| /* List object implementation */ | 
 |  | 
 | #include "Python.h" | 
 | #include "pycore_object.h" | 
 | #include "pycore_pystate.h" | 
 | #include "pycore_tupleobject.h" | 
 | #include "pycore_accu.h" | 
 |  | 
 | #ifdef STDC_HEADERS | 
 | #include <stddef.h> | 
 | #else | 
 | #include <sys/types.h>          /* For size_t */ | 
 | #endif | 
 |  | 
 | /*[clinic input] | 
 | class list "PyListObject *" "&PyList_Type" | 
 | [clinic start generated code]*/ | 
 | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=f9b222678f9f71e0]*/ | 
 |  | 
 | #include "clinic/listobject.c.h" | 
 |  | 
 | /* Ensure ob_item has room for at least newsize elements, and set | 
 |  * ob_size to newsize.  If newsize > ob_size on entry, the content | 
 |  * of the new slots at exit is undefined heap trash; it's the caller's | 
 |  * responsibility to overwrite them with sane values. | 
 |  * The number of allocated elements may grow, shrink, or stay the same. | 
 |  * Failure is impossible if newsize <= self.allocated on entry, although | 
 |  * that partly relies on an assumption that the system realloc() never | 
 |  * fails when passed a number of bytes <= the number of bytes last | 
 |  * allocated (the C standard doesn't guarantee this, but it's hard to | 
 |  * imagine a realloc implementation where it wouldn't be true). | 
 |  * Note that self->ob_item may change, and even if newsize is less | 
 |  * than ob_size on entry. | 
 |  */ | 
 | static int | 
 | list_resize(PyListObject *self, Py_ssize_t newsize) | 
 | { | 
 |     PyObject **items; | 
 |     size_t new_allocated, num_allocated_bytes; | 
 |     Py_ssize_t allocated = self->allocated; | 
 |  | 
 |     /* Bypass realloc() when a previous overallocation is large enough | 
 |        to accommodate the newsize.  If the newsize falls lower than half | 
 |        the allocated size, then proceed with the realloc() to shrink the list. | 
 |     */ | 
 |     if (allocated >= newsize && newsize >= (allocated >> 1)) { | 
 |         assert(self->ob_item != NULL || newsize == 0); | 
 |         Py_SIZE(self) = newsize; | 
 |         return 0; | 
 |     } | 
 |  | 
 |     /* This over-allocates proportional to the list size, making room | 
 |      * for additional growth.  The over-allocation is mild, but is | 
 |      * enough to give linear-time amortized behavior over a long | 
 |      * sequence of appends() in the presence of a poorly-performing | 
 |      * system realloc(). | 
 |      * The growth pattern is:  0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ... | 
 |      * Note: new_allocated won't overflow because the largest possible value | 
 |      *       is PY_SSIZE_T_MAX * (9 / 8) + 6 which always fits in a size_t. | 
 |      */ | 
 |     new_allocated = (size_t)newsize + (newsize >> 3) + (newsize < 9 ? 3 : 6); | 
 |     if (new_allocated > (size_t)PY_SSIZE_T_MAX / sizeof(PyObject *)) { | 
 |         PyErr_NoMemory(); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (newsize == 0) | 
 |         new_allocated = 0; | 
 |     num_allocated_bytes = new_allocated * sizeof(PyObject *); | 
 |     items = (PyObject **)PyMem_Realloc(self->ob_item, num_allocated_bytes); | 
 |     if (items == NULL) { | 
 |         PyErr_NoMemory(); | 
 |         return -1; | 
 |     } | 
 |     self->ob_item = items; | 
 |     Py_SIZE(self) = newsize; | 
 |     self->allocated = new_allocated; | 
 |     return 0; | 
 | } | 
 |  | 
 | static int | 
 | list_preallocate_exact(PyListObject *self, Py_ssize_t size) | 
 | { | 
 |     assert(self->ob_item == NULL); | 
 |     assert(size > 0); | 
 |  | 
 |     PyObject **items = PyMem_New(PyObject*, size); | 
 |     if (items == NULL) { | 
 |         PyErr_NoMemory(); | 
 |         return -1; | 
 |     } | 
 |     self->ob_item = items; | 
 |     self->allocated = size; | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Debug statistic to compare allocations with reuse through the free list */ | 
 | #undef SHOW_ALLOC_COUNT | 
 | #ifdef SHOW_ALLOC_COUNT | 
 | static size_t count_alloc = 0; | 
 | static size_t count_reuse = 0; | 
 |  | 
 | static void | 
 | show_alloc(void) | 
 | { | 
 |     PyInterpreterState *interp = _PyInterpreterState_Get(); | 
 |     if (!interp->config.show_alloc_count) { | 
 |         return; | 
 |     } | 
 |  | 
 |     fprintf(stderr, "List allocations: %" PY_FORMAT_SIZE_T "d\n", | 
 |         count_alloc); | 
 |     fprintf(stderr, "List reuse through freelist: %" PY_FORMAT_SIZE_T | 
 |         "d\n", count_reuse); | 
 |     fprintf(stderr, "%.2f%% reuse rate\n\n", | 
 |         (100.0*count_reuse/(count_alloc+count_reuse))); | 
 | } | 
 | #endif | 
 |  | 
 | /* Empty list reuse scheme to save calls to malloc and free */ | 
 | #ifndef PyList_MAXFREELIST | 
 | #define PyList_MAXFREELIST 80 | 
 | #endif | 
 | static PyListObject *free_list[PyList_MAXFREELIST]; | 
 | static int numfree = 0; | 
 |  | 
 | int | 
 | PyList_ClearFreeList(void) | 
 | { | 
 |     PyListObject *op; | 
 |     int ret = numfree; | 
 |     while (numfree) { | 
 |         op = free_list[--numfree]; | 
 |         assert(PyList_CheckExact(op)); | 
 |         PyObject_GC_Del(op); | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | void | 
 | _PyList_Fini(void) | 
 | { | 
 |     PyList_ClearFreeList(); | 
 | } | 
 |  | 
 | /* Print summary info about the state of the optimized allocator */ | 
 | void | 
 | _PyList_DebugMallocStats(FILE *out) | 
 | { | 
 |     _PyDebugAllocatorStats(out, | 
 |                            "free PyListObject", | 
 |                            numfree, sizeof(PyListObject)); | 
 | } | 
 |  | 
 | PyObject * | 
 | PyList_New(Py_ssize_t size) | 
 | { | 
 |     PyListObject *op; | 
 | #ifdef SHOW_ALLOC_COUNT | 
 |     static int initialized = 0; | 
 |     if (!initialized) { | 
 |         Py_AtExit(show_alloc); | 
 |         initialized = 1; | 
 |     } | 
 | #endif | 
 |  | 
 |     if (size < 0) { | 
 |         PyErr_BadInternalCall(); | 
 |         return NULL; | 
 |     } | 
 |     if (numfree) { | 
 |         numfree--; | 
 |         op = free_list[numfree]; | 
 |         _Py_NewReference((PyObject *)op); | 
 | #ifdef SHOW_ALLOC_COUNT | 
 |         count_reuse++; | 
 | #endif | 
 |     } else { | 
 |         op = PyObject_GC_New(PyListObject, &PyList_Type); | 
 |         if (op == NULL) | 
 |             return NULL; | 
 | #ifdef SHOW_ALLOC_COUNT | 
 |         count_alloc++; | 
 | #endif | 
 |     } | 
 |     if (size <= 0) | 
 |         op->ob_item = NULL; | 
 |     else { | 
 |         op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *)); | 
 |         if (op->ob_item == NULL) { | 
 |             Py_DECREF(op); | 
 |             return PyErr_NoMemory(); | 
 |         } | 
 |     } | 
 |     Py_SIZE(op) = size; | 
 |     op->allocated = size; | 
 |     _PyObject_GC_TRACK(op); | 
 |     return (PyObject *) op; | 
 | } | 
 |  | 
 | static PyObject * | 
 | list_new_prealloc(Py_ssize_t size) | 
 | { | 
 |     PyListObject *op = (PyListObject *) PyList_New(0); | 
 |     if (size == 0 || op == NULL) { | 
 |         return (PyObject *) op; | 
 |     } | 
 |     assert(op->ob_item == NULL); | 
 |     op->ob_item = PyMem_New(PyObject *, size); | 
 |     if (op->ob_item == NULL) { | 
 |         Py_DECREF(op); | 
 |         return PyErr_NoMemory(); | 
 |     } | 
 |     op->allocated = size; | 
 |     return (PyObject *) op; | 
 | } | 
 |  | 
 | Py_ssize_t | 
 | PyList_Size(PyObject *op) | 
 | { | 
 |     if (!PyList_Check(op)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |     else | 
 |         return Py_SIZE(op); | 
 | } | 
 |  | 
 | static inline int | 
 | valid_index(Py_ssize_t i, Py_ssize_t limit) | 
 | { | 
 |     /* The cast to size_t lets us use just a single comparison | 
 |        to check whether i is in the range: 0 <= i < limit. | 
 |  | 
 |        See:  Section 14.2 "Bounds Checking" in the Agner Fog | 
 |        optimization manual found at: | 
 |        https://www.agner.org/optimize/optimizing_cpp.pdf | 
 |     */ | 
 |     return (size_t) i < (size_t) limit; | 
 | } | 
 |  | 
 | static PyObject *indexerr = NULL; | 
 |  | 
 | PyObject * | 
 | PyList_GetItem(PyObject *op, Py_ssize_t i) | 
 | { | 
 |     if (!PyList_Check(op)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return NULL; | 
 |     } | 
 |     if (!valid_index(i, Py_SIZE(op))) { | 
 |         if (indexerr == NULL) { | 
 |             indexerr = PyUnicode_FromString( | 
 |                 "list index out of range"); | 
 |             if (indexerr == NULL) | 
 |                 return NULL; | 
 |         } | 
 |         PyErr_SetObject(PyExc_IndexError, indexerr); | 
 |         return NULL; | 
 |     } | 
 |     return ((PyListObject *)op) -> ob_item[i]; | 
 | } | 
 |  | 
 | int | 
 | PyList_SetItem(PyObject *op, Py_ssize_t i, | 
 |                PyObject *newitem) | 
 | { | 
 |     PyObject **p; | 
 |     if (!PyList_Check(op)) { | 
 |         Py_XDECREF(newitem); | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |     if (!valid_index(i, Py_SIZE(op))) { | 
 |         Py_XDECREF(newitem); | 
 |         PyErr_SetString(PyExc_IndexError, | 
 |                         "list assignment index out of range"); | 
 |         return -1; | 
 |     } | 
 |     p = ((PyListObject *)op) -> ob_item + i; | 
 |     Py_XSETREF(*p, newitem); | 
 |     return 0; | 
 | } | 
 |  | 
 | static int | 
 | ins1(PyListObject *self, Py_ssize_t where, PyObject *v) | 
 | { | 
 |     Py_ssize_t i, n = Py_SIZE(self); | 
 |     PyObject **items; | 
 |     if (v == NULL) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |     if (n == PY_SSIZE_T_MAX) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |             "cannot add more objects to list"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (list_resize(self, n+1) < 0) | 
 |         return -1; | 
 |  | 
 |     if (where < 0) { | 
 |         where += n; | 
 |         if (where < 0) | 
 |             where = 0; | 
 |     } | 
 |     if (where > n) | 
 |         where = n; | 
 |     items = self->ob_item; | 
 |     for (i = n; --i >= where; ) | 
 |         items[i+1] = items[i]; | 
 |     Py_INCREF(v); | 
 |     items[where] = v; | 
 |     return 0; | 
 | } | 
 |  | 
 | int | 
 | PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem) | 
 | { | 
 |     if (!PyList_Check(op)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |     return ins1((PyListObject *)op, where, newitem); | 
 | } | 
 |  | 
 | static int | 
 | app1(PyListObject *self, PyObject *v) | 
 | { | 
 |     Py_ssize_t n = PyList_GET_SIZE(self); | 
 |  | 
 |     assert (v != NULL); | 
 |     if (n == PY_SSIZE_T_MAX) { | 
 |         PyErr_SetString(PyExc_OverflowError, | 
 |             "cannot add more objects to list"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (list_resize(self, n+1) < 0) | 
 |         return -1; | 
 |  | 
 |     Py_INCREF(v); | 
 |     PyList_SET_ITEM(self, n, v); | 
 |     return 0; | 
 | } | 
 |  | 
 | int | 
 | PyList_Append(PyObject *op, PyObject *newitem) | 
 | { | 
 |     if (PyList_Check(op) && (newitem != NULL)) | 
 |         return app1((PyListObject *)op, newitem); | 
 |     PyErr_BadInternalCall(); | 
 |     return -1; | 
 | } | 
 |  | 
 | /* Methods */ | 
 |  | 
 | static void | 
 | list_dealloc(PyListObject *op) | 
 | { | 
 |     Py_ssize_t i; | 
 |     PyObject_GC_UnTrack(op); | 
 |     Py_TRASHCAN_BEGIN(op, list_dealloc) | 
 |     if (op->ob_item != NULL) { | 
 |         /* Do it backwards, for Christian Tismer. | 
 |            There's a simple test case where somehow this reduces | 
 |            thrashing when a *very* large list is created and | 
 |            immediately deleted. */ | 
 |         i = Py_SIZE(op); | 
 |         while (--i >= 0) { | 
 |             Py_XDECREF(op->ob_item[i]); | 
 |         } | 
 |         PyMem_FREE(op->ob_item); | 
 |     } | 
 |     if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op)) | 
 |         free_list[numfree++] = op; | 
 |     else | 
 |         Py_TYPE(op)->tp_free((PyObject *)op); | 
 |     Py_TRASHCAN_END | 
 | } | 
 |  | 
 | static PyObject * | 
 | list_repr(PyListObject *v) | 
 | { | 
 |     Py_ssize_t i; | 
 |     PyObject *s; | 
 |     _PyUnicodeWriter writer; | 
 |  | 
 |     if (Py_SIZE(v) == 0) { | 
 |         return PyUnicode_FromString("[]"); | 
 |     } | 
 |  | 
 |     i = Py_ReprEnter((PyObject*)v); | 
 |     if (i != 0) { | 
 |         return i > 0 ? PyUnicode_FromString("[...]") : NULL; | 
 |     } | 
 |  | 
 |     _PyUnicodeWriter_Init(&writer); | 
 |     writer.overallocate = 1; | 
 |     /* "[" + "1" + ", 2" * (len - 1) + "]" */ | 
 |     writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1; | 
 |  | 
 |     if (_PyUnicodeWriter_WriteChar(&writer, '[') < 0) | 
 |         goto error; | 
 |  | 
 |     /* Do repr() on each element.  Note that this may mutate the list, | 
 |        so must refetch the list size on each iteration. */ | 
 |     for (i = 0; i < Py_SIZE(v); ++i) { | 
 |         if (i > 0) { | 
 |             if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0) | 
 |                 goto error; | 
 |         } | 
 |  | 
 |         s = PyObject_Repr(v->ob_item[i]); | 
 |         if (s == NULL) | 
 |             goto error; | 
 |  | 
 |         if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) { | 
 |             Py_DECREF(s); | 
 |             goto error; | 
 |         } | 
 |         Py_DECREF(s); | 
 |     } | 
 |  | 
 |     writer.overallocate = 0; | 
 |     if (_PyUnicodeWriter_WriteChar(&writer, ']') < 0) | 
 |         goto error; | 
 |  | 
 |     Py_ReprLeave((PyObject *)v); | 
 |     return _PyUnicodeWriter_Finish(&writer); | 
 |  | 
 | error: | 
 |     _PyUnicodeWriter_Dealloc(&writer); | 
 |     Py_ReprLeave((PyObject *)v); | 
 |     return NULL; | 
 | } | 
 |  | 
 | static Py_ssize_t | 
 | list_length(PyListObject *a) | 
 | { | 
 |     return Py_SIZE(a); | 
 | } | 
 |  | 
 | static int | 
 | list_contains(PyListObject *a, PyObject *el) | 
 | { | 
 |     Py_ssize_t i; | 
 |     int cmp; | 
 |  | 
 |     for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i) | 
 |         cmp = PyObject_RichCompareBool(PyList_GET_ITEM(a, i), el, Py_EQ); | 
 |     return cmp; | 
 | } | 
 |  | 
 | static PyObject * | 
 | list_item(PyListObject *a, Py_ssize_t i) | 
 | { | 
 |     if (!valid_index(i, Py_SIZE(a))) { | 
 |         if (indexerr == NULL) { | 
 |             indexerr = PyUnicode_FromString( | 
 |                 "list index out of range"); | 
 |             if (indexerr == NULL) | 
 |                 return NULL; | 
 |         } | 
 |         PyErr_SetObject(PyExc_IndexError, indexerr); | 
 |         return NULL; | 
 |     } | 
 |     Py_INCREF(a->ob_item[i]); | 
 |     return a->ob_item[i]; | 
 | } | 
 |  | 
 | static PyObject * | 
 | list_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh) | 
 | { | 
 |     PyListObject *np; | 
 |     PyObject **src, **dest; | 
 |     Py_ssize_t i, len; | 
 |     len = ihigh - ilow; | 
 |     np = (PyListObject *) list_new_prealloc(len); | 
