i; |
| |
| for (i = 0; i < Py_SIZE(self); i++) { |
| int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ); |
| if (cmp > 0) |
| count++; |
| else if (cmp < 0) |
| return NULL; |
| } |
| return PyLong_FromSsize_t(count); |
| } |
| |
| static int |
| tupletraverse(PyTupleObject *o, visitproc visit, void *arg) |
| { |
| Py_ssize_t i; |
| |
| for (i = Py_SIZE(o); --i >= 0; ) |
| Py_VISIT(o->ob_item[i]); |
| return 0; |
| } |
| |
| static PyObject * |
| tuplerichcompare(PyObject *v, PyObject *w, int op) |
| { |
| PyTupleObject *vt, *wt; |
| Py_ssize_t i; |
| Py_ssize_t vlen, wlen; |
| |
| if (!PyTuple_Check(v) || !PyTuple_Check(w)) |
| Py_RETURN_NOTIMPLEMENTED; |
| |
| vt = (PyTupleObject *)v; |
| wt = (PyTupleObject *)w; |
| |
| vlen = Py_SIZE(vt); |
| wlen = Py_SIZE(wt); |
| |
| /* Note: the corresponding code for lists has an "early out" test |
| * here when op is EQ or NE and the lengths differ. That pays there, |
| * but Tim was unable to find any real code where EQ/NE tuple |
| * compares don't have the same length, so testing for it here would |
| * have cost without benefit. |
| */ |
| |
| /* Search for the first index where items are different. |
| * Note that because tuples are immutable, it's safe to reuse |
| * vlen and wlen across the comparison calls. |
| */ |
| for (i = 0; i < vlen && i < wlen; i++) { |
| int k = PyObject_RichCompareBool(vt->ob_item[i], |
| wt->ob_item[i], Py_EQ); |
| if (k < 0) |
| return NULL; |
| if (!k) |
| break; |
| } |
| |
| if (i >= vlen || i >= wlen) { |
| /* No more items to compare -- compare sizes */ |
| Py_RETURN_RICHCOMPARE(vlen, wlen, op); |
| } |
| |
| /* We have an item that differs -- shortcuts for EQ/NE */ |
| if (op == Py_EQ) { |
| Py_RETURN_FALSE; |
| } |
| if (op == Py_NE) { |
| Py_RETURN_TRUE; |
| } |
| |
| /* Compare the final item again using the proper operator */ |
| return PyObject_RichCompare(vt->ob_item[i], wt->ob_item[i], op); |
| } |
| |
| static PyObject * |
| tuple_subtype_new(PyTypeObject *type, PyObject *iterable); |
| |
| /*[clinic input] |
| @classmethod |
| tuple.__new__ as tuple_new |
| iterable: object(c_default="NULL") = () |
| / |
| |
| Built-in immutable sequence. |
| |
| If no argument is given, the constructor returns an empty tuple. |
| If iterable is specified the tuple is initialized from iterable's items. |
| |
| If the argument is a tuple, the return value is the same object. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| tuple_new_impl(PyTypeObject *type, PyObject *iterable) |
| /*[clinic end generated code: output=4546d9f0d469bce7 input=86963bcde633b5a2]*/ |
| { |
| if (type != &PyTuple_Type) |
| return tuple_subtype_new(type, iterable); |
| |
| if (iterable == NULL) |
| return PyTuple_New(0); |
| else |
| return PySequence_Tuple(iterable); |
| } |
| |
| static PyObject * |
| tuple_vectorcall(PyObject *type, PyObject * const*args, |
| size_t nargsf, PyObject *kwnames) |
| { |
| if (!_PyArg_NoKwnames("tuple", kwnames)) { |
| return NULL; |
| } |
| |
| Py_ssize_t nargs = PyVectorcall_NARGS(nargsf); |
| if (!_PyArg_CheckPositional("tuple", nargs, 0, 1)) { |
| return NULL; |
| } |
| |
| if (nargs) { |
| return tuple_new_impl((PyTypeObject *)type, args[0]); |
| } |
| return PyTuple_New(0); |
| } |
| |
| static PyObject * |
| tuple_subtype_new(PyTypeObject *type, PyObject *iterable) |
| { |
| PyObject *tmp, *newobj, *item; |
| Py_ssize_t i, n; |
| |
