| /* |
| * This file includes functions to transform a concrete syntax tree (CST) to |
| * an abstract syntax tree (AST). The main function is PyAST_FromNode(). |
| * |
| */ |
| #include "Python.h" |
| #include "Python-ast.h" |
| #include "node.h" |
| #include "ast.h" |
| #include "token.h" |
| #include "pythonrun.h" |
| |
| #include <assert.h> |
| |
| static int validate_stmts(asdl_seq *); |
| static int validate_exprs(asdl_seq *, expr_context_ty, int); |
| static int validate_nonempty_seq(asdl_seq *, const char *, const char *); |
| static int validate_stmt(stmt_ty); |
| static int validate_expr(expr_ty, expr_context_ty); |
| |
| static int |
| validate_comprehension(asdl_seq *gens) |
| { |
| int i; |
| if (!asdl_seq_LEN(gens)) { |
| PyErr_SetString(PyExc_ValueError, "comprehension with no generators"); |
| return 0; |
| } |
| for (i = 0; i < asdl_seq_LEN(gens); i++) { |
| comprehension_ty comp = asdl_seq_GET(gens, i); |
| if (!validate_expr(comp->target, Store) || |
| !validate_expr(comp->iter, Load) || |
| !validate_exprs(comp->ifs, Load, 0)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int |
| validate_slice(slice_ty slice) |
| { |
| switch (slice->kind) { |
| case Slice_kind: |
| return (!slice->v.Slice.lower || validate_expr(slice->v.Slice.lower, Load)) && |
| (!slice->v.Slice.upper || validate_expr(slice->v.Slice.upper, Load)) && |
| (!slice->v.Slice.step || validate_expr(slice->v.Slice.step, Load)); |
| case ExtSlice_kind: { |
| int i; |
| if (!validate_nonempty_seq(slice->v.ExtSlice.dims, "dims", "ExtSlice")) |
| return 0; |
| for (i = 0; i < asdl_seq_LEN(slice->v.ExtSlice.dims); i++) |
| if (!validate_slice(asdl_seq_GET(slice->v.ExtSlice.dims, i))) |
| return 0; |
| return 1; |
| } |
| case Index_kind: |
| return validate_expr(slice->v.Index.value, Load); |
| default: |
| PyErr_SetString(PyExc_SystemError, "unknown slice node"); |
| return 0; |
| } |
| } |
| |
| static int |
| validate_keywords(asdl_seq *keywords) |
| { |
| int i; |
| for (i = 0; i < asdl_seq_LEN(keywords); i++) |
| if (!validate_expr(((keyword_ty)asdl_seq_GET(keywords, i))->value, Load)) |
| return 0; |
| return 1; |
| } |
| |
| static int |
| validate_args(asdl_seq *args) |
| { |
| int i; |
| for (i = 0; i < asdl_seq_LEN(args); i++) { |
| arg_ty arg = asdl_seq_GET(args, i); |
| if (arg->annotation && !validate_expr(arg->annotation, Load)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static const char * |
| expr_context_name(expr_context_ty ctx) |
| { |
| switch (ctx) { |
| case Load: |
| return "Load"; |
| case Store: |
| return "Store"; |
| case Del: |
| return "Del"; |
| case AugLoad: |
| return "AugLoad"; |
| case AugStore: |
| return "AugStore"; |
| case Param: |
| return "Param"; |
| default: |
| Py_UNREACHABLE(); |
| } |
| } |
| |
| static int |
| validate_arguments(arguments_ty args) |
| { |
| if (!validate_args(args->args)) |
| return 0; |
| if (args->vararg && args->vararg->annotation |
| && !validate_expr(args->vararg->annotation, Load)) { |
| return 0; |
| } |
| if (!validate_args(args->kwonlyargs)) |
| return 0; |
| if (args->kwarg && args->kwarg->annotation |
| && !validate_expr(args->kwarg->annotation, Load)) { |
| return 0; |
| } |
| if (asdl_seq_LEN(args->defaults) > asdl_seq_LEN(args->args)) { |
| PyErr_SetString(PyExc_ValueError, "more positional defaults than args on arguments"); |
| return 0; |
| } |
| if (asdl_seq_LEN(args->kw_defaults) != asdl_seq_LEN(args->kwonlyargs)) { |
| PyErr_SetString(PyExc_ValueError, "length of kwonlyargs is not the same as " |
| "kw_defaults on arguments"); |
| return 0; |
| } |
| return validate_exprs(args->defaults, Load, 0) && validate_exprs(args->kw_defaults, Load, 1); |