 |     if (np == NULL) | 
 |         return NULL; | 
 |  | 
 |     src = a->ob_item + ilow; | 
 |     dest = np->ob_item; | 
 |     for (i = 0; i < len; i++) { | 
 |         PyObject *v = src[i]; | 
 |         Py_INCREF(v); | 
 |         dest[i] = v; | 
 |     } | 
 |     Py_SIZE(np) = len; | 
 |     return (PyObject *)np; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh) | 
 | { | 
 |     if (!PyList_Check(a)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return NULL; | 
 |     } | 
 |     if (ilow < 0) { | 
 |         ilow = 0; | 
 |     } | 
 |     else if (ilow > Py_SIZE(a)) { | 
 |         ilow = Py_SIZE(a); | 
 |     } | 
 |     if (ihigh < ilow) { | 
 |         ihigh = ilow; | 
 |     } | 
 |     else if (ihigh > Py_SIZE(a)) { | 
 |         ihigh = Py_SIZE(a); | 
 |     } | 
 |     return list_slice((PyListObject *)a, ilow, ihigh); | 
 | } | 
 |  | 
 | static PyObject * | 
 | list_concat(PyListObject *a, PyObject *bb) | 
 | { | 
 |     Py_ssize_t size; | 
 |     Py_ssize_t i; | 
 |     PyObject **src, **dest; | 
 |     PyListObject *np; | 
 |     if (!PyList_Check(bb)) { | 
 |         PyErr_Format(PyExc_TypeError, | 
 |                   "can only concatenate list (not \"%.200s\") to list", | 
 |                   bb->ob_type->tp_name); | 
 |         return NULL; | 
 |     } | 
 | #define b ((PyListObject *)bb) | 
 |     if (Py_SIZE(a) > PY_SSIZE_T_MAX - Py_SIZE(b)) | 
 |         return PyErr_NoMemory(); | 
 |     size = Py_SIZE(a) + Py_SIZE(b); | 
 |     np = (PyListObject *) list_new_prealloc(size); | 
 |     if (np == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     src = a->ob_item; | 
 |     dest = np->ob_item; | 
 |     for (i = 0; i < Py_SIZE(a); i++) { | 
 |         PyObject *v = src[i]; | 
 |         Py_INCREF(v); | 
 |         dest[i] = v; | 
 |     } | 
 |     src = b->ob_item; | 
 |     dest = np->ob_item + Py_SIZE(a); | 
 |     for (i = 0; i < Py_SIZE(b); i++) { | 
 |         PyObject *v = src[i]; | 
 |         Py_INCREF(v); | 
 |         dest[i] = v; | 
 |     } | 
 |     Py_SIZE(np) = size; | 
 |     return (PyObject *)np; | 
 | #undef b | 
 | } | 
 |  | 
 | static PyObject * | 
 | list_repeat(PyListObject *a, Py_ssize_t n) | 
 | { | 
 |     Py_ssize_t i, j; | 
 |     Py_ssize_t size; | 
 |     PyListObject *np; | 
 |     PyObject **p, **items; | 
 |     PyObject *elem; | 
 |     if (n < 0) | 
 |         n = 0; | 
 |     if (n > 0 && Py_SIZE(a) > PY_SSIZE_T_MAX / n) | 
 |         return PyErr_NoMemory(); | 
 |     size = Py_SIZE(a) * n; | 
 |     if (size == 0) | 
 |         return PyList_New(0); | 
 |     np = (PyListObject *) list_new_prealloc(size); | 
 |     if (np == NULL) | 
 |         return NULL; | 
 |  | 
 |     if (Py_SIZE(a) == 1) { | 
 |         items = np->ob_item; | 
 |         elem = a->ob_item[0]; | 
 |         for (i = 0; i < n; i++) { | 
 |             items[i] = elem; | 
 |             Py_INCREF(elem); | 
 |         } | 
 |     } | 
 |     else { | 
 |         p = np->ob_item; | 
 |         items = a->ob_item; | 
 |         for (i = 0; i < n; i++) { | 
 |             for (j = 0; j < Py_SIZE(a); j++) { | 
 |                 *p = items[j]; | 
 |                 Py_INCREF(*p); | 
 |                 p++; | 
 |             } | 
 |         } | 
 |     } | 
 |     Py_SIZE(np) = size; | 
 |     return (PyObject *) np; | 
 | } | 
 |  | 
 | static int | 
 | _list_clear(PyListObject *a) | 
 | { | 
 |     Py_ssize_t i; | 
 |     PyObject **item = a->ob_item; | 
 |     if (item != NULL) { | 
 |         /* Because XDECREF can recursively invoke operations on | 
 |            this list, we make it empty first. */ | 
 |         i = Py_SIZE(a); | 
 |         Py_SIZE(a) = 0; | 
 |         a->ob_item = NULL; | 
 |         a->allocated = 0; | 
 |         while (--i >= 0) { | 
 |             Py_XDECREF(item[i]); | 
 |         } | 
 |         PyMem_FREE(item); | 
 |     } | 
 |     /* Never fails; the return value can be ignored. | 
 |        Note that there is no guarantee that the list is actually empty | 
 |        at this point, because XDECREF may have populated it again! */ | 
 |     return 0; | 
 | } | 
 |  | 
 | /* a[ilow:ihigh] = v if v != NULL. | 
 |  * del a[ilow:ihigh] if v == NULL. | 
 |  * | 
 |  * Special speed gimmick:  when v is NULL and ihigh - ilow <= 8, it's | 
 |  * guaranteed the call cannot fail. | 
 |  */ | 
 | static int | 
 | list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v) | 
 | { | 
 |     /* Because [X]DECREF can recursively invoke list operations on | 
 |        this list, we must postpone all [X]DECREF activity until | 
 |        after the list is back in its canonical shape.  Therefore | 
 |        we must allocate an additional array, 'recycle', into which | 
 |        we temporarily copy the items that are deleted from the | 
 |        list. :-( */ | 
 |     PyObject *recycle_on_stack[8]; | 
 |     PyObject **recycle = recycle_on_stack; /* will allocate more if needed */ | 
 |     PyObject **item; | 
 |     PyObject **vitem = NULL; | 
 |     PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */ | 
 |     Py_ssize_t n; /* # of elements in replacement list */ | 
 |     Py_ssize_t norig; /* # of elements in list getting replaced */ | 
 |     Py_ssize_t d; /* Change in size */ | 
 |     Py_ssize_t k; | 
 |     size_t s; | 
 |     int result = -1;            /* guilty until proved innocent */ | 
 | #define b ((PyListObject *)v) | 
 |     if (v == NULL) | 
 |         n = 0; | 
 |     else { | 
 |         if (a == b) { | 
 |             /* Special case "a[i:j] = a" -- copy b first */ | 
 |             v = list_slice(b, 0, Py_SIZE(b)); | 
 |             if (v == NULL) | 
 |                 return result; | 
 |             result = list_ass_slice(a, ilow, ihigh, v); | 
 |             Py_DECREF(v); | 
 |             return result; | 
 |         } | 
 |         v_as_SF = PySequence_Fast(v, "can only assign an iterable"); | 
 |         if(v_as_SF == NULL) | 
 |             goto Error; | 
 |         n = PySequence_Fast_GET_SIZE(v_as_SF); | 
 |         vitem = PySequence_Fast_ITEMS(v_as_SF); | 
 |     } | 
 |     if (ilow < 0) | 
 |         ilow = 0; | 
 |     else if (ilow > Py_SIZE(a)) | 
 |         ilow = Py_SIZE(a); | 
 |  | 
 |     if (ihigh < ilow) | 
 |         ihigh = ilow; | 
 |     else if (ihigh > Py_SIZE(a)) | 
 |         ihigh = Py_SIZE(a); | 
 |  | 
 |     norig = ihigh - ilow; | 
 |     assert(norig >= 0); | 
 |     d = n - norig; | 
 |     if (Py_SIZE(a) + d == 0) { | 
 |         Py_XDECREF(v_as_SF); | 
 |         return _list_clear(a); | 
 |     } | 
 |     item = a->ob_item; | 
 |     /* recycle the items that we are about to remove */ | 
 |     s = norig * sizeof(PyObject *); | 
 |     /* If norig == 0, item might be NULL, in which case we may not memcpy from it. */ | 
 |     if (s) { | 
 |         if (s > sizeof(recycle_on_stack)) { | 
 |             recycle = (PyObject **)PyMem_MALLOC(s); | 
 |             if (recycle == NULL) { | 
 |                 PyErr_NoMemory(); | 
 |                 goto Error; | 
 |             } | 
 |         } | 
 |         memcpy(recycle, &item[ilow], s); | 
 |     } | 
 |  | 
 |     if (d < 0) { /* Delete -d items */ | 
 |         Py_ssize_t tail; | 
 |         tail = (Py_SIZE(a) - ihigh) * sizeof(PyObject *); | 
 |         memmove(&item[ihigh+d], &item[ihigh], tail); | 
 |         if (list_resize(a, Py_SIZE(a) + d) < 0) { | 
 |             memmove(&item[ihigh], &item[ihigh+d], tail); | 
 |             memcpy(&item[ilow], recycle, s); | 
 |             goto Error; | 
 |         } | 
 |         item = a->ob_item; | 
 |     } | 
 |     else if (d > 0) { /* Insert d items */ | 
 |         k = Py_SIZE(a); | 
 |         if (list_resize(a, k+d) < 0) | 
 |             goto Error; | 
 |         item = a->ob_item; | 
 |         memmove(&item[ihigh+d], &item[ihigh], | 
 |             (k - ihigh)*sizeof(PyObject *)); | 
 |     } | 
 |     for (k = 0; k < n; k++, ilow++) { | 
 |         PyObject *w = vitem[k]; | 
 |         Py_XINCREF(w); | 
 |         item[ilow] = w; | 
 |     } | 
 |     for (k = norig - 1; k >= 0; --k) | 
 |         Py_XDECREF(recycle[k]); | 
 |     result = 0; | 
 |  Error: | 
 |     if (recycle != recycle_on_stack) | 
 |         PyMem_FREE(recycle); | 
 |     Py_XDECREF(v_as_SF); | 
 |     return result; | 
 | #undef b | 
 | } | 
 |  | 
 | int | 
 | PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v) | 
 | { | 
 |     if (!PyList_Check(a)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |     return list_ass_slice((PyListObject *)a, ilow, ihigh, v); | 
 | } | 
 |  | 
 | static PyObject * | 
 | list_inplace_repeat(PyListObject *self, Py_ssize_t n) | 
 | { | 
 |     PyObject **items; | 
 |     Py_ssize_t size, i, j, p; | 
 |  | 
 |  | 
 |     size = PyList_GET_SIZE(self); | 
 |     if (size == 0 || n == 1) { | 
 |         Py_INCREF(self); | 
 |         return (PyObject *)self; | 
 |     } | 
 |  | 
 |     if (n < 1) { | 
 |         (void)_list_clear(self); | 
 |         Py_INCREF(self); | 
 |         return (PyObject *)self; | 
 |     } | 
 |  | 
 |     if (size > PY_SSIZE_T_MAX / n) { | 
 |         return PyErr_NoMemory(); | 
 |     } | 
 |  | 
 |     if (list_resize(self, size*n) < 0) | 
 |         return NULL; | 
 |  | 
 |     p = size; | 
 |     items = self->ob_item; | 
 |     for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */ | 
 |         for (j = 0; j < size; j++) { | 
 |             PyObject *o = items[j]; | 
 |             Py_INCREF(o); | 
 |             items[p++] = o; | 
 |         } | 
 |     } | 
 |     Py_INCREF(self); | 
 |     return (PyObject *)self; | 
 | } | 
 |  | 
 | static int | 
 | list_ass_item(PyListObject *a, Py_ssize_t i, PyObject *v) | 
 | { | 
 |     if (!valid_index(i, Py_SIZE(a))) { | 
 |         PyErr_SetString(PyExc_IndexError, | 
 |                         "list assignment index out of range"); | 
 |         return -1; | 
 |     } | 
 |     if (v == NULL) | 
 |         return list_ass_slice(a, i, i+1, v); | 
 |     Py_INCREF(v); | 
 |     Py_SETREF(a->ob_item[i], v); | 
 |     return 0; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.insert | 
 |  | 
 |     index: Py_ssize_t | 
 |     object: object | 
 |     / | 
 |  | 
 | Insert object before index. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_insert_impl(PyListObject *self, Py_ssize_t index, PyObject *object) | 
 | /*[clinic end generated code: output=7f35e32f60c8cb78 input=858514cf894c7eab]*/ | 
 | { | 
 |     if (ins1(self, index, object) == 0) | 
 |         Py_RETURN_NONE; | 
 |     return NULL; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.clear | 
 |  | 
 | Remove all items from list. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_clear_impl(PyListObject *self) | 
 | /*[clinic end generated code: output=67a1896c01f74362 input=ca3c1646856742f6]*/ | 
 | { | 
 |     _list_clear(self); | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.copy | 
 |  | 
 | Return a shallow copy of the list. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_copy_impl(PyListObject *self) | 
 | /*[clinic end generated code: output=ec6b72d6209d418e input=6453ab159e84771f]*/ | 
 | { | 
 |     return list_slice(self, 0, Py_SIZE(self)); | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.append | 
 |  | 
 |      object: object | 
 |      / | 
 |  | 
 | Append object to the end of the list. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_append(PyListObject *self, PyObject *object) | 
 | /*[clinic end generated code: output=7c096003a29c0eae input=43a3fe48a7066e91]*/ | 
 | { | 
 |     if (app1(self, object) == 0) | 
 |         Py_RETURN_NONE; | 
 |     return NULL; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.extend | 
 |  | 
 |      iterable: object | 
 |      / | 
 |  | 
 | Extend list by appending elements from the iterable. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_extend(PyListObject *self, PyObject *iterable) | 
 | /*[clinic end generated code: output=630fb3bca0c8e789 input=9ec5ba3a81be3a4d]*/ | 
 | { | 
 |     PyObject *it;      /* iter(v) */ | 
 |     Py_ssize_t m;                  /* size of self */ | 
 |     Py_ssize_t n;                  /* guess for size of iterable */ | 
 |     Py_ssize_t mn;                 /* m + n */ | 
 |     Py_ssize_t i; | 
 |     PyObject *(*iternext)(PyObject *); | 
 |  | 
 |     /* Special cases: | 
 |        1) lists and tuples which can use PySequence_Fast ops | 
 |        2) extending self to self requires making a copy first | 
 |     */ | 
 |     if (PyList_CheckExact(iterable) || PyTuple_CheckExact(iterable) || | 
 |                 (PyObject *)self == iterable) { | 
 |         PyObject **src, **dest; | 
 |         iterable = PySequence_Fast(iterable, "argument must be iterable"); | 
 |         if (!iterable) | 
 |             return NULL; | 
 |         n = PySequence_Fast_GET_SIZE(iterable); | 
 |         if (n == 0) { | 
 |             /* short circuit when iterable is empty */ | 
 |             Py_DECREF(iterable); | 
 |             Py_RETURN_NONE; | 
 |         } | 
 |         m = Py_SIZE(self); | 
 |         /* It should not be possible to allocate a list large enough to cause | 
 |         an overflow on any relevant platform */ | 
 |         assert(m < PY_SSIZE_T_MAX - n); | 
 |         if (list_resize(self, m + n) < 0) { | 
 |             Py_DECREF(iterable); | 
 |             return NULL; | 
 |         } | 
 |         /* note that we may still have self == iterable here for the | 
 |          * situation a.extend(a), but the following code works | 
 |          * in that case too.  Just make sure to resize self | 
 |          * before calling PySequence_Fast_ITEMS. | 
 |          */ | 
 |         /* populate the end of self with iterable's items */ | 
 |         src = PySequence_Fast_ITEMS(iterable); | 
 |         dest = self->ob_item + m; | 
 |         for (i = 0; i < n; i++) { | 
 |             PyObject *o = src[i]; | 
 |             Py_INCREF(o); | 
 |             dest[i] = o; | 
 |         } | 
 |         Py_DECREF(iterable); | 
 |         Py_RETURN_NONE; | 
 |     } | 
 |  | 
 |     it = PyObject_GetIter(iterable); | 
 |     if (it == NULL) | 
 |         return NULL; | 
 |     iternext = *it->ob_type->tp_iternext; | 
 |  | 
 |     /* Guess a result list size. */ | 
 |     n = PyObject_LengthHint(iterable, 8); | 
 |     if (n < 0) { | 
 |         Py_DECREF(it); | 
 |         return NULL; | 
 |     } | 
 |     m = Py_SIZE(self); | 
 |     if (m > PY_SSIZE_T_MAX - n) { | 
 |         /* m + n overflowed; on the chance that n lied, and there really | 
 |          * is enough room, ignore it.  If n was telling the truth, we'll | 
 |          * eventually run out of memory during the loop. | 
 |          */ | 
 |     } | 
 |     else { | 
 |         mn = m + n; | 
 |         /* Make room. */ | 
 |         if (list_resize(self, mn) < 0) | 
 |             goto error; | 
 |         /* Make the list sane again. */ | 
 |         Py_SIZE(self) = m; | 