| assert(PyType_IsSubtype(type, &PyTuple_Type)); |
| tmp = tuple_new_impl(&PyTuple_Type, iterable); |
| if (tmp == NULL) |
| return NULL; |
| assert(PyTuple_Check(tmp)); |
| newobj = type->tp_alloc(type, n = PyTuple_GET_SIZE(tmp)); |
| if (newobj == NULL) { |
| Py_DECREF(tmp); |
| return NULL; |
| } |
| for (i = 0; i < n; i++) { |
| item = PyTuple_GET_ITEM(tmp, i); |
| Py_INCREF(item); |
| PyTuple_SET_ITEM(newobj, i, item); |
| } |
| Py_DECREF(tmp); |
| return newobj; |
| } |
| |
| static PySequenceMethods tuple_as_sequence = { |
| (lenfunc)tuplelength, /* sq_length */ |
| (binaryfunc)tupleconcat, /* sq_concat */ |
| (ssizeargfunc)tuplerepeat, /* sq_repeat */ |
| (ssizeargfunc)tupleitem, /* sq_item */ |
| 0, /* sq_slice */ |
| 0, /* sq_ass_item */ |
| 0, /* sq_ass_slice */ |
| (objobjproc)tuplecontains, /* sq_contains */ |
| }; |
| |
| static PyObject* |
| tuplesubscript(PyTupleObject* self, PyObject* item) |
| { |
| if (_PyIndex_Check(item)) { |
| Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); |
| if (i == -1 && PyErr_Occurred()) |
| return NULL; |
| if (i < 0) |
| i += PyTuple_GET_SIZE(self); |
| return tupleitem(self, i); |
| } |
| else if (PySlice_Check(item)) { |
| Py_ssize_t start, stop, step, slicelength, i; |
| size_t cur; |
| PyObject* it; |
| PyObject **src, **dest; |
| |
| if (PySlice_Unpack(item, &start, &stop, &step) < 0) { |
| return NULL; |
| } |
| slicelength = PySlice_AdjustIndices(PyTuple_GET_SIZE(self), &start, |
| &stop, step); |
| |
| if (slicelength <= 0) { |
| return PyTuple_New(0); |
| } |
| else if (start == 0 && step == 1 && |
| slicelength == PyTuple_GET_SIZE(self) && |
| PyTuple_CheckExact(self)) { |
| Py_INCREF(self); |
| return (PyObject *)self; |
| } |
| else { |
| PyTupleObject* result = tuple_alloc(slicelength); |
| if (!result) return NULL; |
| |
| src = self->ob_item; |
| dest = result->ob_item; |
| for (cur = start, i = 0; i < slicelength; |
| cur += step, i++) { |
| it = src[cur]; |
| Py_INCREF(it); |
| dest[i] = it; |
| } |
| |
| tuple_gc_track(result); |
| return (PyObject *)result; |
| } |
| } |
| else { |
| PyErr_Format(PyExc_TypeError, |
| "tuple indices must be integers or slices, not %.200s", |
| Py_TYPE(item)->tp_name); |
| return NULL; |
| } |
| } |
| |
| /*[clinic input] |
| tuple.__getnewargs__ |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| tuple___getnewargs___impl(PyTupleObject *self) |
| /*[clinic end generated code: output=25e06e3ee56027e2 input=1aeb4b286a21639a]*/ |
| { |
| return Py_BuildValue("(N)", tupleslice(self, 0, Py_SIZE(self))); |
| } |
| |
| static PyMethodDef tuple_methods[] = { |
| TUPLE___GETNEWARGS___METHODDEF |
| TUPLE_INDEX_METHODDEF |
| TUPLE_COUNT_METHODDEF |
| {"__class_getitem__", (PyCFunction)Py_GenericAlias, METH_O|METH_CLASS, PyDoc_STR("See PEP 585")}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyMappingMethods tuple_as_mapping = { |
| (lenfunc)tuplelength, |
| (binaryfunc)tuplesubscript, |
| 0 |
| }; |
| |
| static PyObject *tuple_iter(PyObject *seq); |
| |
| PyTypeObject PyTuple_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "tuple", |
| sizeof(PyTupleObject) - sizeof(PyObject *), |
| sizeof(PyObject *), |
| (destructor)tupledealloc, /* tp_dealloc */ |
| 0, /* tp_vectorcall_offset */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_as_async */ |
| (reprfunc)tuplerepr, /* tp_repr */ |
| 0, /* tp_as_number */ |
| &tuple_as_sequence, /* tp_as_sequence */ |