| } |
| |
| static int |
| validate_constant(PyObject *value) |
| { |
| if (value == Py_None || value == Py_Ellipsis) |
| return 1; |
| |
| if (PyLong_CheckExact(value) |
| || PyFloat_CheckExact(value) |
| || PyComplex_CheckExact(value) |
| || PyBool_Check(value) |
| || PyUnicode_CheckExact(value) |
| || PyBytes_CheckExact(value)) |
| return 1; |
| |
| if (PyTuple_CheckExact(value) || PyFrozenSet_CheckExact(value)) { |
| PyObject *it; |
| |
| it = PyObject_GetIter(value); |
| if (it == NULL) |
| return 0; |
| |
| while (1) { |
| PyObject *item = PyIter_Next(it); |
| if (item == NULL) { |
| if (PyErr_Occurred()) { |
| Py_DECREF(it); |
| return 0; |
| } |
| break; |
| } |
| |
| if (!validate_constant(item)) { |
| Py_DECREF(it); |
| Py_DECREF(item); |
| return 0; |
| } |
| Py_DECREF(item); |
| } |
| |
| Py_DECREF(it); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| validate_expr(expr_ty exp, expr_context_ty ctx) |
| { |
| int check_ctx = 1; |
| expr_context_ty actual_ctx; |
| |
| /* First check expression context. */ |
| switch (exp->kind) { |
| case Attribute_kind: |
| actual_ctx = exp->v.Attribute.ctx; |
| break; |
| case Subscript_kind: |
| actual_ctx = exp->v.Subscript.ctx; |
| break; |
| case Starred_kind: |
| actual_ctx = exp->v.Starred.ctx; |
| break; |
| case Name_kind: |
| actual_ctx = exp->v.Name.ctx; |
| break; |
| case List_kind: |
| actual_ctx = exp->v.List.ctx; |
| break; |
| case Tuple_kind: |
| actual_ctx = exp->v.Tuple.ctx; |
| break; |
| default: |
| if (ctx != Load) { |
| PyErr_Format(PyExc_ValueError, "expression which can't be " |
| "assigned to in %s context", expr_context_name(ctx)); |
| return 0; |
| } |
| check_ctx = 0; |
| /* set actual_ctx to prevent gcc warning */ |
| actual_ctx = 0; |
| } |
| if (check_ctx && actual_ctx != ctx) { |
| PyErr_Format(PyExc_ValueError, "expression must have %s context but has %s instead", |
| expr_context_name(ctx), expr_context_name(actual_ctx)); |
| return 0; |
| } |
| |
| /* Now validate expression. */ |
| switch (exp->kind) { |
| case BoolOp_kind: |
| if (asdl_seq_LEN(exp->v.BoolOp.values) < 2) { |
| PyErr_SetString(PyExc_ValueError, "BoolOp with less than 2 values"); |
| return 0; |
| } |
| return validate_exprs(exp->v.BoolOp.values, Load, 0); |
| case BinOp_kind: |
| return validate_expr(exp->v.BinOp.left, Load) && |
| validate_expr(exp->v.BinOp.right, Load); |
| case UnaryOp_kind: |
| return validate_expr(exp->v.UnaryOp.operand, Load); |
| case Lambda_kind: |
| return validate_arguments(exp->v.Lambda.args) && |
| validate_expr(exp->v.Lambda.body, Load); |
| case IfExp_kind: |
| return validate_expr(exp->v.IfExp.test, Load) && |
| validate_expr(exp->v.IfExp.body, Load) && |
| validate_expr(exp->v.IfExp.orelse, Load); |
| case Dict_kind: |
| if (asdl_seq_LEN(exp->v.Dict.keys) != asdl_seq_LEN(exp->v.Dict.values)) { |
| PyErr_SetString(PyExc_ValueError, |
| "Dict doesn't have the same number of keys as values"); |
| return 0; |
| } |
| /* null_ok=1 for keys expressions to allow dict unpacking to work in |
| dict literals, i.e. ``{**{a:b}}`` */ |
| return validate_exprs(exp->v.Dict.keys, Load, /*null_ok=*/ 1) && |
| validate_exprs(exp->v.Dict.values, Load, /*null_ok=*/ 0); |
| case Set_kind: |
| return validate_exprs(exp->v.Set.elts, Load, 0); |
| #define COMP(NAME) \ |
| case NAME ## _kind: \ |
| return validate_comprehension(exp->v.NAME.generators) && \ |
| validate_expr(exp->v.NAME.elt, Load); |
| COMP(ListComp) |
| COMP(SetComp) |
| COMP(GeneratorExp) |
| #undef COMP |
| case DictComp_kind: |
| return validate_comprehension(exp->v.DictComp.generators) && |