 |     } | 
 |  | 
 |     /* Run iterator to exhaustion. */ | 
 |     for (;;) { | 
 |         PyObject *item = iternext(it); | 
 |         if (item == NULL) { | 
 |             if (PyErr_Occurred()) { | 
 |                 if (PyErr_ExceptionMatches(PyExc_StopIteration)) | 
 |                     PyErr_Clear(); | 
 |                 else | 
 |                     goto error; | 
 |             } | 
 |             break; | 
 |         } | 
 |         if (Py_SIZE(self) < self->allocated) { | 
 |             /* steals ref */ | 
 |             PyList_SET_ITEM(self, Py_SIZE(self), item); | 
 |             ++Py_SIZE(self); | 
 |         } | 
 |         else { | 
 |             int status = app1(self, item); | 
 |             Py_DECREF(item);  /* append creates a new ref */ | 
 |             if (status < 0) | 
 |                 goto error; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Cut back result list if initial guess was too large. */ | 
 |     if (Py_SIZE(self) < self->allocated) { | 
 |         if (list_resize(self, Py_SIZE(self)) < 0) | 
 |             goto error; | 
 |     } | 
 |  | 
 |     Py_DECREF(it); | 
 |     Py_RETURN_NONE; | 
 |  | 
 |   error: | 
 |     Py_DECREF(it); | 
 |     return NULL; | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyList_Extend(PyListObject *self, PyObject *iterable) | 
 | { | 
 |     return list_extend(self, iterable); | 
 | } | 
 |  | 
 | static PyObject * | 
 | list_inplace_concat(PyListObject *self, PyObject *other) | 
 | { | 
 |     PyObject *result; | 
 |  | 
 |     result = list_extend(self, other); | 
 |     if (result == NULL) | 
 |         return result; | 
 |     Py_DECREF(result); | 
 |     Py_INCREF(self); | 
 |     return (PyObject *)self; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.pop | 
 |  | 
 |     index: Py_ssize_t = -1 | 
 |     / | 
 |  | 
 | Remove and return item at index (default last). | 
 |  | 
 | Raises IndexError if list is empty or index is out of range. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_pop_impl(PyListObject *self, Py_ssize_t index) | 
 | /*[clinic end generated code: output=6bd69dcb3f17eca8 input=b83675976f329e6f]*/ | 
 | { | 
 |     PyObject *v; | 
 |     int status; | 
 |  | 
 |     if (Py_SIZE(self) == 0) { | 
 |         /* Special-case most common failure cause */ | 
 |         PyErr_SetString(PyExc_IndexError, "pop from empty list"); | 
 |         return NULL; | 
 |     } | 
 |     if (index < 0) | 
 |         index += Py_SIZE(self); | 
 |     if (!valid_index(index, Py_SIZE(self))) { | 
 |         PyErr_SetString(PyExc_IndexError, "pop index out of range"); | 
 |         return NULL; | 
 |     } | 
 |     v = self->ob_item[index]; | 
 |     if (index == Py_SIZE(self) - 1) { | 
 |         status = list_resize(self, Py_SIZE(self) - 1); | 
 |         if (status >= 0) | 
 |             return v; /* and v now owns the reference the list had */ | 
 |         else | 
 |             return NULL; | 
 |     } | 
 |     Py_INCREF(v); | 
 |     status = list_ass_slice(self, index, index+1, (PyObject *)NULL); | 
 |     if (status < 0) { | 
 |         Py_DECREF(v); | 
 |         return NULL; | 
 |     } | 
 |     return v; | 
 | } | 
 |  | 
 | /* Reverse a slice of a list in place, from lo up to (exclusive) hi. */ | 
 | static void | 
 | reverse_slice(PyObject **lo, PyObject **hi) | 
 | { | 
 |     assert(lo && hi); | 
 |  | 
 |     --hi; | 
 |     while (lo < hi) { | 
 |         PyObject *t = *lo; | 
 |         *lo = *hi; | 
 |         *hi = t; | 
 |         ++lo; | 
 |         --hi; | 
 |     } | 
 | } | 
 |  | 
 | /* Lots of code for an adaptive, stable, natural mergesort.  There are many | 
 |  * pieces to this algorithm; read listsort.txt for overviews and details. | 
 |  */ | 
 |  | 
 | /* A sortslice contains a pointer to an array of keys and a pointer to | 
 |  * an array of corresponding values.  In other words, keys[i] | 
 |  * corresponds with values[i].  If values == NULL, then the keys are | 
 |  * also the values. | 
 |  * | 
 |  * Several convenience routines are provided here, so that keys and | 
 |  * values are always moved in sync. | 
 |  */ | 
 |  | 
 | typedef struct { | 
 |     PyObject **keys; | 
 |     PyObject **values; | 
 | } sortslice; | 
 |  | 
 | Py_LOCAL_INLINE(void) | 
 | sortslice_copy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j) | 
 | { | 
 |     s1->keys[i] = s2->keys[j]; | 
 |     if (s1->values != NULL) | 
 |         s1->values[i] = s2->values[j]; | 
 | } | 
 |  | 
 | Py_LOCAL_INLINE(void) | 
 | sortslice_copy_incr(sortslice *dst, sortslice *src) | 
 | { | 
 |     *dst->keys++ = *src->keys++; | 
 |     if (dst->values != NULL) | 
 |         *dst->values++ = *src->values++; | 
 | } | 
 |  | 
 | Py_LOCAL_INLINE(void) | 
 | sortslice_copy_decr(sortslice *dst, sortslice *src) | 
 | { | 
 |     *dst->keys-- = *src->keys--; | 
 |     if (dst->values != NULL) | 
 |         *dst->values-- = *src->values--; | 
 | } | 
 |  | 
 |  | 
 | Py_LOCAL_INLINE(void) | 
 | sortslice_memcpy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j, | 
 |                  Py_ssize_t n) | 
 | { | 
 |     memcpy(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n); | 
 |     if (s1->values != NULL) | 
 |         memcpy(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n); | 
 | } | 
 |  | 
 | Py_LOCAL_INLINE(void) | 
 | sortslice_memmove(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j, | 
 |                   Py_ssize_t n) | 
 | { | 
 |     memmove(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n); | 
 |     if (s1->values != NULL) | 
 |         memmove(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n); | 
 | } | 
 |  | 
 | Py_LOCAL_INLINE(void) | 
 | sortslice_advance(sortslice *slice, Py_ssize_t n) | 
 | { | 
 |     slice->keys += n; | 
 |     if (slice->values != NULL) | 
 |         slice->values += n; | 
 | } | 
 |  | 
 | /* Comparison function: ms->key_compare, which is set at run-time in | 
 |  * listsort_impl to optimize for various special cases. | 
 |  * Returns -1 on error, 1 if x < y, 0 if x >= y. | 
 |  */ | 
 |  | 
 | #define ISLT(X, Y) (*(ms->key_compare))(X, Y, ms) | 
 |  | 
 | /* Compare X to Y via "<".  Goto "fail" if the comparison raises an | 
 |    error.  Else "k" is set to true iff X<Y, and an "if (k)" block is | 
 |    started.  It makes more sense in context <wink>.  X and Y are PyObject*s. | 
 | */ | 
 | #define IFLT(X, Y) if ((k = ISLT(X, Y)) < 0) goto fail;  \ | 
 |            if (k) | 
 |  | 
 | /* The maximum number of entries in a MergeState's pending-runs stack. | 
 |  * This is enough to sort arrays of size up to about | 
 |  *     32 * phi ** MAX_MERGE_PENDING | 
 |  * where phi ~= 1.618.  85 is ridiculouslylarge enough, good for an array | 
 |  * with 2**64 elements. | 
 |  */ | 
 | #define MAX_MERGE_PENDING 85 | 
 |  | 
 | /* When we get into galloping mode, we stay there until both runs win less | 
 |  * often than MIN_GALLOP consecutive times.  See listsort.txt for more info. | 
 |  */ | 
 | #define MIN_GALLOP 7 | 
 |  | 
 | /* Avoid malloc for small temp arrays. */ | 
 | #define MERGESTATE_TEMP_SIZE 256 | 
 |  | 
 | /* One MergeState exists on the stack per invocation of mergesort.  It's just | 
 |  * a convenient way to pass state around among the helper functions. | 
 |  */ | 
 | struct s_slice { | 
 |     sortslice base; | 
 |     Py_ssize_t len; | 
 | }; | 
 |  | 
 | typedef struct s_MergeState MergeState; | 
 | struct s_MergeState { | 
 |     /* This controls when we get *into* galloping mode.  It's initialized | 
 |      * to MIN_GALLOP.  merge_lo and merge_hi tend to nudge it higher for | 
 |      * random data, and lower for highly structured data. | 
 |      */ | 
 |     Py_ssize_t min_gallop; | 
 |  | 
 |     /* 'a' is temp storage to help with merges.  It contains room for | 
 |      * alloced entries. | 
 |      */ | 
 |     sortslice a;        /* may point to temparray below */ | 
 |     Py_ssize_t alloced; | 
 |  | 
 |     /* A stack of n pending runs yet to be merged.  Run #i starts at | 
 |      * address base[i] and extends for len[i] elements.  It's always | 
 |      * true (so long as the indices are in bounds) that | 
 |      * | 
 |      *     pending[i].base + pending[i].len == pending[i+1].base | 
 |      * | 
 |      * so we could cut the storage for this, but it's a minor amount, | 
 |      * and keeping all the info explicit simplifies the code. | 
 |      */ | 
 |     int n; | 
 |     struct s_slice pending[MAX_MERGE_PENDING]; | 
 |  | 
 |     /* 'a' points to this when possible, rather than muck with malloc. */ | 
 |     PyObject *temparray[MERGESTATE_TEMP_SIZE]; | 
 |  | 
 |     /* This is the function we will use to compare two keys, | 
 |      * even when none of our special cases apply and we have to use | 
 |      * safe_object_compare. */ | 
 |     int (*key_compare)(PyObject *, PyObject *, MergeState *); | 
 |  | 
 |     /* This function is used by unsafe_object_compare to optimize comparisons | 
 |      * when we know our list is type-homogeneous but we can't assume anything else. | 
 |      * In the pre-sort check it is set equal to key->ob_type->tp_richcompare */ | 
 |     PyObject *(*key_richcompare)(PyObject *, PyObject *, int); | 
 |  | 
 |     /* This function is used by unsafe_tuple_compare to compare the first elements | 
 |      * of tuples. It may be set to safe_object_compare, but the idea is that hopefully | 
 |      * we can assume more, and use one of the special-case compares. */ | 
 |     int (*tuple_elem_compare)(PyObject *, PyObject *, MergeState *); | 
 | }; | 
 |  | 
 | /* binarysort is the best method for sorting small arrays: it does | 
 |    few compares, but can do data movement quadratic in the number of | 
 |    elements. | 
 |    [lo, hi) is a contiguous slice of a list, and is sorted via | 
 |    binary insertion.  This sort is stable. | 
 |    On entry, must have lo <= start <= hi, and that [lo, start) is already | 
 |    sorted (pass start == lo if you don't know!). | 
 |    If islt() complains return -1, else 0. | 
 |    Even in case of error, the output slice will be some permutation of | 
 |    the input (nothing is lost or duplicated). | 
 | */ | 
 | static int | 
 | binarysort(MergeState *ms, sortslice lo, PyObject **hi, PyObject **start) | 
 | { | 
 |     Py_ssize_t k; | 
 |     PyObject **l, **p, **r; | 
 |     PyObject *pivot; | 
 |  | 
 |     assert(lo.keys <= start && start <= hi); | 
 |     /* assert [lo, start) is sorted */ | 
 |     if (lo.keys == start) | 
 |         ++start; | 
 |     for (; start < hi; ++start) { | 
 |         /* set l to where *start belongs */ | 
 |         l = lo.keys; | 
 |         r = start; | 
 |         pivot = *r; | 
 |         /* Invariants: | 
 |          * pivot >= all in [lo, l). | 
 |          * pivot  < all in [r, start). | 
 |          * The second is vacuously true at the start. | 
 |          */ | 
 |         assert(l < r); | 
 |         do { | 
 |             p = l + ((r - l) >> 1); | 
 |             IFLT(pivot, *p) | 
 |                 r = p; | 
 |             else | 
 |                 l = p+1; | 
 |         } while (l < r); | 
 |         assert(l == r); | 
 |         /* The invariants still hold, so pivot >= all in [lo, l) and | 
 |            pivot < all in [l, start), so pivot belongs at l.  Note | 
 |            that if there are elements equal to pivot, l points to the | 
 |            first slot after them -- that's why this sort is stable. | 
 |            Slide over to make room. | 
 |            Caution: using memmove is much slower under MSVC 5; | 
 |            we're not usually moving many slots. */ | 
 |         for (p = start; p > l; --p) | 
 |             *p = *(p-1); | 
 |         *l = pivot; | 
 |         if (lo.values != NULL) { | 
 |             Py_ssize_t offset = lo.values - lo.keys; | 
 |             p = start + offset; | 
 |             pivot = *p; | 
 |             l += offset; | 
 |             for (p = start + offset; p > l; --p) | 
 |                 *p = *(p-1); | 
 |             *l = pivot; | 
 |         } | 
 |     } | 
 |     return 0; | 
 |  | 
 |  fail: | 
 |     return -1; | 
 | } | 
 |  | 
 | /* | 
 | Return the length of the run beginning at lo, in the slice [lo, hi).  lo < hi | 
 | is required on entry.  "A run" is the longest ascending sequence, with | 
 |  | 
 |     lo[0] <= lo[1] <= lo[2] <= ... | 
 |  | 
 | or the longest descending sequence, with | 
 |  | 
 |     lo[0] > lo[1] > lo[2] > ... | 
 |  | 
 | Boolean *descending is set to 0 in the former case, or to 1 in the latter. | 
 | For its intended use in a stable mergesort, the strictness of the defn of | 
 | "descending" is needed so that the caller can safely reverse a descending | 
 | sequence without violating stability (strict > ensures there are no equal | 
 | elements to get out of order). | 
 |  | 
 | Returns -1 in case of error. | 
 | */ | 
 | static Py_ssize_t | 
 | count_run(MergeState *ms, PyObject **lo, PyObject **hi, int *descending) | 
 | { | 
 |     Py_ssize_t k; | 
 |     Py_ssize_t n; | 
 |  | 
 |     assert(lo < hi); | 
 |     *descending = 0; | 
 |     ++lo; | 
 |     if (lo == hi) | 
 |         return 1; | 
 |  | 
 |     n = 2; | 
 |     IFLT(*lo, *(lo-1)) { | 
 |         *descending = 1; | 
 |         for (lo = lo+1; lo < hi; ++lo, ++n) { | 
 |             IFLT(*lo, *(lo-1)) | 
 |                 ; | 
 |             else | 
 |                 break; | 
 |         } | 
 |     } | 
 |     else { | 
 |         for (lo = lo+1; lo < hi; ++lo, ++n) { | 
 |             IFLT(*lo, *(lo-1)) | 
 |                 break; | 
 |         } | 
 |     } | 
 |  | 
 |     return n; | 
 | fail: | 
 |     return -1; | 
 | } | 
 |  | 
 | /* | 
 | Locate the proper position of key in a sorted vector; if the vector contains | 
 | an element equal to key, return the position immediately to the left of | 
 | the leftmost equal element.  [gallop_right() does the same except returns | 
 | the position to the right of the rightmost equal element (if any).] | 
 |  | 
 | "a" is a sorted vector with n elements, starting at a[0].  n must be > 0. | 
 |  | 
 | "hint" is an index at which to begin the search, 0 <= hint < n.  The closer | 
 | hint is to the final result, the faster this runs. | 
 |  | 
 | The return value is the int k in 0..n such that | 
 |  | 
 |     a[k-1] < key <= a[k] | 
 |  | 
 | pretending that *(a-1) is minus infinity and a[n] is plus infinity.  IOW, | 
 | key belongs at index k; or, IOW, the first k elements of a should precede | 
 | key, and the last n-k should follow key. | 
 |  | 
 | Returns -1 on error.  See listsort.txt for info on the method. | 
 | */ | 
 | static Py_ssize_t | 
 | gallop_left(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint) | 
 | { | 
 |     Py_ssize_t ofs; | 
 |     Py_ssize_t lastofs; | 
 |     Py_ssize_t k; | 
 |  | 
 |     assert(key && a && n > 0 && hint >= 0 && hint < n); | 
 |  | 
 |     a += hint; | 
 |     lastofs = 0; | 