| &tuple_as_mapping, /* tp_as_mapping */ |
| (hashfunc)tuplehash, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | |
| Py_TPFLAGS_BASETYPE | Py_TPFLAGS_TUPLE_SUBCLASS, /* tp_flags */ |
| tuple_new__doc__, /* tp_doc */ |
| (traverseproc)tupletraverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| tuplerichcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| tuple_iter, /* tp_iter */ |
| 0, /* tp_iternext */ |
| tuple_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| tuple_new, /* tp_new */ |
| PyObject_GC_Del, /* tp_free */ |
| .tp_vectorcall = tuple_vectorcall, |
| }; |
| |
| /* The following function breaks the notion that tuples are immutable: |
| it changes the size of a tuple. We get away with this only if there |
| is only one module referencing the object. You can also think of it |
| as creating a new tuple object and destroying the old one, only more |
| efficiently. In any case, don't use this if the tuple may already be |
| known to some other part of the code. */ |
| |
| int |
| _PyTuple_Resize(PyObject **pv, Py_ssize_t newsize) |
| { |
| PyTupleObject *v; |
| PyTupleObject *sv; |
| Py_ssize_t i; |
| Py_ssize_t oldsize; |
| |
| v = (PyTupleObject *) *pv; |
| if (v == NULL || !Py_IS_TYPE(v, &PyTuple_Type) || |
| (Py_SIZE(v) != 0 && Py_REFCNT(v) != 1)) { |
| *pv = 0; |
| Py_XDECREF(v); |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| oldsize = Py_SIZE(v); |
| if (oldsize == newsize) |
| return 0; |
| |
| if (oldsize == 0) { |
| /* Empty tuples are often shared, so we should never |
| resize them in-place even if we do own the only |
| (current) reference */ |
| Py_DECREF(v); |
| *pv = PyTuple_New(newsize); |
| return *pv == NULL ? -1 : 0; |
| } |
| |
| /* XXX UNREF/NEWREF interface should be more symmetrical */ |
| #ifdef Py_REF_DEBUG |
| _Py_RefTotal--; |
| #endif |
| if (_PyObject_GC_IS_TRACKED(v)) { |
| _PyObject_GC_UNTRACK(v); |
| } |
| #ifdef Py_TRACE_REFS |
| _Py_ForgetReference((PyObject *) v); |
| #endif |
| /* DECREF items deleted by shrinkage */ |
| for (i = newsize; i < oldsize; i++) { |
| Py_CLEAR(v->ob_item[i]); |
| } |
| sv = PyObject_GC_Resize(PyTupleObject, v, newsize); |
| if (sv == NULL) { |
| *pv = NULL; |
| PyObject_GC_Del(v); |
| return -1; |
| } |
| _Py_NewReference((PyObject *) sv); |
| /* Zero out items added by growing */ |
| if (newsize > oldsize) |
| memset(&sv->ob_item[oldsize], 0, |
| sizeof(*sv->ob_item) * (newsize - oldsize)); |
| *pv = (PyObject *) sv; |
| _PyObject_GC_TRACK(sv); |
| return 0; |
| } |
| |
| void |
| _PyTuple_ClearFreeList(void) |
| { |
| #if PyTuple_MAXSAVESIZE > 0 |
| for (Py_ssize_t i = 1; i < PyTuple_MAXSAVESIZE; i++) { |
| PyTupleObject *p = free_list[i]; |
| free_list[i] = NULL; |
| numfree[i] = 0; |
| while (p) { |
| PyTupleObject *q = p; |
| p = (PyTupleObject *)(p->ob_item[0]); |
| PyObject_GC_Del(q); |
| } |
| } |
| // the empty tuple singleton is only cleared by _PyTuple_Fini() |
| #endif |
| } |
| |
| void |
| _PyTuple_Fini(void) |
| { |
| #if PyTuple_MAXSAVESIZE > 0 |
| /* empty tuples are used all over the place and applications may |
| * rely on the fact that an empty tuple is a singleton. */ |
| Py_CLEAR(free_list[0]); |
| |
| _PyTuple_ClearFreeList(); |
| #endif |
| } |
| |
| /*********************** Tuple Iterator **************************/ |
| |
| typedef struct { |
| PyObject_HEAD |
| Py_ssize_t it_index; |