| validate_expr(exp->v.DictComp.key, Load) && |
| validate_expr(exp->v.DictComp.value, Load); |
| case Yield_kind: |
| return !exp->v.Yield.value || validate_expr(exp->v.Yield.value, Load); |
| case YieldFrom_kind: |
| return validate_expr(exp->v.YieldFrom.value, Load); |
| case Await_kind: |
| return validate_expr(exp->v.Await.value, Load); |
| case Compare_kind: |
| if (!asdl_seq_LEN(exp->v.Compare.comparators)) { |
| PyErr_SetString(PyExc_ValueError, "Compare with no comparators"); |
| return 0; |
| } |
| if (asdl_seq_LEN(exp->v.Compare.comparators) != |
| asdl_seq_LEN(exp->v.Compare.ops)) { |
| PyErr_SetString(PyExc_ValueError, "Compare has a different number " |
| "of comparators and operands"); |
| return 0; |
| } |
| return validate_exprs(exp->v.Compare.comparators, Load, 0) && |
| validate_expr(exp->v.Compare.left, Load); |
| case Call_kind: |
| return validate_expr(exp->v.Call.func, Load) && |
| validate_exprs(exp->v.Call.args, Load, 0) && |
| validate_keywords(exp->v.Call.keywords); |
| case Constant_kind: |
| if (!validate_constant(exp->v.Constant.value)) { |
| PyErr_Format(PyExc_TypeError, |
| "got an invalid type in Constant: %s", |
| Py_TYPE(exp->v.Constant.value)->tp_name); |
| return 0; |
| } |
| return 1; |
| case Num_kind: { |
| PyObject *n = exp->v.Num.n; |
| if (!PyLong_CheckExact(n) && !PyFloat_CheckExact(n) && |
| !PyComplex_CheckExact(n)) { |
| PyErr_SetString(PyExc_TypeError, "non-numeric type in Num"); |
| return 0; |
| } |
| return 1; |
| } |
| case Str_kind: { |
| PyObject *s = exp->v.Str.s; |
| if (!PyUnicode_CheckExact(s)) { |
| PyErr_SetString(PyExc_TypeError, "non-string type in Str"); |
| return 0; |
| } |
| return 1; |
| } |
| case JoinedStr_kind: |
| return validate_exprs(exp->v.JoinedStr.values, Load, 0); |
| case FormattedValue_kind: |
| if (validate_expr(exp->v.FormattedValue.value, Load) == 0) |
| return 0; |
| if (exp->v.FormattedValue.format_spec) |
| return validate_expr(exp->v.FormattedValue.format_spec, Load); |
| return 1; |
| case Bytes_kind: { |
| PyObject *b = exp->v.Bytes.s; |
| if (!PyBytes_CheckExact(b)) { |
| PyErr_SetString(PyExc_TypeError, "non-bytes type in Bytes"); |
| return 0; |
| } |
| return 1; |
| } |
| case Attribute_kind: |
| return validate_expr(exp->v.Attribute.value, Load); |
| case Subscript_kind: |
| return validate_slice(exp->v.Subscript.slice) && |
| validate_expr(exp->v.Subscript.value, Load); |
| case Starred_kind: |
| return validate_expr(exp->v.Starred.value, ctx); |
| case List_kind: |
| return validate_exprs(exp->v.List.elts, ctx, 0); |
| case Tuple_kind: |
| return validate_exprs(exp->v.Tuple.elts, ctx, 0); |
| /* These last cases don't have any checking. */ |
| case Name_kind: |
| case NameConstant_kind: |
| case Ellipsis_kind: |
| return 1; |
| default: |
| PyErr_SetString(PyExc_SystemError, "unexpected expression"); |
| return 0; |
| } |
| } |
| |
| static int |
| validate_nonempty_seq(asdl_seq *seq, const char *what, const char *owner) |
| { |
| if (asdl_seq_LEN(seq)) |
| return 1; |
| PyErr_Format(PyExc_ValueError, "empty %s on %s", what, owner); |
| return 0; |
| } |
| |
| static int |
| validate_assignlist(asdl_seq *targets, expr_context_ty ctx) |
| { |
| return validate_nonempty_seq(targets, "targets", ctx == Del ? "Delete" : "Assign") && |
| validate_exprs(targets, ctx, 0); |
| } |
| |
| static int |
| validate_body(asdl_seq *body, const char *owner, int allowempty) |
| { |
| if (!allowempty && !validate_nonempty_seq(body, "body", owner)) { |
| return 0; |
| } |
| return validate_stmts(body); |
| } |
| |
| static int |
| validate_stmt(stmt_ty stmt) |
| { |
| int i; |
| switch (stmt->kind) { |
| case FunctionDef_kind: |