 |     ofs = 1; | 
 |     IFLT(*a, key) { | 
 |         /* a[hint] < key -- gallop right, until | 
 |          * a[hint + lastofs] < key <= a[hint + ofs] | 
 |          */ | 
 |         const Py_ssize_t maxofs = n - hint;             /* &a[n-1] is highest */ | 
 |         while (ofs < maxofs) { | 
 |             IFLT(a[ofs], key) { | 
 |                 lastofs = ofs; | 
 |                 assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2); | 
 |                 ofs = (ofs << 1) + 1; | 
 |             } | 
 |             else                /* key <= a[hint + ofs] */ | 
 |                 break; | 
 |         } | 
 |         if (ofs > maxofs) | 
 |             ofs = maxofs; | 
 |         /* Translate back to offsets relative to &a[0]. */ | 
 |         lastofs += hint; | 
 |         ofs += hint; | 
 |     } | 
 |     else { | 
 |         /* key <= a[hint] -- gallop left, until | 
 |          * a[hint - ofs] < key <= a[hint - lastofs] | 
 |          */ | 
 |         const Py_ssize_t maxofs = hint + 1;             /* &a[0] is lowest */ | 
 |         while (ofs < maxofs) { | 
 |             IFLT(*(a-ofs), key) | 
 |                 break; | 
 |             /* key <= a[hint - ofs] */ | 
 |             lastofs = ofs; | 
 |             assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2); | 
 |             ofs = (ofs << 1) + 1; | 
 |         } | 
 |         if (ofs > maxofs) | 
 |             ofs = maxofs; | 
 |         /* Translate back to positive offsets relative to &a[0]. */ | 
 |         k = lastofs; | 
 |         lastofs = hint - ofs; | 
 |         ofs = hint - k; | 
 |     } | 
 |     a -= hint; | 
 |  | 
 |     assert(-1 <= lastofs && lastofs < ofs && ofs <= n); | 
 |     /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the | 
 |      * right of lastofs but no farther right than ofs.  Do a binary | 
 |      * search, with invariant a[lastofs-1] < key <= a[ofs]. | 
 |      */ | 
 |     ++lastofs; | 
 |     while (lastofs < ofs) { | 
 |         Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1); | 
 |  | 
 |         IFLT(a[m], key) | 
 |             lastofs = m+1;              /* a[m] < key */ | 
 |         else | 
 |             ofs = m;                    /* key <= a[m] */ | 
 |     } | 
 |     assert(lastofs == ofs);             /* so a[ofs-1] < key <= a[ofs] */ | 
 |     return ofs; | 
 |  | 
 | fail: | 
 |     return -1; | 
 | } | 
 |  | 
 | /* | 
 | Exactly like gallop_left(), except that if key already exists in a[0:n], | 
 | finds the position immediately to the right of the rightmost equal value. | 
 |  | 
 | The return value is the int k in 0..n such that | 
 |  | 
 |     a[k-1] <= key < a[k] | 
 |  | 
 | or -1 if error. | 
 |  | 
 | The code duplication is massive, but this is enough different given that | 
 | we're sticking to "<" comparisons that it's much harder to follow if | 
 | written as one routine with yet another "left or right?" flag. | 
 | */ | 
 | static Py_ssize_t | 
 | gallop_right(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint) | 
 | { | 
 |     Py_ssize_t ofs; | 
 |     Py_ssize_t lastofs; | 
 |     Py_ssize_t k; | 
 |  | 
 |     assert(key && a && n > 0 && hint >= 0 && hint < n); | 
 |  | 
 |     a += hint; | 
 |     lastofs = 0; | 
 |     ofs = 1; | 
 |     IFLT(key, *a) { | 
 |         /* key < a[hint] -- gallop left, until | 
 |          * a[hint - ofs] <= key < a[hint - lastofs] | 
 |          */ | 
 |         const Py_ssize_t maxofs = hint + 1;             /* &a[0] is lowest */ | 
 |         while (ofs < maxofs) { | 
 |             IFLT(key, *(a-ofs)) { | 
 |                 lastofs = ofs; | 
 |                 assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2); | 
 |                 ofs = (ofs << 1) + 1; | 
 |             } | 
 |             else                /* a[hint - ofs] <= key */ | 
 |                 break; | 
 |         } | 
 |         if (ofs > maxofs) | 
 |             ofs = maxofs; | 
 |         /* Translate back to positive offsets relative to &a[0]. */ | 
 |         k = lastofs; | 
 |         lastofs = hint - ofs; | 
 |         ofs = hint - k; | 
 |     } | 
 |     else { | 
 |         /* a[hint] <= key -- gallop right, until | 
 |          * a[hint + lastofs] <= key < a[hint + ofs] | 
 |         */ | 
 |         const Py_ssize_t maxofs = n - hint;             /* &a[n-1] is highest */ | 
 |         while (ofs < maxofs) { | 
 |             IFLT(key, a[ofs]) | 
 |                 break; | 
 |             /* a[hint + ofs] <= key */ | 
 |             lastofs = ofs; | 
 |             assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2); | 
 |             ofs = (ofs << 1) + 1; | 
 |         } | 
 |         if (ofs > maxofs) | 
 |             ofs = maxofs; | 
 |         /* Translate back to offsets relative to &a[0]. */ | 
 |         lastofs += hint; | 
 |         ofs += hint; | 
 |     } | 
 |     a -= hint; | 
 |  | 
 |     assert(-1 <= lastofs && lastofs < ofs && ofs <= n); | 
 |     /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the | 
 |      * right of lastofs but no farther right than ofs.  Do a binary | 
 |      * search, with invariant a[lastofs-1] <= key < a[ofs]. | 
 |      */ | 
 |     ++lastofs; | 
 |     while (lastofs < ofs) { | 
 |         Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1); | 
 |  | 
 |         IFLT(key, a[m]) | 
 |             ofs = m;                    /* key < a[m] */ | 
 |         else | 
 |             lastofs = m+1;              /* a[m] <= key */ | 
 |     } | 
 |     assert(lastofs == ofs);             /* so a[ofs-1] <= key < a[ofs] */ | 
 |     return ofs; | 
 |  | 
 | fail: | 
 |     return -1; | 
 | } | 
 |  | 
 | /* Conceptually a MergeState's constructor. */ | 
 | static void | 
 | merge_init(MergeState *ms, Py_ssize_t list_size, int has_keyfunc) | 
 | { | 
 |     assert(ms != NULL); | 
 |     if (has_keyfunc) { | 
 |         /* The temporary space for merging will need at most half the list | 
 |          * size rounded up.  Use the minimum possible space so we can use the | 
 |          * rest of temparray for other things.  In particular, if there is | 
 |          * enough extra space, listsort() will use it to store the keys. | 
 |          */ | 
 |         ms->alloced = (list_size + 1) / 2; | 
 |  | 
 |         /* ms->alloced describes how many keys will be stored at | 
 |            ms->temparray, but we also need to store the values.  Hence, | 
 |            ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */ | 
 |         if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced) | 
 |             ms->alloced = MERGESTATE_TEMP_SIZE / 2; | 
 |         ms->a.values = &ms->temparray[ms->alloced]; | 
 |     } | 
 |     else { | 
 |         ms->alloced = MERGESTATE_TEMP_SIZE; | 
 |         ms->a.values = NULL; | 
 |     } | 
 |     ms->a.keys = ms->temparray; | 
 |     ms->n = 0; | 
 |     ms->min_gallop = MIN_GALLOP; | 
 | } | 
 |  | 
 | /* Free all the temp memory owned by the MergeState.  This must be called | 
 |  * when you're done with a MergeState, and may be called before then if | 
 |  * you want to free the temp memory early. | 
 |  */ | 
 | static void | 
 | merge_freemem(MergeState *ms) | 
 | { | 
 |     assert(ms != NULL); | 
 |     if (ms->a.keys != ms->temparray) | 
 |         PyMem_Free(ms->a.keys); | 
 | } | 
 |  | 
 | /* Ensure enough temp memory for 'need' array slots is available. | 
 |  * Returns 0 on success and -1 if the memory can't be gotten. | 
 |  */ | 
 | static int | 
 | merge_getmem(MergeState *ms, Py_ssize_t need) | 
 | { | 
 |     int multiplier; | 
 |  | 
 |     assert(ms != NULL); | 
 |     if (need <= ms->alloced) | 
 |         return 0; | 
 |  | 
 |     multiplier = ms->a.values != NULL ? 2 : 1; | 
 |  | 
 |     /* Don't realloc!  That can cost cycles to copy the old data, but | 
 |      * we don't care what's in the block. | 
 |      */ | 
 |     merge_freemem(ms); | 
 |     if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject *) / multiplier) { | 
 |         PyErr_NoMemory(); | 
 |         return -1; | 
 |     } | 
 |     ms->a.keys = (PyObject **)PyMem_Malloc(multiplier * need | 
 |                                           * sizeof(PyObject *)); | 
 |     if (ms->a.keys != NULL) { | 
 |         ms->alloced = need; | 
 |         if (ms->a.values != NULL) | 
 |             ms->a.values = &ms->a.keys[need]; | 
 |         return 0; | 
 |     } | 
 |     PyErr_NoMemory(); | 
 |     return -1; | 
 | } | 
 | #define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 :   \ | 
 |                                 merge_getmem(MS, NEED)) | 
 |  | 
 | /* Merge the na elements starting at ssa with the nb elements starting at | 
 |  * ssb.keys = ssa.keys + na in a stable way, in-place.  na and nb must be > 0. | 
 |  * Must also have that ssa.keys[na-1] belongs at the end of the merge, and | 
 |  * should have na <= nb.  See listsort.txt for more info.  Return 0 if | 
 |  * successful, -1 if error. | 
 |  */ | 
 | static Py_ssize_t | 
 | merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na, | 
 |          sortslice ssb, Py_ssize_t nb) | 
 | { | 
 |     Py_ssize_t k; | 
 |     sortslice dest; | 
 |     int result = -1;            /* guilty until proved innocent */ | 
 |     Py_ssize_t min_gallop; | 
 |  | 
 |     assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0); | 
 |     assert(ssa.keys + na == ssb.keys); | 
 |     if (MERGE_GETMEM(ms, na) < 0) | 
 |         return -1; | 
 |     sortslice_memcpy(&ms->a, 0, &ssa, 0, na); | 
 |     dest = ssa; | 
 |     ssa = ms->a; | 
 |  | 
 |     sortslice_copy_incr(&dest, &ssb); | 
 |     --nb; | 
 |     if (nb == 0) | 
 |         goto Succeed; | 
 |     if (na == 1) | 
 |         goto CopyB; | 
 |  | 
 |     min_gallop = ms->min_gallop; | 
 |     for (;;) { | 
 |         Py_ssize_t acount = 0;          /* # of times A won in a row */ | 
 |         Py_ssize_t bcount = 0;          /* # of times B won in a row */ | 
 |  | 
 |         /* Do the straightforward thing until (if ever) one run | 
 |          * appears to win consistently. | 
 |          */ | 
 |         for (;;) { | 
 |             assert(na > 1 && nb > 0); | 
 |             k = ISLT(ssb.keys[0], ssa.keys[0]); | 
 |             if (k) { | 
 |                 if (k < 0) | 
 |                     goto Fail; | 
 |                 sortslice_copy_incr(&dest, &ssb); | 
 |                 ++bcount; | 
 |                 acount = 0; | 
 |                 --nb; | 
 |                 if (nb == 0) | 
 |                     goto Succeed; | 
 |                 if (bcount >= min_gallop) | 
 |                     break; | 
 |             } | 
 |             else { | 
 |                 sortslice_copy_incr(&dest, &ssa); | 
 |                 ++acount; | 
 |                 bcount = 0; | 
 |                 --na; | 
 |                 if (na == 1) | 
 |                     goto CopyB; | 
 |                 if (acount >= min_gallop) | 
 |                     break; | 
 |             } | 
 |         } | 
 |  | 
 |         /* One run is winning so consistently that galloping may | 
 |          * be a huge win.  So try that, and continue galloping until | 
 |          * (if ever) neither run appears to be winning consistently | 
 |          * anymore. | 
 |          */ | 
 |         ++min_gallop; | 
 |         do { | 
 |             assert(na > 1 && nb > 0); | 
 |             min_gallop -= min_gallop > 1; | 
 |             ms->min_gallop = min_gallop; | 
 |             k = gallop_right(ms, ssb.keys[0], ssa.keys, na, 0); | 
 |             acount = k; | 
 |             if (k) { | 
 |                 if (k < 0) | 
 |                     goto Fail; | 
 |                 sortslice_memcpy(&dest, 0, &ssa, 0, k); | 
 |                 sortslice_advance(&dest, k); | 
 |                 sortslice_advance(&ssa, k); | 
 |                 na -= k; | 
 |                 if (na == 1) | 
 |                     goto CopyB; | 
 |                 /* na==0 is impossible now if the comparison | 
 |                  * function is consistent, but we can't assume | 
 |                  * that it is. | 
 |                  */ | 
 |                 if (na == 0) | 
 |                     goto Succeed; | 
 |             } | 
 |             sortslice_copy_incr(&dest, &ssb); | 
 |             --nb; | 
 |             if (nb == 0) | 
 |                 goto Succeed; | 
 |  | 
 |             k = gallop_left(ms, ssa.keys[0], ssb.keys, nb, 0); | 
 |             bcount = k; | 
 |             if (k) { | 
 |                 if (k < 0) | 
 |                     goto Fail; | 
 |                 sortslice_memmove(&dest, 0, &ssb, 0, k); | 
 |                 sortslice_advance(&dest, k); | 
 |                 sortslice_advance(&ssb, k); | 
 |                 nb -= k; | 
 |                 if (nb == 0) | 
 |                     goto Succeed; | 
 |             } | 
 |             sortslice_copy_incr(&dest, &ssa); | 
 |             --na; | 
 |             if (na == 1) | 
 |                 goto CopyB; | 
 |         } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP); | 
 |         ++min_gallop;           /* penalize it for leaving galloping mode */ | 
 |         ms->min_gallop = min_gallop; | 
 |     } | 
 | Succeed: | 
 |     result = 0; | 
 | Fail: | 
 |     if (na) | 
 |         sortslice_memcpy(&dest, 0, &ssa, 0, na); | 
 |     return result; | 
 | CopyB: | 
 |     assert(na == 1 && nb > 0); | 
 |     /* The last element of ssa belongs at the end of the merge. */ | 
 |     sortslice_memmove(&dest, 0, &ssb, 0, nb); | 
 |     sortslice_copy(&dest, nb, &ssa, 0); | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Merge the na elements starting at pa with the nb elements starting at | 
 |  * ssb.keys = ssa.keys + na in a stable way, in-place.  na and nb must be > 0. | 
 |  * Must also have that ssa.keys[na-1] belongs at the end of the merge, and | 
 |  * should have na >= nb.  See listsort.txt for more info.  Return 0 if | 
 |  * successful, -1 if error. | 
 |  */ | 
 | static Py_ssize_t | 
 | merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na, | 
 |          sortslice ssb, Py_ssize_t nb) | 
 | { | 
 |     Py_ssize_t k; | 
 |     sortslice dest, basea, baseb; | 
 |     int result = -1;            /* guilty until proved innocent */ | 
 |     Py_ssize_t min_gallop; | 
 |  | 
 |     assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0); | 
 |     assert(ssa.keys + na == ssb.keys); | 
 |     if (MERGE_GETMEM(ms, nb) < 0) | 
 |         return -1; | 
 |     dest = ssb; | 
 |     sortslice_advance(&dest, nb-1); | 
 |     sortslice_memcpy(&ms->a, 0, &ssb, 0, nb); | 
 |     basea = ssa; | 
 |     baseb = ms->a; | 
 |     ssb.keys = ms->a.keys + nb - 1; | 
 |     if (ssb.values != NULL) | 
 |         ssb.values = ms->a.values + nb - 1; | 
 |     sortslice_advance(&ssa, na - 1); | 
 |  | 
 |     sortslice_copy_decr(&dest, &ssa); | 
 |     --na; | 
 |     if (na == 0) | 
 |         goto Succeed; | 
 |     if (nb == 1) | 