| PyTupleObject *it_seq; /* Set to NULL when iterator is exhausted */ |
| } tupleiterobject; |
| |
| static void |
| tupleiter_dealloc(tupleiterobject *it) |
| { |
| _PyObject_GC_UNTRACK(it); |
| Py_XDECREF(it->it_seq); |
| PyObject_GC_Del(it); |
| } |
| |
| static int |
| tupleiter_traverse(tupleiterobject *it, visitproc visit, void *arg) |
| { |
| Py_VISIT(it->it_seq); |
| return 0; |
| } |
| |
| static PyObject * |
| tupleiter_next(tupleiterobject *it) |
| { |
| PyTupleObject *seq; |
| PyObject *item; |
| |
| assert(it != NULL); |
| seq = it->it_seq; |
| if (seq == NULL) |
| return NULL; |
| assert(PyTuple_Check(seq)); |
| |
| if (it->it_index < PyTuple_GET_SIZE(seq)) { |
| item = PyTuple_GET_ITEM(seq, it->it_index); |
| ++it->it_index; |
| Py_INCREF(item); |
| return item; |
| } |
| |
| it->it_seq = NULL; |
| Py_DECREF(seq); |
| return NULL; |
| } |
| |
| static PyObject * |
| tupleiter_len(tupleiterobject *it, PyObject *Py_UNUSED(ignored)) |
| { |
| Py_ssize_t len = 0; |
| if (it->it_seq) |
| len = PyTuple_GET_SIZE(it->it_seq) - it->it_index; |
| return PyLong_FromSsize_t(len); |
| } |
| |
| PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it))."); |
| |
| static PyObject * |
| tupleiter_reduce(tupleiterobject *it, PyObject *Py_UNUSED(ignored)) |
| { |
| _Py_IDENTIFIER(iter); |
| if (it->it_seq) |
| return Py_BuildValue("N(O)n", _PyEval_GetBuiltinId(&PyId_iter), |
| it->it_seq, it->it_index); |
| else |
| return Py_BuildValue("N(())", _PyEval_GetBuiltinId(&PyId_iter)); |
| } |
| |
| static PyObject * |
| tupleiter_setstate(tupleiterobject *it, PyObject *state) |
| { |
| Py_ssize_t index = PyLong_AsSsize_t(state); |
| if (index == -1 && PyErr_Occurred()) |
| return NULL; |
| if (it->it_seq != NULL) { |
| if (index < 0) |
| index = 0; |
| else if (index > PyTuple_GET_SIZE(it->it_seq)) |
| index = PyTuple_GET_SIZE(it->it_seq); /* exhausted iterator */ |
| it->it_index = index; |
| } |
| Py_RETURN_NONE; |
| } |
| |
| PyDoc_STRVAR(reduce_doc, "Return state information for pickling."); |
| PyDoc_STRVAR(setstate_doc, "Set state information for unpickling."); |
| |
| static PyMethodDef tupleiter_methods[] = { |
| {"__length_hint__", (PyCFunction)tupleiter_len, METH_NOARGS, length_hint_doc}, |
| {"__reduce__", (PyCFunction)tupleiter_reduce, METH_NOARGS, reduce_doc}, |
| {"__setstate__", (PyCFunction)tupleiter_setstate, METH_O, setstate_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyTypeObject PyTupleIter_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "tuple_iterator", /* tp_name */ |
| sizeof(tupleiterobject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)tupleiter_dealloc, /* tp_dealloc */ |
| 0, /* tp_vectorcall_offset */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_as_async */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)tupleiter_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| PyObject_SelfIter, /* tp_iter */ |
| (iternextfunc)tupleiter_next, /* tp_iternext */ |
| tupleiter_methods, /* tp_methods */ |
| 0, |
| }; |
| |
| static PyObject * |
| tuple_iter(PyObject *seq) |
| { |
| tupleiterobject *it; |
| |
| if (!PyTuple_Check(seq)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| it = PyObject_GC_New(tupleiterobject, &PyTupleIter_Type); |
| if (it == NULL) |
| return NULL; |
| it->it_index = 0; |
| Py_INCREF(seq); |
| it->it_seq = (PyTupleObject *)seq; |
| _PyObject_GC_TRACK(it); |
| return (PyObject *)it; |
| } |