| return validate_body(stmt->v.FunctionDef.body, "FunctionDef", |
| stmt->v.FunctionDef.docstring != NULL) && |
| validate_arguments(stmt->v.FunctionDef.args) && |
| validate_exprs(stmt->v.FunctionDef.decorator_list, Load, 0) && |
| (!stmt->v.FunctionDef.returns || |
| validate_expr(stmt->v.FunctionDef.returns, Load)); |
| case ClassDef_kind: |
| return validate_body(stmt->v.ClassDef.body, "ClassDef", |
| stmt->v.ClassDef.docstring != NULL) && |
| validate_exprs(stmt->v.ClassDef.bases, Load, 0) && |
| validate_keywords(stmt->v.ClassDef.keywords) && |
| validate_exprs(stmt->v.ClassDef.decorator_list, Load, 0); |
| case Return_kind: |
| return !stmt->v.Return.value || validate_expr(stmt->v.Return.value, Load); |
| case Delete_kind: |
| return validate_assignlist(stmt->v.Delete.targets, Del); |
| case Assign_kind: |
| return validate_assignlist(stmt->v.Assign.targets, Store) && |
| validate_expr(stmt->v.Assign.value, Load); |
| case AugAssign_kind: |
| return validate_expr(stmt->v.AugAssign.target, Store) && |
| validate_expr(stmt->v.AugAssign.value, Load); |
| case AnnAssign_kind: |
| if (stmt->v.AnnAssign.target->kind != Name_kind && |
| stmt->v.AnnAssign.simple) { |
| PyErr_SetString(PyExc_TypeError, |
| "AnnAssign with simple non-Name target"); |
| return 0; |
| } |
| return validate_expr(stmt->v.AnnAssign.target, Store) && |
| (!stmt->v.AnnAssign.value || |
| validate_expr(stmt->v.AnnAssign.value, Load)) && |
| validate_expr(stmt->v.AnnAssign.annotation, Load); |
| case For_kind: |
| return validate_expr(stmt->v.For.target, Store) && |
| validate_expr(stmt->v.For.iter, Load) && |
| validate_body(stmt->v.For.body, "For", 0) && |
| validate_stmts(stmt->v.For.orelse); |
| case AsyncFor_kind: |
| return validate_expr(stmt->v.AsyncFor.target, Store) && |
| validate_expr(stmt->v.AsyncFor.iter, Load) && |
| validate_body(stmt->v.AsyncFor.body, "AsyncFor", 0) && |
| validate_stmts(stmt->v.AsyncFor.orelse); |
| case While_kind: |
| return validate_expr(stmt->v.While.test, Load) && |
| validate_body(stmt->v.While.body, "While", 0) && |
| validate_stmts(stmt->v.While.orelse); |
| case If_kind: |
| return validate_expr(stmt->v.If.test, Load) && |
| validate_body(stmt->v.If.body, "If", 0) && |
| validate_stmts(stmt->v.If.orelse); |
| case With_kind: |
| if (!validate_nonempty_seq(stmt->v.With.items, "items", "With")) |
| return 0; |
| for (i = 0; i < asdl_seq_LEN(stmt->v.With.items); i++) { |
| withitem_ty item = asdl_seq_GET(stmt->v.With.items, i); |
| if (!validate_expr(item->context_expr, Load) || |
| (item->optional_vars && !validate_expr(item->optional_vars, Store))) |
| return 0; |
| } |
| return validate_body(stmt->v.With.body, "With", 0); |
| case AsyncWith_kind: |
| if (!validate_nonempty_seq(stmt->v.AsyncWith.items, "items", "AsyncWith")) |
| return 0; |
| for (i = 0; i < asdl_seq_LEN(stmt->v.AsyncWith.items); i++) { |
| withitem_ty item = asdl_seq_GET(stmt->v.AsyncWith.items, i); |
| if (!validate_expr(item->context_expr, Load) || |
| (item->optional_vars && !validate_expr(item->optional_vars, Store))) |
| return 0; |
| } |
| return validate_body(stmt->v.AsyncWith.body, "AsyncWith", 0); |
| case Raise_kind: |
| if (stmt->v.Raise.exc) { |
| return validate_expr(stmt->v.Raise.exc, Load) && |
| (!stmt->v.Raise.cause || validate_expr(stmt->v.Raise.cause, Load)); |
| } |
| if (stmt->v.Raise.cause) { |
| PyErr_SetString(PyExc_ValueError, "Raise with cause but no exception"); |
| return 0; |
| } |
| return 1; |
| case Try_kind: |
| if (!validate_body(stmt->v.Try.body, "Try", 0)) |
| return 0; |
| if (!asdl_seq_LEN(stmt->v.Try.handlers) && |
| !asdl_seq_LEN(stmt->v.Try.finalbody)) { |