 |         goto CopyA; | 
 |  | 
 |     min_gallop = ms->min_gallop; | 
 |     for (;;) { | 
 |         Py_ssize_t acount = 0;          /* # of times A won in a row */ | 
 |         Py_ssize_t bcount = 0;          /* # of times B won in a row */ | 
 |  | 
 |         /* Do the straightforward thing until (if ever) one run | 
 |          * appears to win consistently. | 
 |          */ | 
 |         for (;;) { | 
 |             assert(na > 0 && nb > 1); | 
 |             k = ISLT(ssb.keys[0], ssa.keys[0]); | 
 |             if (k) { | 
 |                 if (k < 0) | 
 |                     goto Fail; | 
 |                 sortslice_copy_decr(&dest, &ssa); | 
 |                 ++acount; | 
 |                 bcount = 0; | 
 |                 --na; | 
 |                 if (na == 0) | 
 |                     goto Succeed; | 
 |                 if (acount >= min_gallop) | 
 |                     break; | 
 |             } | 
 |             else { | 
 |                 sortslice_copy_decr(&dest, &ssb); | 
 |                 ++bcount; | 
 |                 acount = 0; | 
 |                 --nb; | 
 |                 if (nb == 1) | 
 |                     goto CopyA; | 
 |                 if (bcount >= min_gallop) | 
 |                     break; | 
 |             } | 
 |         } | 
 |  | 
 |         /* One run is winning so consistently that galloping may | 
 |          * be a huge win.  So try that, and continue galloping until | 
 |          * (if ever) neither run appears to be winning consistently | 
 |          * anymore. | 
 |          */ | 
 |         ++min_gallop; | 
 |         do { | 
 |             assert(na > 0 && nb > 1); | 
 |             min_gallop -= min_gallop > 1; | 
 |             ms->min_gallop = min_gallop; | 
 |             k = gallop_right(ms, ssb.keys[0], basea.keys, na, na-1); | 
 |             if (k < 0) | 
 |                 goto Fail; | 
 |             k = na - k; | 
 |             acount = k; | 
 |             if (k) { | 
 |                 sortslice_advance(&dest, -k); | 
 |                 sortslice_advance(&ssa, -k); | 
 |                 sortslice_memmove(&dest, 1, &ssa, 1, k); | 
 |                 na -= k; | 
 |                 if (na == 0) | 
 |                     goto Succeed; | 
 |             } | 
 |             sortslice_copy_decr(&dest, &ssb); | 
 |             --nb; | 
 |             if (nb == 1) | 
 |                 goto CopyA; | 
 |  | 
 |             k = gallop_left(ms, ssa.keys[0], baseb.keys, nb, nb-1); | 
 |             if (k < 0) | 
 |                 goto Fail; | 
 |             k = nb - k; | 
 |             bcount = k; | 
 |             if (k) { | 
 |                 sortslice_advance(&dest, -k); | 
 |                 sortslice_advance(&ssb, -k); | 
 |                 sortslice_memcpy(&dest, 1, &ssb, 1, k); | 
 |                 nb -= k; | 
 |                 if (nb == 1) | 
 |                     goto CopyA; | 
 |                 /* nb==0 is impossible now if the comparison | 
 |                  * function is consistent, but we can't assume | 
 |                  * that it is. | 
 |                  */ | 
 |                 if (nb == 0) | 
 |                     goto Succeed; | 
 |             } | 
 |             sortslice_copy_decr(&dest, &ssa); | 
 |             --na; | 
 |             if (na == 0) | 
 |                 goto Succeed; | 
 |         } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP); | 
 |         ++min_gallop;           /* penalize it for leaving galloping mode */ | 
 |         ms->min_gallop = min_gallop; | 
 |     } | 
 | Succeed: | 
 |     result = 0; | 
 | Fail: | 
 |     if (nb) | 
 |         sortslice_memcpy(&dest, -(nb-1), &baseb, 0, nb); | 
 |     return result; | 
 | CopyA: | 
 |     assert(nb == 1 && na > 0); | 
 |     /* The first element of ssb belongs at the front of the merge. */ | 
 |     sortslice_memmove(&dest, 1-na, &ssa, 1-na, na); | 
 |     sortslice_advance(&dest, -na); | 
 |     sortslice_advance(&ssa, -na); | 
 |     sortslice_copy(&dest, 0, &ssb, 0); | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Merge the two runs at stack indices i and i+1. | 
 |  * Returns 0 on success, -1 on error. | 
 |  */ | 
 | static Py_ssize_t | 
 | merge_at(MergeState *ms, Py_ssize_t i) | 
 | { | 
 |     sortslice ssa, ssb; | 
 |     Py_ssize_t na, nb; | 
 |     Py_ssize_t k; | 
 |  | 
 |     assert(ms != NULL); | 
 |     assert(ms->n >= 2); | 
 |     assert(i >= 0); | 
 |     assert(i == ms->n - 2 || i == ms->n - 3); | 
 |  | 
 |     ssa = ms->pending[i].base; | 
 |     na = ms->pending[i].len; | 
 |     ssb = ms->pending[i+1].base; | 
 |     nb = ms->pending[i+1].len; | 
 |     assert(na > 0 && nb > 0); | 
 |     assert(ssa.keys + na == ssb.keys); | 
 |  | 
 |     /* Record the length of the combined runs; if i is the 3rd-last | 
 |      * run now, also slide over the last run (which isn't involved | 
 |      * in this merge).  The current run i+1 goes away in any case. | 
 |      */ | 
 |     ms->pending[i].len = na + nb; | 
 |     if (i == ms->n - 3) | 
 |         ms->pending[i+1] = ms->pending[i+2]; | 
 |     --ms->n; | 
 |  | 
 |     /* Where does b start in a?  Elements in a before that can be | 
 |      * ignored (already in place). | 
 |      */ | 
 |     k = gallop_right(ms, *ssb.keys, ssa.keys, na, 0); | 
 |     if (k < 0) | 
 |         return -1; | 
 |     sortslice_advance(&ssa, k); | 
 |     na -= k; | 
 |     if (na == 0) | 
 |         return 0; | 
 |  | 
 |     /* Where does a end in b?  Elements in b after that can be | 
 |      * ignored (already in place). | 
 |      */ | 
 |     nb = gallop_left(ms, ssa.keys[na-1], ssb.keys, nb, nb-1); | 
 |     if (nb <= 0) | 
 |         return nb; | 
 |  | 
 |     /* Merge what remains of the runs, using a temp array with | 
 |      * min(na, nb) elements. | 
 |      */ | 
 |     if (na <= nb) | 
 |         return merge_lo(ms, ssa, na, ssb, nb); | 
 |     else | 
 |         return merge_hi(ms, ssa, na, ssb, nb); | 
 | } | 
 |  | 
 | /* Examine the stack of runs waiting to be merged, merging adjacent runs | 
 |  * until the stack invariants are re-established: | 
 |  * | 
 |  * 1. len[-3] > len[-2] + len[-1] | 
 |  * 2. len[-2] > len[-1] | 
 |  * | 
 |  * See listsort.txt for more info. | 
 |  * | 
 |  * Returns 0 on success, -1 on error. | 
 |  */ | 
 | static int | 
 | merge_collapse(MergeState *ms) | 
 | { | 
 |     struct s_slice *p = ms->pending; | 
 |  | 
 |     assert(ms); | 
 |     while (ms->n > 1) { | 
 |         Py_ssize_t n = ms->n - 2; | 
 |         if ((n > 0 && p[n-1].len <= p[n].len + p[n+1].len) || | 
 |             (n > 1 && p[n-2].len <= p[n-1].len + p[n].len)) { | 
 |             if (p[n-1].len < p[n+1].len) | 
 |                 --n; | 
 |             if (merge_at(ms, n) < 0) | 
 |                 return -1; | 
 |         } | 
 |         else if (p[n].len <= p[n+1].len) { | 
 |             if (merge_at(ms, n) < 0) | 
 |                 return -1; | 
 |         } | 
 |         else | 
 |             break; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Regardless of invariants, merge all runs on the stack until only one | 
 |  * remains.  This is used at the end of the mergesort. | 
 |  * | 
 |  * Returns 0 on success, -1 on error. | 
 |  */ | 
 | static int | 
 | merge_force_collapse(MergeState *ms) | 
 | { | 
 |     struct s_slice *p = ms->pending; | 
 |  | 
 |     assert(ms); | 
 |     while (ms->n > 1) { | 
 |         Py_ssize_t n = ms->n - 2; | 
 |         if (n > 0 && p[n-1].len < p[n+1].len) | 
 |             --n; | 
 |         if (merge_at(ms, n) < 0) | 
 |             return -1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Compute a good value for the minimum run length; natural runs shorter | 
 |  * than this are boosted artificially via binary insertion. | 
 |  * | 
 |  * If n < 64, return n (it's too small to bother with fancy stuff). | 
 |  * Else if n is an exact power of 2, return 32. | 
 |  * Else return an int k, 32 <= k <= 64, such that n/k is close to, but | 
 |  * strictly less than, an exact power of 2. | 
 |  * | 
 |  * See listsort.txt for more info. | 
 |  */ | 
 | static Py_ssize_t | 
 | merge_compute_minrun(Py_ssize_t n) | 
 | { | 
 |     Py_ssize_t r = 0;           /* becomes 1 if any 1 bits are shifted off */ | 
 |  | 
 |     assert(n >= 0); | 
 |     while (n >= 64) { | 
 |         r |= n & 1; | 
 |         n >>= 1; | 
 |     } | 
 |     return n + r; | 
 | } | 
 |  | 
 | static void | 
 | reverse_sortslice(sortslice *s, Py_ssize_t n) | 
 | { | 
 |     reverse_slice(s->keys, &s->keys[n]); | 
 |     if (s->values != NULL) | 
 |         reverse_slice(s->values, &s->values[n]); | 
 | } | 
 |  | 
 | /* Here we define custom comparison functions to optimize for the cases one commonly | 
 |  * encounters in practice: homogeneous lists, often of one of the basic types. */ | 
 |  | 
 | /* This struct holds the comparison function and helper functions | 
 |  * selected in the pre-sort check. */ | 
 |  | 
 | /* These are the special case compare functions. | 
 |  * ms->key_compare will always point to one of these: */ | 
 |  | 
 | /* Heterogeneous compare: default, always safe to fall back on. */ | 
 | static int | 
 | safe_object_compare(PyObject *v, PyObject *w, MergeState *ms) | 
 | { | 
 |     /* No assumptions necessary! */ | 
 |     return PyObject_RichCompareBool(v, w, Py_LT); | 
 | } | 
 |  | 
 | /* Homogeneous compare: safe for any two compareable objects of the same type. | 
 |  * (ms->key_richcompare is set to ob_type->tp_richcompare in the | 
 |  *  pre-sort check.) | 
 |  */ | 
 | static int | 
 | unsafe_object_compare(PyObject *v, PyObject *w, MergeState *ms) | 
 | { | 
 |     PyObject *res_obj; int res; | 
 |  | 
 |     /* No assumptions, because we check first: */ | 
 |     if (v->ob_type->tp_richcompare != ms->key_richcompare) | 
 |         return PyObject_RichCompareBool(v, w, Py_LT); | 
 |  | 
 |     assert(ms->key_richcompare != NULL); | 
 |     res_obj = (*(ms->key_richcompare))(v, w, Py_LT); | 
 |  | 
 |     if (res_obj == Py_NotImplemented) { | 
 |         Py_DECREF(res_obj); | 
 |         return PyObject_RichCompareBool(v, w, Py_LT); | 
 |     } | 
 |     if (res_obj == NULL) | 
 |         return -1; | 
 |  | 
 |     if (PyBool_Check(res_obj)) { | 
 |         res = (res_obj == Py_True); | 
 |     } | 
 |     else { | 
 |         res = PyObject_IsTrue(res_obj); | 
 |     } | 
 |     Py_DECREF(res_obj); | 
 |  | 
 |     /* Note that we can't assert | 
 |      *     res == PyObject_RichCompareBool(v, w, Py_LT); | 
 |      * because of evil compare functions like this: | 
 |      *     lambda a, b:  int(random.random() * 3) - 1) | 
 |      * (which is actually in test_sort.py) */ | 
 |     return res; | 
 | } | 
 |  | 
 | /* Latin string compare: safe for any two latin (one byte per char) strings. */ | 
 | static int | 
 | unsafe_latin_compare(PyObject *v, PyObject *w, MergeState *ms) | 
 | { | 
 |     Py_ssize_t len; | 
 |     int res; | 
 |  | 
 |     /* Modified from Objects/unicodeobject.c:unicode_compare, assuming: */ | 
 |     assert(v->ob_type == w->ob_type); | 
 |     assert(v->ob_type == &PyUnicode_Type); | 
 |     assert(PyUnicode_KIND(v) == PyUnicode_KIND(w)); | 
 |     assert(PyUnicode_KIND(v) == PyUnicode_1BYTE_KIND); | 
 |  | 
 |     len = Py_MIN(PyUnicode_GET_LENGTH(v), PyUnicode_GET_LENGTH(w)); | 
 |     res = memcmp(PyUnicode_DATA(v), PyUnicode_DATA(w), len); | 
 |  | 
 |     res = (res != 0 ? | 
 |            res < 0 : | 
 |            PyUnicode_GET_LENGTH(v) < PyUnicode_GET_LENGTH(w)); | 
 |  | 
 |     assert(res == PyObject_RichCompareBool(v, w, Py_LT));; | 
 |     return res; | 
 | } | 
 |  | 
 | /* Bounded int compare: compare any two longs that fit in a single machine word. */ | 
 | static int | 
 | unsafe_long_compare(PyObject *v, PyObject *w, MergeState *ms) | 
 | { | 
 |     PyLongObject *vl, *wl; sdigit v0, w0; int res; | 
 |  | 
 |     /* Modified from Objects/longobject.c:long_compare, assuming: */ | 
 |     assert(v->ob_type == w->ob_type); | 
 |     assert(v->ob_type == &PyLong_Type); | 
 |     assert(Py_ABS(Py_SIZE(v)) <= 1); | 
 |     assert(Py_ABS(Py_SIZE(w)) <= 1); | 
 |  | 
 |     vl = (PyLongObject*)v; | 
 |     wl = (PyLongObject*)w; | 
 |  | 
 |     v0 = Py_SIZE(vl) == 0 ? 0 : (sdigit)vl->ob_digit[0]; | 
 |     w0 = Py_SIZE(wl) == 0 ? 0 : (sdigit)wl->ob_digit[0]; | 
 |  | 
 |     if (Py_SIZE(vl) < 0) | 
 |         v0 = -v0; | 
 |     if (Py_SIZE(wl) < 0) | 
 |         w0 = -w0; | 
 |  | 
 |     res = v0 < w0; | 
 |     assert(res == PyObject_RichCompareBool(v, w, Py_LT)); | 
 |     return res; | 
 | } | 
 |  | 
 | /* Float compare: compare any two floats. */ | 
 | static int | 
 | unsafe_float_compare(PyObject *v, PyObject *w, MergeState *ms) | 
 | { | 
 |     int res; | 
 |  | 
 |     /* Modified from Objects/floatobject.c:float_richcompare, assuming: */ | 
 |     assert(v->ob_type == w->ob_type); | 
 |     assert(v->ob_type == &PyFloat_Type); | 
 |  | 
 |     res = PyFloat_AS_DOUBLE(v) < PyFloat_AS_DOUBLE(w); | 
 |     assert(res == PyObject_RichCompareBool(v, w, Py_LT)); | 
 |     return res; | 
 | } | 
 |  | 
 | /* Tuple compare: compare *any* two tuples, using | 
 |  * ms->tuple_elem_compare to compare the first elements, which is set | 
 |  * using the same pre-sort check as we use for ms->key_compare, | 
 |  * but run on the list [x[0] for x in L]. This allows us to optimize compares | 
 |  * on two levels (as long as [x[0] for x in L] is type-homogeneous.) The idea is | 
 |  * that most tuple compares don't involve x[1:]. */ | 
 | static int | 
 | unsafe_tuple_compare(PyObject *v, PyObject *w, MergeState *ms) | 
 | { | 
 |     PyTupleObject *vt, *wt; | 
 |     Py_ssize_t i, vlen, wlen; | 
 |     int k; | 
 |  | 
 |     /* Modified from Objects/tupleobject.c:tuplerichcompare, assuming: */ | 
 |     assert(v->ob_type == w->ob_type); | 
 |     assert(v->ob_type == &PyTuple_Type); | 
 |     assert(Py_SIZE(v) > 0); | 
 |     assert(Py_SIZE(w) > 0); | 
 |  | 
 |     vt = (PyTupleObject *)v; | 
 |     wt = (PyTupleObject *)w; | 
 |  | 
 |     vlen = Py_SIZE(vt); | 
 |     wlen = Py_SIZE(wt); | 
 |  | 
 |     for (i = 0; i < vlen && i < wlen; i++) { | 
 |         k = PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_EQ); | 
 |         if (k < 0) | 
 |             return -1; | 
 |         if (!k) | 
 |             break; | 
 |     } | 
 |  | 
 |     if (i >= vlen || i >= wlen) | 
 |         return vlen < wlen; | 
 |  | 
 |     if (i == 0) | 
 |         return ms->tuple_elem_compare(vt->ob_item[i], wt->ob_item[i], ms); | 
 |     else | 
 |         return PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_LT); | 
 | } | 
 |  | 
 | /* An adaptive, stable, natural mergesort.  See listsort.txt. | 
 |  * Returns Py_None on success, NULL on error.  Even in case of error, the | 
 |  * list will be some permutation of its input state (nothing is lost or | 
 |  * duplicated). | 
 |  */ | 
 | /*[clinic input] | 
 | list.sort | 
 |  | 
 |     * | 
 |     key as keyfunc: object = None | 
 |     reverse: bool(accept={int}) = False | 
 |  | 
 | Sort the list in ascending order and return None. | 
 |  | 
 | The sort is in-place (i.e. the list itself is modified) and stable (i.e. the | 
 | order of two equal elements is maintained). | 
 |  | 
 | If a key function is given, apply it once to each list item and sort them, | 
 | ascending or descending, according to their function values. | 
 |  | 
 | The reverse flag can be set to sort in descending order. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_sort_impl(PyListObject *self, PyObject *keyfunc, int reverse) | 
 | /*[clinic end generated code: output=57b9f9c5e23fbe42 input=cb56cd179a713060]*/ | 
 | { | 
 |     MergeState ms; | 
 |     Py_ssize_t nremaining; | 
 |     Py_ssize_t minrun; | 
 |     sortslice lo; | 
 |     Py_ssize_t saved_ob_size, saved_allocated; | 
 |     PyObject **saved_ob_item; | 
 |     PyObject **final_ob_item; | 
 |     PyObject *result = NULL;            /* guilty until proved innocent */ | 
 |     Py_ssize_t i; | 
 |     PyObject **keys; | 
 |  | 
 |     assert(self != NULL); | 
 |     assert(PyList_Check(self)); | 
 |     if (keyfunc == Py_None) | 
 |         keyfunc = NULL; | 
 |  | 
 |     /* The list is temporarily made empty, so that mutations performed | 
 |      * by comparison functions can't affect the slice of memory we're | 
 |      * sorting (allowing mutations during sorting is a core-dump | 
 |      * factory, since ob_item may change). | 
 |      */ | 
 |     saved_ob_size = Py_SIZE(self); | 
 |     saved_ob_item = self->ob_item; | 
 |     saved_allocated = self->allocated; | 
 |     Py_SIZE(self) = 0; | 
 |     self->ob_item = NULL; | 
 |     self->allocated = -1; /* any operation will reset it to >= 0 */ | 
 |  | 
 |     if (keyfunc == NULL) { | 
 |         keys = NULL; | 
 |         lo.keys = saved_ob_item; | 
 |         lo.values = NULL; | 
 |     } | 
 |     else { | 
 |         if (saved_ob_size < MERGESTATE_TEMP_SIZE/2) | 
 |             /* Leverage stack space we allocated but won't otherwise use */ | 
 |             keys = &ms.temparray[saved_ob_size+1]; | 
 |         else { | 
 |             keys = PyMem_MALLOC(sizeof(PyObject *) * saved_ob_size); | 
 |             if (keys == NULL) { | 
 |                 PyErr_NoMemory(); | 
 |                 goto keyfunc_fail; | 
 |             } | 
 |         } | 
 |  | 
 |         for (i = 0; i < saved_ob_size ; i++) { | 
 |             keys[i] = _PyObject_CallOneArg(keyfunc, saved_ob_item[i]); | 
 |             if (keys[i] == NULL) { | 
 |                 for (i=i-1 ; i>=0 ; i--) | 
 |                     Py_DECREF(keys[i]); | 
 |                 if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2) | 
 |                     PyMem_FREE(keys); | 
 |                 goto keyfunc_fail; | 
 |             } | 
 |         } | 
 |  | 
 |         lo.keys = keys; | 
 |         lo.values = saved_ob_item; | 
 |     } | 
 |  | 
 |  | 
 |     /* The pre-sort check: here's where we decide which compare function to use. | 
 |      * How much optimization is safe? We test for homogeneity with respect to | 
 |      * several properties that are expensive to check at compare-time, and | 
 |      * set ms appropriately. */ | 
 |     if (saved_ob_size > 1) { | 
 |         /* Assume the first element is representative of the whole list. */ | 
 |         int keys_are_in_tuples = (lo.keys[0]->ob_type == &PyTuple_Type && | 
 |                                   Py_SIZE(lo.keys[0]) > 0); | 
 |  | 
 |         PyTypeObject* key_type = (keys_are_in_tuples ? | 
 |                                   PyTuple_GET_ITEM(lo.keys[0], 0)->ob_type : | 
 |                                   lo.keys[0]->ob_type); | 
 |  | 
 |         int keys_are_all_same_type = 1; | 
 |         int strings_are_latin = 1; | 
 |         int ints_are_bounded = 1; | 
 |  | 
 |         /* Prove that assumption by checking every key. */ | 
 |         for (i=0; i < saved_ob_size; i++) { | 
 |  | 
 |             if (keys_are_in_tuples && | 
 |                 !(lo.keys[i]->ob_type == &PyTuple_Type && Py_SIZE(lo.keys[i]) != 0)) { | 
 |                 keys_are_in_tuples = 0; | 
 |                 keys_are_all_same_type = 0; | 
 |                 break; | 
 |             } | 
 |  | 
 |             /* Note: for lists of tuples, key is the first element of the tuple | 
 |              * lo.keys[i], not lo.keys[i] itself! We verify type-homogeneity | 
 |              * for lists of tuples in the if-statement directly above. */ | 
 |             PyObject *key = (keys_are_in_tuples ? | 
 |                              PyTuple_GET_ITEM(lo.keys[i], 0) : | 
 |                              lo.keys[i]); | 
 |  | 
 |             if (key->ob_type != key_type) { | 
 |                 keys_are_all_same_type = 0; | 
 |                 /* If keys are in tuple we must loop over the whole list to make | 
 |                    sure all items are tuples */ | 
 |                 if (!keys_are_in_tuples) { | 
 |                     break; | 
 |                 } | 
 |             } | 
 |  | 
 |             if (keys_are_all_same_type) { | 
 |                 if (key_type == &PyLong_Type && | 
 |                     ints_are_bounded && | 
 |                     Py_ABS(Py_SIZE(key)) > 1) { | 
 |  | 
 |                     ints_are_bounded = 0; | 
 |                 } | 
 |                 else if (key_type == &PyUnicode_Type && | 
 |                          strings_are_latin && | 
 |                          PyUnicode_KIND(key) != PyUnicode_1BYTE_KIND) { | 
 |  | 
 |                         strings_are_latin = 0; | 
 |                     } | 
 |                 } | 
 |             } | 
 |  | 
 |         /* Choose the best compare, given what we now know about the keys. */ | 
 |         if (keys_are_all_same_type) { | 
 |  | 
 |             if (key_type == &PyUnicode_Type && strings_are_latin) { | 
 |                 ms.key_compare = unsafe_latin_compare; | 
 |             } | 
 |             else if (key_type == &PyLong_Type && ints_are_bounded) { | 
 |                 ms.key_compare = unsafe_long_compare; | 
 |             } | 
 |             else if (key_type == &PyFloat_Type) { | 
 |                 ms.key_compare = unsafe_float_compare; | 
 |             } | 
 |             else if ((ms.key_richcompare = key_type->tp_richcompare) != NULL) { | 
 |                 ms.key_compare = unsafe_object_compare; | 
 |             } | 
 |             else { | 
 |                 ms.key_compare = safe_object_compare; | 
 |             } | 
 |         } | 
 |         else { | 
 |             ms.key_compare = safe_object_compare; | 
 |         } | 
 |  | 
 |         if (keys_are_in_tuples) { | 
 |             /* Make sure we're not dealing with tuples of tuples | 
 |              * (remember: here, key_type refers list [key[0] for key in keys]) */ | 
 |             if (key_type == &PyTuple_Type) { | 
 |                 ms.tuple_elem_compare = safe_object_compare; | 
 |             } | 
 |             else { | 
 |                 ms.tuple_elem_compare = ms.key_compare; | 
 |             } | 
 |  | 
 |             ms.key_compare = unsafe_tuple_compare; | 
 |         } | 
 |     } | 
 |     /* End of pre-sort check: ms is now set properly! */ | 
 |  | 
 |     merge_init(&ms, saved_ob_size, keys != NULL); | 
 |  | 
 |     nremaining = saved_ob_size; | 
 |     if (nremaining < 2) | 
 |         goto succeed; | 
 |  | 
 |     /* Reverse sort stability achieved by initially reversing the list, | 
 |     applying a stable forward sort, then reversing the final result. */ | 
 |     if (reverse) { | 
 |         if (keys != NULL) | 
 |             reverse_slice(&keys[0], &keys[saved_ob_size]); | 
 |         reverse_slice(&saved_ob_item[0], &saved_ob_item[saved_ob_size]); | 
 |     } | 
 |  | 
 |     /* March over the array once, left to right, finding natural runs, | 
 |      * and extending short natural runs to minrun elements. | 
 |      */ | 
 |     minrun = merge_compute_minrun(nremaining); | 
 |     do { | 
 |         int descending; | 
 |         Py_ssize_t n; | 
 |  | 
 |         /* Identify next run. */ | 
 |         n = count_run(&ms, lo.keys, lo.keys + nremaining, &descending); | 
 |         if (n < 0) | 
 |             goto fail; | 
 |         if (descending) | 
 |             reverse_sortslice(&lo, n); | 
 |         /* If short, extend to min(minrun, nremaining). */ | 
 |         if (n < minrun) { | 
 |             const Py_ssize_t force = nremaining <= minrun ? | 
 |                               nremaining : minrun; | 
 |             if (binarysort(&ms, lo, lo.keys + force, lo.keys + n) < 0) | 
 |                 goto fail; | 
 |             n = force; | 
 |         } | 
 |         /* Push run onto pending-runs stack, and maybe merge. */ | 
 |         assert(ms.n < MAX_MERGE_PENDING); | 
 |         ms.pending[ms.n].base = lo; | 
 |         ms.pending[ms.n].len = n; | 
 |         ++ms.n; | 
 |         if (merge_collapse(&ms) < 0) | 
 |             goto fail; | 
 |         /* Advance to find next run. */ | 
 |         sortslice_advance(&lo, n); | 
 |         nremaining -= n; | 
 |     } while (nremaining); | 
 |  | 
 |     if (merge_force_collapse(&ms) < 0) | 
 |         goto fail; | 
 |     assert(ms.n == 1); | 
 |     assert(keys == NULL | 
 |            ? ms.pending[0].base.keys == saved_ob_item | 
 |            : ms.pending[0].base.keys == &keys[0]); | 
 |     assert(ms.pending[0].len == saved_ob_size); | 
 |     lo = ms.pending[0].base; | 
 |  | 
 | succeed: | 
 |     result = Py_None; | 
 | fail: | 
 |     if (keys != NULL) { | 
 |         for (i = 0; i < saved_ob_size; i++) | 
 |             Py_DECREF(keys[i]); | 
 |         if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2) | 
 |             PyMem_FREE(keys); | 
 |     } | 
 |  | 
 |     if (self->allocated != -1 && result != NULL) { | 
 |         /* The user mucked with the list during the sort, | 
 |          * and we don't already have another error to report. | 
 |          */ | 
 |         PyErr_SetString(PyExc_ValueError, "list modified during sort"); | 
 |         result = NULL; | 
 |     } | 
 |  | 
 |     if (reverse && saved_ob_size > 1) | 
 |         reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size); | 
 |  | 
 |     merge_freemem(&ms); | 
 |  | 
 | keyfunc_fail: | 
 |     final_ob_item = self->ob_item; | 
 |     i = Py_SIZE(self); | 
 |     Py_SIZE(self) = saved_ob_size; | 
 |     self->ob_item = saved_ob_item; | 
 |     self->allocated = saved_allocated; | 
 |     if (final_ob_item != NULL) { | 
 |         /* we cannot use _list_clear() for this because it does not | 
 |            guarantee that the list is really empty when it returns */ | 
 |         while (--i >= 0) { | 
 |             Py_XDECREF(final_ob_item[i]); | 
 |         } | 
 |         PyMem_FREE(final_ob_item); | 
 |     } | 
 |     Py_XINCREF(result); | 
 |     return result; | 
 | } | 
 | #undef IFLT | 
 | #undef ISLT | 
 |  | 
 | int | 
 | PyList_Sort(PyObject *v) | 
 | { | 
 |     if (v == NULL || !PyList_Check(v)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |     v = list_sort_impl((PyListObject *)v, NULL, 0); | 
 |     if (v == NULL) | 
 |         return -1; | 
 |     Py_DECREF(v); | 
 |     return 0; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.reverse | 
 |  | 
 | Reverse *IN PLACE*. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_reverse_impl(PyListObject *self) | 
 | /*[clinic end generated code: output=482544fc451abea9 input=eefd4c3ae1bc9887]*/ | 
 | { | 
 |     if (Py_SIZE(self) > 1) | 
 |         reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self)); | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | int | 
 | PyList_Reverse(PyObject *v) | 
 | { | 
 |     PyListObject *self = (PyListObject *)v; | 
 |  | 
 |     if (v == NULL || !PyList_Check(v)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return -1; | 
 |     } | 
 |     if (Py_SIZE(self) > 1) | 
 |         reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self)); | 
 |     return 0; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyList_AsTuple(PyObject *v) | 
 | { | 
 |     if (v == NULL || !PyList_Check(v)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return NULL; | 
 |     } | 
 |     return _PyTuple_FromArray(((PyListObject *)v)->ob_item, Py_SIZE(v)); | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.index | 
 |  | 
 |     value: object | 
 |     start: slice_index(accept={int}) = 0 | 
 |     stop: slice_index(accept={int}, c_default="PY_SSIZE_T_MAX") = sys.maxsize | 
 |     / | 
 |  | 
 | Return first index of value. | 
 |  | 
 | Raises ValueError if the value is not present. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_index_impl(PyListObject *self, PyObject *value, Py_ssize_t start, | 
 |                 Py_ssize_t stop) | 
 | /*[clinic end generated code: output=ec51b88787e4e481 input=40ec5826303a0eb1]*/ | 
 | { | 
 |     Py_ssize_t i; | 
 |  | 
 |     if (start < 0) { | 
 |         start += Py_SIZE(self); | 
 |         if (start < 0) | 
 |             start = 0; | 
 |     } | 
 |     if (stop < 0) { | 
 |         stop += Py_SIZE(self); | 
 |         if (stop < 0) | 
 |             stop = 0; | 
 |     } | 
 |     for (i = start; i < stop && i < Py_SIZE(self); i++) { | 
 |         int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ); | 
 |         if (cmp > 0) | 
 |             return PyLong_FromSsize_t(i); | 
 |         else if (cmp < 0) | 
 |             return NULL; | 
 |     } | 
 |     PyErr_Format(PyExc_ValueError, "%R is not in list", value); | 
 |     return NULL; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.count | 
 |  | 
 |      value: object | 
 |      / | 
 |  | 
 | Return number of occurrences of value. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_count(PyListObject *self, PyObject *value) | 
 | /*[clinic end generated code: output=b1f5d284205ae714 input=3bdc3a5e6f749565]*/ | 
 | { | 
 |     Py_ssize_t count = 0; | 
 |     Py_ssize_t i; | 
 |  | 
 |     for (i = 0; i < Py_SIZE(self); i++) { | 
 |         int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ); | 
 |         if (cmp > 0) | 
 |             count++; | 
 |         else if (cmp < 0) | 
 |             return NULL; | 
 |     } | 
 |     return PyLong_FromSsize_t(count); | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.remove | 
 |  | 
 |      value: object | 
 |      / | 
 |  | 
 | Remove first occurrence of value. | 
 |  | 
 | Raises ValueError if the value is not present. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list_remove(PyListObject *self, PyObject *value) | 
 | /*[clinic end generated code: output=f087e1951a5e30d1 input=2dc2ba5bb2fb1f82]*/ | 
 | { | 
 |     Py_ssize_t i; | 
 |  | 
 |     for (i = 0; i < Py_SIZE(self); i++) { | 
 |         int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ); | 
 |         if (cmp > 0) { | 