| PyErr_SetString(PyExc_ValueError, "Try has neither except handlers nor finalbody"); |
| return 0; |
| } |
| if (!asdl_seq_LEN(stmt->v.Try.handlers) && |
| asdl_seq_LEN(stmt->v.Try.orelse)) { |
| PyErr_SetString(PyExc_ValueError, "Try has orelse but no except handlers"); |
| return 0; |
| } |
| for (i = 0; i < asdl_seq_LEN(stmt->v.Try.handlers); i++) { |
| excepthandler_ty handler = asdl_seq_GET(stmt->v.Try.handlers, i); |
| if ((handler->v.ExceptHandler.type && |
| !validate_expr(handler->v.ExceptHandler.type, Load)) || |
| !validate_body(handler->v.ExceptHandler.body, "ExceptHandler", 0)) |
| return 0; |
| } |
| return (!asdl_seq_LEN(stmt->v.Try.finalbody) || |
| validate_stmts(stmt->v.Try.finalbody)) && |
| (!asdl_seq_LEN(stmt->v.Try.orelse) || |
| validate_stmts(stmt->v.Try.orelse)); |
| case Assert_kind: |
| return validate_expr(stmt->v.Assert.test, Load) && |
| (!stmt->v.Assert.msg || validate_expr(stmt->v.Assert.msg, Load)); |
| case Import_kind: |
| return validate_nonempty_seq(stmt->v.Import.names, "names", "Import"); |
| case ImportFrom_kind: |
| if (stmt->v.ImportFrom.level < 0) { |
| PyErr_SetString(PyExc_ValueError, "Negative ImportFrom level"); |
| return 0; |
| } |
| return validate_nonempty_seq(stmt->v.ImportFrom.names, "names", "ImportFrom"); |
| case Global_kind: |
| return validate_nonempty_seq(stmt->v.Global.names, "names", "Global"); |
| case Nonlocal_kind: |
| return validate_nonempty_seq(stmt->v.Nonlocal.names, "names", "Nonlocal"); |
| case Expr_kind: |
| return validate_expr(stmt->v.Expr.value, Load); |
| case AsyncFunctionDef_kind: |
| return validate_body(stmt->v.AsyncFunctionDef.body, "AsyncFunctionDef", |
| stmt->v.AsyncFunctionDef.docstring != NULL) && |
| validate_arguments(stmt->v.AsyncFunctionDef.args) && |
| validate_exprs(stmt->v.AsyncFunctionDef.decorator_list, Load, 0) && |
| (!stmt->v.AsyncFunctionDef.returns || |
| validate_expr(stmt->v.AsyncFunctionDef.returns, Load)); |
| case Pass_kind: |
| case Break_kind: |
| case Continue_kind: |
| return 1; |
| default: |
| PyErr_SetString(PyExc_SystemError, "unexpected statement"); |
| return 0; |
| } |
| } |
| |
| static int |
| validate_stmts(asdl_seq *seq) |
| { |
| int i; |
| for (i = 0; i < asdl_seq_LEN(seq); i++) { |
| stmt_ty stmt = asdl_seq_GET(seq, i); |
| if (stmt) { |
| if (!validate_stmt(stmt)) |
| return 0; |
| } |
| else { |
| PyErr_SetString(PyExc_ValueError, |
| "None disallowed in statement list"); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static int |
| validate_exprs(asdl_seq *exprs, expr_context_ty ctx, int null_ok) |
| { |
| int i; |
| for (i = 0; i < asdl_seq_LEN(exprs); i++) { |
| expr_ty expr = asdl_seq_GET(exprs, i); |
| if (expr) { |
| if (!validate_expr(expr, ctx)) |
| return 0; |
| } |
| else if (!null_ok) { |
| PyErr_SetString(PyExc_ValueError, |
| "None disallowed in expression list"); |
| return 0; |
| } |
| |
| } |
| return 1; |
| } |
| |
| int |
| PyAST_Validate(mod_ty mod) |
| { |
| int res = 0; |
| |
| switch (mod->kind) { |
| case Module_kind: |
| res = validate_stmts(mod->v.Module.body); |
| break; |
| case Interactive_kind: |
| res = validate_stmts(mod->v.Interactive.body); |
| break; |
| case Expression_kind: |
| res = validate_expr(mod->v.Expression.body, Load); |
| break; |
| case Suite_kind: |
| PyErr_SetString(PyExc_ValueError, "Suite is not valid in the CPython compiler"); |
| break; |
| default: |
| PyErr_SetString(PyExc_SystemError, "impossible module node"); |
| res = 0; |
| break; |
| } |
| return res; |
| } |
| |
| /* This is done here, so defines like "test" don't interfere with AST use above. */ |
| #include "grammar.h" |
| #include "parsetok.h" |
| #include "graminit.h" |
| |
| /* Data structure used internally */ |
| struct compiling { |
| PyArena *c_arena; /* Arena for allocating memory. */ |
| PyObject *c_filename; /* filename */ |
| PyObject *c_normalize; /* Normalization function from unicodedata. */ |
| }; |
| |
| static asdl_seq *seq_for_testlist(struct compiling *, const node *); |
| static expr_ty ast_for_expr(struct compiling *, const node *); |
| static stmt_ty ast_for_stmt(struct compiling *, const node *); |
| static asdl_seq *ast_for_body(struct compiling *c, const node *n, |
| string *docstring); |
| static string docstring_from_stmts(asdl_seq *stmts); |
| static asdl_seq *ast_for_exprlist(struct compiling *, const node *, |
| expr_context_ty); |
| static expr_ty ast_for_testlist(struct compiling *, const node *); |
| static stmt_ty ast_for_classdef(struct compiling *, const node *, asdl_seq *); |
| |
| static stmt_ty ast_for_with_stmt(struct compiling *, const node *, int); |
| static stmt_ty ast_for_for_stmt(struct compiling *, const node *, int); |
| |
| /* Note different signature for ast_for_call */ |
| static expr_ty ast_for_call(struct compiling *, const node *, expr_ty); |
| |
| static PyObject *parsenumber(struct compiling *, const char *); |
| static expr_ty parsestrplus(struct compiling *, const node *n); |
| |
| #define COMP_GENEXP 0 |
| #define COMP_LISTCOMP 1 |
| #define COMP_SETCOMP 2 |
| |
| static int |
| init_normalization(struct compiling *c) |
| { |
| PyObject *m = PyImport_ImportModuleNoBlock("unicodedata"); |
| if (!m) |
| return 0; |
| c->c_normalize = PyObject_GetAttrString(m, "normalize"); |
| Py_DECREF(m); |
| if (!c->c_normalize) |
| return 0; |
| return 1; |
| } |
| |
| static identifier |
| new_identifier(const char *n, struct compiling *c) |
| { |
| PyObject *id = PyUnicode_DecodeUTF8(n, strlen(n), NULL); |
| if (!id) |
| return NULL; |
| /* PyUnicode_DecodeUTF8 should always return a ready string. */ |
| assert(PyUnicode_IS_READY(id)); |
| /* Check whether there are non-ASCII characters in the |
| identifier; if so, normalize to NFKC. */ |
| if (!PyUnicode_IS_ASCII(id)) { |
| PyObject *id2; |
| _Py_IDENTIFIER(NFKC); |
| if (!c->c_normalize && !init_normalization(c)) { |
| Py_DECREF(id); |
| return NULL; |
| } |
| PyObject *form = _PyUnicode_FromId(&PyId_NFKC); |
| if (form == NULL) { |
| Py_DECREF(id); |
| return NULL; |
| } |
| PyObject *args[2] = {form, id}; |
| id2 = _PyObject_FastCall(c->c_normalize, args, 2); |
| Py_DECREF(id); |
| if (!id2) |
| return NULL; |
| if (!PyUnicode_Check(id2)) { |
| PyErr_Format(PyExc_TypeError, |
| "unicodedata.normalize() must return a string, not " |
| "%.200s", |
| Py_TYPE(id2)->tp_name); |
| Py_DECREF(id2); |
| return NULL; |
| } |
| id = id2; |
| } |
| PyUnicode_InternInPlace(&id); |
| if (PyArena_AddPyObject(c->c_arena, id) < 0) { |
| Py_DECREF(id); |
| return NULL; |
| } |
| return id; |
| } |
| |
| #define NEW_IDENTIFIER(n) new_identifier(STR(n), c) |
| |
| static int |
| ast_error(struct compiling *c, const node *n, const char *errmsg) |
| { |
| PyObject *value, *errstr, *loc, *tmp; |
| |
| loc = PyErr_ProgramTextObject(c->c_filename, LINENO(n)); |
| if (!loc) { |
| Py_INCREF(Py_None); |
| loc = Py_None; |
| } |
| tmp = Py_BuildValue("(OiiN)", c->c_filename, LINENO(n), n->n_col_offset, loc); |
| if (!tmp) |
| return 0; |
| errstr = PyUnicode_FromString(errmsg); |
| if (!errstr) { |
| Py_DECREF(tmp); |
| return 0; |
| } |
| value = PyTuple_Pack(2, errstr, tmp); |
| Py_DECREF(errstr); |
| Py_DECREF(tmp); |
| if (value) { |
| PyErr_SetObject(PyExc_SyntaxError, value); |
| Py_DECREF(value); |
| } |
| return 0; |
| } |
| |