 |             if (list_ass_slice(self, i, i+1, | 
 |                                (PyObject *)NULL) == 0) | 
 |                 Py_RETURN_NONE; | 
 |             return NULL; | 
 |         } | 
 |         else if (cmp < 0) | 
 |             return NULL; | 
 |     } | 
 |     PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list"); | 
 |     return NULL; | 
 | } | 
 |  | 
 | static int | 
 | list_traverse(PyListObject *o, visitproc visit, void *arg) | 
 | { | 
 |     Py_ssize_t i; | 
 |  | 
 |     for (i = Py_SIZE(o); --i >= 0; ) | 
 |         Py_VISIT(o->ob_item[i]); | 
 |     return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | list_richcompare(PyObject *v, PyObject *w, int op) | 
 | { | 
 |     PyListObject *vl, *wl; | 
 |     Py_ssize_t i; | 
 |  | 
 |     if (!PyList_Check(v) || !PyList_Check(w)) | 
 |         Py_RETURN_NOTIMPLEMENTED; | 
 |  | 
 |     vl = (PyListObject *)v; | 
 |     wl = (PyListObject *)w; | 
 |  | 
 |     if (Py_SIZE(vl) != Py_SIZE(wl) && (op == Py_EQ || op == Py_NE)) { | 
 |         /* Shortcut: if the lengths differ, the lists differ */ | 
 |         if (op == Py_EQ) | 
 |             Py_RETURN_FALSE; | 
 |         else | 
 |             Py_RETURN_TRUE; | 
 |     } | 
 |  | 
 |     /* Search for the first index where items are different */ | 
 |     for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) { | 
 |         int k = PyObject_RichCompareBool(vl->ob_item[i], | 
 |                                          wl->ob_item[i], Py_EQ); | 
 |         if (k < 0) | 
 |             return NULL; | 
 |         if (!k) | 
 |             break; | 
 |     } | 
 |  | 
 |     if (i >= Py_SIZE(vl) || i >= Py_SIZE(wl)) { | 
 |         /* No more items to compare -- compare sizes */ | 
 |         Py_RETURN_RICHCOMPARE(Py_SIZE(vl), Py_SIZE(wl), op); | 
 |     } | 
 |  | 
 |     /* We have an item that differs -- shortcuts for EQ/NE */ | 
 |     if (op == Py_EQ) { | 
 |         Py_RETURN_FALSE; | 
 |     } | 
 |     if (op == Py_NE) { | 
 |         Py_RETURN_TRUE; | 
 |     } | 
 |  | 
 |     /* Compare the final item again using the proper operator */ | 
 |     return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op); | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.__init__ | 
 |  | 
 |     iterable: object(c_default="NULL") = () | 
 |     / | 
 |  | 
 | Built-in mutable sequence. | 
 |  | 
 | If no argument is given, the constructor creates a new empty list. | 
 | The argument must be an iterable if specified. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static int | 
 | list___init___impl(PyListObject *self, PyObject *iterable) | 
 | /*[clinic end generated code: output=0f3c21379d01de48 input=b3f3fe7206af8f6b]*/ | 
 | { | 
 |     /* Verify list invariants established by PyType_GenericAlloc() */ | 
 |     assert(0 <= Py_SIZE(self)); | 
 |     assert(Py_SIZE(self) <= self->allocated || self->allocated == -1); | 
 |     assert(self->ob_item != NULL || | 
 |            self->allocated == 0 || self->allocated == -1); | 
 |  | 
 |     /* Empty previous contents */ | 
 |     if (self->ob_item != NULL) { | 
 |         (void)_list_clear(self); | 
 |     } | 
 |     if (iterable != NULL) { | 
 |         if (_PyObject_HasLen(iterable)) { | 
 |             Py_ssize_t iter_len = PyObject_Size(iterable); | 
 |             if (iter_len == -1) { | 
 |                 if (!PyErr_ExceptionMatches(PyExc_TypeError)) { | 
 |                     return -1; | 
 |                 } | 
 |                 PyErr_Clear(); | 
 |             } | 
 |             if (iter_len > 0 && self->ob_item == NULL | 
 |                 && list_preallocate_exact(self, iter_len)) { | 
 |                 return -1; | 
 |             } | 
 |         } | 
 |         PyObject *rv = list_extend(self, iterable); | 
 |         if (rv == NULL) | 
 |             return -1; | 
 |         Py_DECREF(rv); | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | list.__sizeof__ | 
 |  | 
 | Return the size of the list in memory, in bytes. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list___sizeof___impl(PyListObject *self) | 
 | /*[clinic end generated code: output=3417541f95f9a53e input=b8030a5d5ce8a187]*/ | 
 | { | 
 |     Py_ssize_t res; | 
 |  | 
 |     res = _PyObject_SIZE(Py_TYPE(self)) + self->allocated * sizeof(void*); | 
 |     return PyLong_FromSsize_t(res); | 
 | } | 
 |  | 
 | static PyObject *list_iter(PyObject *seq); | 
 | static PyObject *list_subscript(PyListObject*, PyObject*); | 
 |  | 
 | static PyMethodDef list_methods[] = { | 
 |     {"__getitem__", (PyCFunction)list_subscript, METH_O|METH_COEXIST, "x.__getitem__(y) <==> x[y]"}, | 
 |     LIST___REVERSED___METHODDEF | 
 |     LIST___SIZEOF___METHODDEF | 
 |     LIST_CLEAR_METHODDEF | 
 |     LIST_COPY_METHODDEF | 
 |     LIST_APPEND_METHODDEF | 
 |     LIST_INSERT_METHODDEF | 
 |     LIST_EXTEND_METHODDEF | 
 |     LIST_POP_METHODDEF | 
 |     LIST_REMOVE_METHODDEF | 
 |     LIST_INDEX_METHODDEF | 
 |     LIST_COUNT_METHODDEF | 
 |     LIST_REVERSE_METHODDEF | 
 |     LIST_SORT_METHODDEF | 
 |     {NULL,              NULL}           /* sentinel */ | 
 | }; | 
 |  | 
 | static PySequenceMethods list_as_sequence = { | 
 |     (lenfunc)list_length,                       /* sq_length */ | 
 |     (binaryfunc)list_concat,                    /* sq_concat */ | 
 |     (ssizeargfunc)list_repeat,                  /* sq_repeat */ | 
 |     (ssizeargfunc)list_item,                    /* sq_item */ | 
 |     0,                                          /* sq_slice */ | 
 |     (ssizeobjargproc)list_ass_item,             /* sq_ass_item */ | 
 |     0,                                          /* sq_ass_slice */ | 
 |     (objobjproc)list_contains,                  /* sq_contains */ | 
 |     (binaryfunc)list_inplace_concat,            /* sq_inplace_concat */ | 
 |     (ssizeargfunc)list_inplace_repeat,          /* sq_inplace_repeat */ | 
 | }; | 
 |  | 
 | static PyObject * | 
 | list_subscript(PyListObject* self, PyObject* item) | 
 | { | 
 |     if (PyIndex_Check(item)) { | 
 |         Py_ssize_t i; | 
 |         i = PyNumber_AsSsize_t(item, PyExc_IndexError); | 
 |         if (i == -1 && PyErr_Occurred()) | 
 |             return NULL; | 
 |         if (i < 0) | 
 |             i += PyList_GET_SIZE(self); | 
 |         return list_item(self, i); | 
 |     } | 
 |     else if (PySlice_Check(item)) { | 
 |         Py_ssize_t start, stop, step, slicelength, i; | 
 |         size_t cur; | 
 |         PyObject* result; | 
 |         PyObject* it; | 
 |         PyObject **src, **dest; | 
 |  | 
 |         if (PySlice_Unpack(item, &start, &stop, &step) < 0) { | 
 |             return NULL; | 
 |         } | 
 |         slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop, | 
 |                                             step); | 
 |  | 
 |         if (slicelength <= 0) { | 
 |             return PyList_New(0); | 
 |         } | 
 |         else if (step == 1) { | 
 |             return list_slice(self, start, stop); | 
 |         } | 
 |         else { | 
 |             result = list_new_prealloc(slicelength); | 
 |             if (!result) return NULL; | 
 |  | 
 |             src = self->ob_item; | 
 |             dest = ((PyListObject *)result)->ob_item; | 
 |             for (cur = start, i = 0; i < slicelength; | 
 |                  cur += (size_t)step, i++) { | 
 |                 it = src[cur]; | 
 |                 Py_INCREF(it); | 
 |                 dest[i] = it; | 
 |             } | 
 |             Py_SIZE(result) = slicelength; | 
 |             return result; | 
 |         } | 
 |     } | 
 |     else { | 
 |         PyErr_Format(PyExc_TypeError, | 
 |                      "list indices must be integers or slices, not %.200s", | 
 |                      item->ob_type->tp_name); | 
 |         return NULL; | 
 |     } | 
 | } | 
 |  | 
 | static int | 
 | list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value) | 
 | { | 
 |     if (PyIndex_Check(item)) { | 
 |         Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); | 
 |         if (i == -1 && PyErr_Occurred()) | 
 |             return -1; | 
 |         if (i < 0) | 
 |             i += PyList_GET_SIZE(self); | 
 |         return list_ass_item(self, i, value); | 
 |     } | 
 |     else if (PySlice_Check(item)) { | 
 |         Py_ssize_t start, stop, step, slicelength; | 
 |  | 
 |         if (PySlice_Unpack(item, &start, &stop, &step) < 0) { | 
 |             return -1; | 
 |         } | 
 |         slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop, | 
 |                                             step); | 
 |  | 
 |         if (step == 1) | 
 |             return list_ass_slice(self, start, stop, value); | 
 |  | 
 |         /* Make sure s[5:2] = [..] inserts at the right place: | 
 |            before 5, not before 2. */ | 
 |         if ((step < 0 && start < stop) || | 
 |             (step > 0 && start > stop)) | 
 |             stop = start; | 
 |  | 
 |         if (value == NULL) { | 
 |             /* delete slice */ | 
 |             PyObject **garbage; | 
 |             size_t cur; | 
 |             Py_ssize_t i; | 
 |             int res; | 
 |  | 
 |             if (slicelength <= 0) | 
 |                 return 0; | 
 |  | 
 |             if (step < 0) { | 
 |                 stop = start + 1; | 
 |                 start = stop + step*(slicelength - 1) - 1; | 
 |                 step = -step; | 
 |             } | 
 |  | 
 |             garbage = (PyObject**) | 
 |                 PyMem_MALLOC(slicelength*sizeof(PyObject*)); | 
 |             if (!garbage) { | 
 |                 PyErr_NoMemory(); | 
 |                 return -1; | 
 |             } | 
 |  | 
 |             /* drawing pictures might help understand these for | 
 |                loops. Basically, we memmove the parts of the | 
 |                list that are *not* part of the slice: step-1 | 
 |                items for each item that is part of the slice, | 
 |                and then tail end of the list that was not | 
 |                covered by the slice */ | 
 |             for (cur = start, i = 0; | 
 |                  cur < (size_t)stop; | 
 |                  cur += step, i++) { | 
 |                 Py_ssize_t lim = step - 1; | 
 |  | 
 |                 garbage[i] = PyList_GET_ITEM(self, cur); | 
 |  | 
 |                 if (cur + step >= (size_t)Py_SIZE(self)) { | 
 |                     lim = Py_SIZE(self) - cur - 1; | 
 |                 } | 
 |  | 
 |                 memmove(self->ob_item + cur - i, | 
 |                     self->ob_item + cur + 1, | 
 |                     lim * sizeof(PyObject *)); | 
 |             } | 
 |             cur = start + (size_t)slicelength * step; | 
 |             if (cur < (size_t)Py_SIZE(self)) { | 
 |                 memmove(self->ob_item + cur - slicelength, | 
 |                     self->ob_item + cur, | 
 |                     (Py_SIZE(self) - cur) * | 
 |                      sizeof(PyObject *)); | 
 |             } | 
 |  | 
 |             Py_SIZE(self) -= slicelength; | 
 |             res = list_resize(self, Py_SIZE(self)); | 
 |  | 
 |             for (i = 0; i < slicelength; i++) { | 
 |                 Py_DECREF(garbage[i]); | 
 |             } | 
 |             PyMem_FREE(garbage); | 
 |  | 
 |             return res; | 
 |         } | 
 |         else { | 
 |             /* assign slice */ | 
 |             PyObject *ins, *seq; | 
 |             PyObject **garbage, **seqitems, **selfitems; | 
 |             Py_ssize_t i; | 
 |             size_t cur; | 
 |  | 
 |             /* protect against a[::-1] = a */ | 
 |             if (self == (PyListObject*)value) { | 
 |                 seq = list_slice((PyListObject*)value, 0, | 
 |                                    PyList_GET_SIZE(value)); | 
 |             } | 
 |             else { | 
 |                 seq = PySequence_Fast(value, | 
 |                                       "must assign iterable " | 
 |                                       "to extended slice"); | 
 |             } | 
 |             if (!seq) | 
 |                 return -1; | 
 |  | 
 |             if (PySequence_Fast_GET_SIZE(seq) != slicelength) { | 
 |                 PyErr_Format(PyExc_ValueError, | 
 |                     "attempt to assign sequence of " | 
 |                     "size %zd to extended slice of " | 
 |                     "size %zd", | 
 |                          PySequence_Fast_GET_SIZE(seq), | 
 |                          slicelength); | 
 |                 Py_DECREF(seq); | 
 |                 return -1; | 
 |             } | 
 |  | 
 |             if (!slicelength) { | 
 |                 Py_DECREF(seq); | 
 |                 return 0; | 
 |             } | 
 |  | 
 |             garbage = (PyObject**) | 
 |                 PyMem_MALLOC(slicelength*sizeof(PyObject*)); | 
 |             if (!garbage) { | 
 |                 Py_DECREF(seq); | 
 |                 PyErr_NoMemory(); | 
 |                 return -1; | 
 |             } | 
 |  | 
 |             selfitems = self->ob_item; | 
 |             seqitems = PySequence_Fast_ITEMS(seq); | 
 |             for (cur = start, i = 0; i < slicelength; | 
 |                  cur += (size_t)step, i++) { | 
 |                 garbage[i] = selfitems[cur]; | 
 |                 ins = seqitems[i]; | 
 |                 Py_INCREF(ins); | 
 |                 selfitems[cur] = ins; | 
 |             } | 
 |  | 
 |             for (i = 0; i < slicelength; i++) { | 
 |                 Py_DECREF(garbage[i]); | 
 |             } | 
 |  | 
 |             PyMem_FREE(garbage); | 
 |             Py_DECREF(seq); | 
 |  | 
 |             return 0; | 
 |         } | 
 |     } | 
 |     else { | 
 |         PyErr_Format(PyExc_TypeError, | 
 |                      "list indices must be integers or slices, not %.200s", | 
 |                      item->ob_type->tp_name); | 
 |         return -1; | 
 |     } | 
 | } | 
 |  | 
 | static PyMappingMethods list_as_mapping = { | 
 |     (lenfunc)list_length, | 
 |     (binaryfunc)list_subscript, | 
 |     (objobjargproc)list_ass_subscript | 
 | }; | 
 |  | 
 | PyTypeObject PyList_Type = { | 
 |     PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
 |     "list", | 
 |     sizeof(PyListObject), | 
 |     0, | 
 |     (destructor)list_dealloc,                   /* tp_dealloc */ | 
 |     0,                                          /* tp_vectorcall_offset */ | 
 |     0,                                          /* tp_getattr */ | 
 |     0,                                          /* tp_setattr */ | 
 |     0,                                          /* tp_as_async */ | 
 |     (reprfunc)list_repr,                        /* tp_repr */ | 
 |     0,                                          /* tp_as_number */ | 
 |     &list_as_sequence,                          /* tp_as_sequence */ | 
 |     &list_as_mapping,                           /* tp_as_mapping */ | 