| /* num_stmts() returns number of contained statements. |
| |
| Use this routine to determine how big a sequence is needed for |
| the statements in a parse tree. Its raison d'etre is this bit of |
| grammar: |
| |
| stmt: simple_stmt | compound_stmt |
| simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE |
| |
| A simple_stmt can contain multiple small_stmt elements joined |
| by semicolons. If the arg is a simple_stmt, the number of |
| small_stmt elements is returned. |
| */ |
| |
| static int |
| num_stmts(const node *n) |
| { |
| int i, l; |
| node *ch; |
| |
| switch (TYPE(n)) { |
| case single_input: |
| if (TYPE(CHILD(n, 0)) == NEWLINE) |
| return 0; |
| else |
| return num_stmts(CHILD(n, 0)); |
| case file_input: |
| l = 0; |
| for (i = 0; i < NCH(n); i++) { |
| ch = CHILD(n, i); |
| if (TYPE(ch) == stmt) |
| l += num_stmts(ch); |
| } |
| return l; |
| case stmt: |
| return num_stmts(CHILD(n, 0)); |
| case compound_stmt: |
| return 1; |
| case simple_stmt: |
| return NCH(n) / 2; /* Divide by 2 to remove count of semi-colons */ |
| case suite: |
| if (NCH(n) == 1) |
| return num_stmts(CHILD(n, 0)); |
| else { |
| l = 0; |
| for (i = 2; i < (NCH(n) - 1); i++) |
| l += num_stmts(CHILD(n, i)); |
| return l; |
| } |
| default: { |
| char buf[128]; |
| |
| sprintf(buf, "Non-statement found: %d %d", |
| TYPE(n), NCH(n)); |
| Py_FatalError(buf); |
| } |
| } |
| Py_UNREACHABLE(); |
| } |
| |
| /* Transform the CST rooted at node * to the appropriate AST |
| */ |
| |
| mod_ty |
| PyAST_FromNodeObject(const node *n, PyCompilerFlags *flags, |
| PyObject *filename, PyArena *arena) |
| { |
| int i, j, k, num; |
| asdl_seq *stmts = NULL; |
| stmt_ty s; |
| node *ch; |
| struct compiling c; |
| mod_ty res = NULL; |
| |
| c.c_arena = arena; |
| /* borrowed reference */ |
| c.c_filename = filename; |
| c.c_normalize = NULL; |
| |
| if (TYPE(n) == encoding_decl) |
| n = CHILD(n, 0); |
| |
| k = 0; |
| switch (TYPE(n)) { |
| case file_input: |
| stmts = _Py_asdl_seq_new(num_stmts(n), arena); |
| if (!stmts) |
| goto out; |
| for (i = 0; i < NCH(n) - 1; i++) { |
| ch = CHILD(n, i); |
| if (TYPE(ch) == NEWLINE) |
| continue; |
| REQ(ch, stmt); |
| num = num_stmts(ch); |
| if (num == 1) { |
| s = ast_for_stmt(&c, ch); |
| if (!s) |
| goto out; |
| asdl_seq_SET(stmts, k++, s); |
| } |
| else { |
| ch = CHILD(ch, 0); |
| REQ(ch, simple_stmt); |
| for (j = 0; j < num; j++) { |
| s = ast_for_stmt(&c, CHILD(ch, j * 2)); |
| if (!s) |
| goto out; |
| asdl_seq_SET(stmts, k++, s); |
| } |
| } |
| } |
| res = Module(stmts, docstring_from_stmts(stmts), arena); |
| break; |
| case eval_input: { |
| expr_ty testlist_ast; |
| |
| /* XXX Why not comp_for here? */ |
| testlist_ast = ast_for_testlist(&c, CHILD(n, 0)); |
| if (!testlist_ast) |
| goto out; |
| res = Expression(testlist_ast, arena); |
| break; |
| } |
| case single_input: |
| if (TYPE(CHILD(n, 0)) == NEWLINE) { |
| stmts = _Py_asdl_seq_new(1, arena); |
| if (!stmts) |
| goto out; |
| asdl_seq_SET(stmts, 0, Pass(n->n_lineno, n->n_col_offset, |
| arena)); |
| if (!asdl_seq_GET(stmts, 0)) |
| goto out; |
| res = Interactive(stmts, arena); |
| } |
| else { |
| n = CHILD(n, 0); |
| num = num_stmts(n); |
| stmts = _Py_asdl_seq_new(num, arena); |
| if (!stmts) |
| goto out; |
| if (num == 1) { |
| s = ast_for_stmt(&c, n); |
| if (!s) |
| goto out; |
| asdl_seq_SET(stmts, 0, s); |
| } |
| else { |
| /* Only a simple_stmt can contain multiple statements. */ |
| REQ(n, simple_stmt); |
| for (i = 0; i < NCH(n); i += 2) { |
| if (TYPE(CHILD(n, i)) == NEWLINE) |
| break; |
| s = ast_for_stmt(&c, CHILD(n, i)); |
| if (!s) |
| goto out; |
| asdl_seq_SET(stmts, i / 2, s); |