 |     PyObject_HashNotImplemented,                /* tp_hash */ | 
 |     0,                                          /* tp_call */ | 
 |     0,                                          /* tp_str */ | 
 |     PyObject_GenericGetAttr,                    /* tp_getattro */ | 
 |     0,                                          /* tp_setattro */ | 
 |     0,                                          /* tp_as_buffer */ | 
 |     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | | 
 |         Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS, /* tp_flags */ | 
 |     list___init____doc__,                       /* tp_doc */ | 
 |     (traverseproc)list_traverse,                /* tp_traverse */ | 
 |     (inquiry)_list_clear,                       /* tp_clear */ | 
 |     list_richcompare,                           /* tp_richcompare */ | 
 |     0,                                          /* tp_weaklistoffset */ | 
 |     list_iter,                                  /* tp_iter */ | 
 |     0,                                          /* tp_iternext */ | 
 |     list_methods,                               /* tp_methods */ | 
 |     0,                                          /* tp_members */ | 
 |     0,                                          /* tp_getset */ | 
 |     0,                                          /* tp_base */ | 
 |     0,                                          /* tp_dict */ | 
 |     0,                                          /* tp_descr_get */ | 
 |     0,                                          /* tp_descr_set */ | 
 |     0,                                          /* tp_dictoffset */ | 
 |     (initproc)list___init__,                    /* tp_init */ | 
 |     PyType_GenericAlloc,                        /* tp_alloc */ | 
 |     PyType_GenericNew,                          /* tp_new */ | 
 |     PyObject_GC_Del,                            /* tp_free */ | 
 | }; | 
 |  | 
 | /*********************** List Iterator **************************/ | 
 |  | 
 | typedef struct { | 
 |     PyObject_HEAD | 
 |     Py_ssize_t it_index; | 
 |     PyListObject *it_seq; /* Set to NULL when iterator is exhausted */ | 
 | } listiterobject; | 
 |  | 
 | static void listiter_dealloc(listiterobject *); | 
 | static int listiter_traverse(listiterobject *, visitproc, void *); | 
 | static PyObject *listiter_next(listiterobject *); | 
 | static PyObject *listiter_len(listiterobject *, PyObject *); | 
 | static PyObject *listiter_reduce_general(void *_it, int forward); | 
 | static PyObject *listiter_reduce(listiterobject *, PyObject *); | 
 | static PyObject *listiter_setstate(listiterobject *, PyObject *state); | 
 |  | 
 | PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it))."); | 
 | PyDoc_STRVAR(reduce_doc, "Return state information for pickling."); | 
 | PyDoc_STRVAR(setstate_doc, "Set state information for unpickling."); | 
 |  | 
 | static PyMethodDef listiter_methods[] = { | 
 |     {"__length_hint__", (PyCFunction)listiter_len, METH_NOARGS, length_hint_doc}, | 
 |     {"__reduce__", (PyCFunction)listiter_reduce, METH_NOARGS, reduce_doc}, | 
 |     {"__setstate__", (PyCFunction)listiter_setstate, METH_O, setstate_doc}, | 
 |     {NULL,              NULL}           /* sentinel */ | 
 | }; | 
 |  | 
 | PyTypeObject PyListIter_Type = { | 
 |     PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
 |     "list_iterator",                            /* tp_name */ | 
 |     sizeof(listiterobject),                     /* tp_basicsize */ | 
 |     0,                                          /* tp_itemsize */ | 
 |     /* methods */ | 
 |     (destructor)listiter_dealloc,               /* tp_dealloc */ | 
 |     0,                                          /* tp_vectorcall_offset */ | 
 |     0,                                          /* tp_getattr */ | 
 |     0,                                          /* tp_setattr */ | 
 |     0,                                          /* tp_as_async */ | 
 |     0,                                          /* tp_repr */ | 
 |     0,                                          /* tp_as_number */ | 
 |     0,                                          /* tp_as_sequence */ | 
 |     0,                                          /* tp_as_mapping */ | 
 |     0,                                          /* tp_hash */ | 
 |     0,                                          /* tp_call */ | 
 |     0,                                          /* tp_str */ | 
 |     PyObject_GenericGetAttr,                    /* tp_getattro */ | 
 |     0,                                          /* tp_setattro */ | 
 |     0,                                          /* tp_as_buffer */ | 
 |     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ | 
 |     0,                                          /* tp_doc */ | 
 |     (traverseproc)listiter_traverse,            /* tp_traverse */ | 
 |     0,                                          /* tp_clear */ | 
 |     0,                                          /* tp_richcompare */ | 
 |     0,                                          /* tp_weaklistoffset */ | 
 |     PyObject_SelfIter,                          /* tp_iter */ | 
 |     (iternextfunc)listiter_next,                /* tp_iternext */ | 
 |     listiter_methods,                           /* tp_methods */ | 
 |     0,                                          /* tp_members */ | 
 | }; | 
 |  | 
 |  | 
 | static PyObject * | 
 | list_iter(PyObject *seq) | 
 | { | 
 |     listiterobject *it; | 
 |  | 
 |     if (!PyList_Check(seq)) { | 
 |         PyErr_BadInternalCall(); | 
 |         return NULL; | 
 |     } | 
 |     it = PyObject_GC_New(listiterobject, &PyListIter_Type); | 
 |     if (it == NULL) | 
 |         return NULL; | 
 |     it->it_index = 0; | 
 |     Py_INCREF(seq); | 
 |     it->it_seq = (PyListObject *)seq; | 
 |     _PyObject_GC_TRACK(it); | 
 |     return (PyObject *)it; | 
 | } | 
 |  | 
 | static void | 
 | listiter_dealloc(listiterobject *it) | 
 | { | 
 |     _PyObject_GC_UNTRACK(it); | 
 |     Py_XDECREF(it->it_seq); | 
 |     PyObject_GC_Del(it); | 
 | } | 
 |  | 
 | static int | 
 | listiter_traverse(listiterobject *it, visitproc visit, void *arg) | 
 | { | 
 |     Py_VISIT(it->it_seq); | 
 |     return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | listiter_next(listiterobject *it) | 
 | { | 
 |     PyListObject *seq; | 
 |     PyObject *item; | 
 |  | 
 |     assert(it != NULL); | 
 |     seq = it->it_seq; | 
 |     if (seq == NULL) | 
 |         return NULL; | 
 |     assert(PyList_Check(seq)); | 
 |  | 
 |     if (it->it_index < PyList_GET_SIZE(seq)) { | 
 |         item = PyList_GET_ITEM(seq, it->it_index); | 
 |         ++it->it_index; | 
 |         Py_INCREF(item); | 
 |         return item; | 
 |     } | 
 |  | 
 |     it->it_seq = NULL; | 
 |     Py_DECREF(seq); | 
 |     return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | listiter_len(listiterobject *it, PyObject *Py_UNUSED(ignored)) | 
 | { | 
 |     Py_ssize_t len; | 
 |     if (it->it_seq) { | 
 |         len = PyList_GET_SIZE(it->it_seq) - it->it_index; | 
 |         if (len >= 0) | 
 |             return PyLong_FromSsize_t(len); | 
 |     } | 
 |     return PyLong_FromLong(0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | listiter_reduce(listiterobject *it, PyObject *Py_UNUSED(ignored)) | 
 | { | 
 |     return listiter_reduce_general(it, 1); | 
 | } | 
 |  | 
 | static PyObject * | 
 | listiter_setstate(listiterobject *it, PyObject *state) | 
 | { | 
 |     Py_ssize_t index = PyLong_AsSsize_t(state); | 
 |     if (index == -1 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     if (it->it_seq != NULL) { | 
 |         if (index < 0) | 
 |             index = 0; | 
 |         else if (index > PyList_GET_SIZE(it->it_seq)) | 
 |             index = PyList_GET_SIZE(it->it_seq); /* iterator exhausted */ | 
 |         it->it_index = index; | 
 |     } | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | /*********************** List Reverse Iterator **************************/ | 
 |  | 
 | typedef struct { | 
 |     PyObject_HEAD | 
 |     Py_ssize_t it_index; | 
 |     PyListObject *it_seq; /* Set to NULL when iterator is exhausted */ | 
 | } listreviterobject; | 
 |  | 
 | static void listreviter_dealloc(listreviterobject *); | 
 | static int listreviter_traverse(listreviterobject *, visitproc, void *); | 
 | static PyObject *listreviter_next(listreviterobject *); | 
 | static PyObject *listreviter_len(listreviterobject *, PyObject *); | 
 | static PyObject *listreviter_reduce(listreviterobject *, PyObject *); | 
 | static PyObject *listreviter_setstate(listreviterobject *, PyObject *); | 
 |  | 
 | static PyMethodDef listreviter_methods[] = { | 
 |     {"__length_hint__", (PyCFunction)listreviter_len, METH_NOARGS, length_hint_doc}, | 
 |     {"__reduce__", (PyCFunction)listreviter_reduce, METH_NOARGS, reduce_doc}, | 
 |     {"__setstate__", (PyCFunction)listreviter_setstate, METH_O, setstate_doc}, | 
 |     {NULL,              NULL}           /* sentinel */ | 
 | }; | 
 |  | 
 | PyTypeObject PyListRevIter_Type = { | 
 |     PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
 |     "list_reverseiterator",                     /* tp_name */ | 
 |     sizeof(listreviterobject),                  /* tp_basicsize */ | 
 |     0,                                          /* tp_itemsize */ | 
 |     /* methods */ | 
 |     (destructor)listreviter_dealloc,            /* tp_dealloc */ | 
 |     0,                                          /* tp_vectorcall_offset */ | 
 |     0,                                          /* tp_getattr */ | 
 |     0,                                          /* tp_setattr */ | 
 |     0,                                          /* tp_as_async */ | 
 |     0,                                          /* tp_repr */ | 
 |     0,                                          /* tp_as_number */ | 
 |     0,                                          /* tp_as_sequence */ | 
 |     0,                                          /* tp_as_mapping */ | 
 |     0,                                          /* tp_hash */ | 
 |     0,                                          /* tp_call */ | 
 |     0,                                          /* tp_str */ | 
 |     PyObject_GenericGetAttr,                    /* tp_getattro */ | 
 |     0,                                          /* tp_setattro */ | 
 |     0,                                          /* tp_as_buffer */ | 
 |     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ | 
 |     0,                                          /* tp_doc */ | 
 |     (traverseproc)listreviter_traverse,         /* tp_traverse */ | 
 |     0,                                          /* tp_clear */ | 
 |     0,                                          /* tp_richcompare */ | 
 |     0,                                          /* tp_weaklistoffset */ | 
 |     PyObject_SelfIter,                          /* tp_iter */ | 
 |     (iternextfunc)listreviter_next,             /* tp_iternext */ | 
 |     listreviter_methods,                /* tp_methods */ | 
 |     0, | 
 | }; | 
 |  | 
 | /*[clinic input] | 
 | list.__reversed__ | 
 |  | 
 | Return a reverse iterator over the list. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | list___reversed___impl(PyListObject *self) | 
 | /*[clinic end generated code: output=b166f073208c888c input=eadb6e17f8a6a280]*/ | 
 | { | 
 |     listreviterobject *it; | 
 |  | 
 |     it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type); | 
 |     if (it == NULL) | 
 |         return NULL; | 
 |     assert(PyList_Check(self)); | 
 |     it->it_index = PyList_GET_SIZE(self) - 1; | 
 |     Py_INCREF(self); | 
 |     it->it_seq = self; | 
 |     PyObject_GC_Track(it); | 
 |     return (PyObject *)it; | 
 | } | 
 |  | 
 | static void | 
 | listreviter_dealloc(listreviterobject *it) | 
 | { | 
 |     PyObject_GC_UnTrack(it); | 
 |     Py_XDECREF(it->it_seq); | 
 |     PyObject_GC_Del(it); | 
 | } | 
 |  | 
 | static int | 
 | listreviter_traverse(listreviterobject *it, visitproc visit, void *arg) | 
 | { | 
 |     Py_VISIT(it->it_seq); | 
 |     return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | listreviter_next(listreviterobject *it) | 
 | { | 
 |     PyObject *item; | 
 |     Py_ssize_t index; | 
 |     PyListObject *seq; | 
 |  | 
 |     assert(it != NULL); | 
 |     seq = it->it_seq; | 
 |     if (seq == NULL) { | 
 |         return NULL; | 
 |     } | 
 |     assert(PyList_Check(seq)); | 
 |  | 
 |     index = it->it_index; | 
 |     if (index>=0 && index < PyList_GET_SIZE(seq)) { | 
 |         item = PyList_GET_ITEM(seq, index); | 
 |         it->it_index--; | 
 |         Py_INCREF(item); | 
 |         return item; | 
 |     } | 
 |     it->it_index = -1; | 
 |     it->it_seq = NULL; | 
 |     Py_DECREF(seq); | 
 |     return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | listreviter_len(listreviterobject *it, PyObject *Py_UNUSED(ignored)) | 
 | { | 
 |     Py_ssize_t len = it->it_index + 1; | 
 |     if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len) | 
 |         len = 0; | 
 |     return PyLong_FromSsize_t(len); | 
 | } | 
 |  | 
 | static PyObject * | 
 | listreviter_reduce(listreviterobject *it, PyObject *Py_UNUSED(ignored)) | 
 | { | 
 |     return listiter_reduce_general(it, 0); | 
 | } | 
 |  | 
 | static PyObject * | 
 | listreviter_setstate(listreviterobject *it, PyObject *state) | 
 | { | 
 |     Py_ssize_t index = PyLong_AsSsize_t(state); | 
 |     if (index == -1 && PyErr_Occurred()) | 
 |         return NULL; | 
 |     if (it->it_seq != NULL) { | 
 |         if (index < -1) | 
 |             index = -1; | 
 |         else if (index > PyList_GET_SIZE(it->it_seq) - 1) | 
 |             index = PyList_GET_SIZE(it->it_seq) - 1; | 
 |         it->it_index = index; | 
 |     } | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | /* common pickling support */ | 
 |  | 
 | static PyObject * | 
 | listiter_reduce_general(void *_it, int forward) | 
 | { | 
 |     _Py_IDENTIFIER(iter); | 
 |     _Py_IDENTIFIER(reversed); | 
 |     PyObject *list; | 
 |  | 
 |     /* the objects are not the same, index is of different types! */ | 
 |     if (forward) { | 
 |         listiterobject *it = (listiterobject *)_it; | 
 |         if (it->it_seq) | 
 |             return Py_BuildValue("N(O)n", _PyEval_GetBuiltinId(&PyId_iter), | 
 |                                  it->it_seq, it->it_index); | 
 |     } else { | 
 |         listreviterobject *it = (listreviterobject *)_it; | 
 |         if (it->it_seq) | 
 |             return Py_BuildValue("N(O)n", _PyEval_GetBuiltinId(&PyId_reversed), | 
 |                                  it->it_seq, it->it_index); | 
 |     } | 
 |     /* empty iterator, create an empty list */ | 
 |     list = PyList_New(0); | 
 |     if (list == NULL) | 
 |         return NULL; | 
 |     return Py_BuildValue("N(N)", _PyEval_GetBuiltinId(&PyId_iter), list); | 
 | } |