| } |
| } |
| |
| res = Interactive(stmts, arena); |
| } |
| break; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "invalid node %d for PyAST_FromNode", TYPE(n)); |
| goto out; |
| } |
| out: |
| if (c.c_normalize) { |
| Py_DECREF(c.c_normalize); |
| } |
| return res; |
| } |
| |
| mod_ty |
| PyAST_FromNode(const node *n, PyCompilerFlags *flags, const char *filename_str, |
| PyArena *arena) |
| { |
| mod_ty mod; |
| PyObject *filename; |
| filename = PyUnicode_DecodeFSDefault(filename_str); |
| if (filename == NULL) |
| return NULL; |
| mod = PyAST_FromNodeObject(n, flags, filename, arena); |
| Py_DECREF(filename); |
| return mod; |
| |
| } |
| |
| /* Return the AST repr. of the operator represented as syntax (|, ^, etc.) |
| */ |
| |
| static operator_ty |
| get_operator(const node *n) |
| { |
| switch (TYPE(n)) { |
| case VBAR: |
| return BitOr; |
| case CIRCUMFLEX: |
| return BitXor; |
| case AMPER: |
| return BitAnd; |
| case LEFTSHIFT: |
| return LShift; |
| case RIGHTSHIFT: |
| return RShift; |
| case PLUS: |
| return Add; |
| case MINUS: |
| return Sub; |
| case STAR: |
| return Mult; |
| case AT: |
| return MatMult; |
| case SLASH: |
| return Div; |
| case DOUBLESLASH: |
| return FloorDiv; |
| case PERCENT: |
| return Mod; |
| default: |
| return (operator_ty)0; |
| } |
| } |
| |
| static const char * const FORBIDDEN[] = { |
| "None", |
| "True", |
| "False", |
| NULL, |
| }; |
| |
| static int |
| forbidden_name(struct compiling *c, identifier name, const node *n, |
| int full_checks) |
| { |
| assert(PyUnicode_Check(name)); |
| if (_PyUnicode_EqualToASCIIString(name, "__debug__")) { |
| ast_error(c, n, "assignment to keyword"); |
| return 1; |
| } |
| if (full_checks) { |
| const char * const *p; |
| for (p = FORBIDDEN; *p; p++) { |
| if (_PyUnicode_EqualToASCIIString(name, *p)) { |
| ast_error(c, n, "assignment to keyword"); |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Set the context ctx for expr_ty e, recursively traversing e. |
| |
| Only sets context for expr kinds that "can appear in assignment context" |
| (according to ../Parser/Python.asdl). For other expr kinds, it sets |
| an appropriate syntax error and returns false. |
| */ |
| |
| static int |
| set_context(struct compiling *c, expr_ty e, expr_context_ty ctx, const node *n) |
| { |
| asdl_seq *s = NULL; |
| /* If a particular expression type can't be used for assign / delete, |
| set expr_name to its name and an error message will be generated. |
| */ |
| const char* expr_name = NULL; |
| |
| /* The ast defines augmented store and load contexts, but the |
| implementation here doesn't actually use them. The code may be |
| a little more complex than necessary as a result. It also means |
| that expressions in an augmented assignment have a Store context. |
| Consider restructuring so that augmented assignment uses |
| set_context(), too. |
| */ |
| assert(ctx != AugStore && ctx != AugLoad); |
| |
| switch (e->kind) { |
| case Attribute_kind: |
| e->v.Attribute.ctx = ctx; |
| if (ctx == Store && forbidden_name(c, e->v.Attribute.attr, n, 1)) |
| return 0; |
| break; |
| case Subscript_kind: |
| e->v.Subscript.ctx = ctx; |
| break; |
| case Starred_kind: |
| e->v.Starred.ctx = ctx; |
| if (!set_context(c, e->v.Starred.value, ctx, n)) |
| return 0; |
| break; |
| case Name_kind: |
| if (ctx == Store) { |
| if (forbidden_name(c, e->v.Name.id, n, 0)) |
| return 0; /* forbidden_name() calls ast_error() */ |
| } |
| e->v.Name.ctx = ctx; |
| break; |
| case List_kind: |
| e->v.List.ctx = ctx; |
| s = e->v.List.elts; |
| break; |
| case Tuple_kind: |
| e->v.Tuple.ctx = ctx; |
| s = e->v.Tuple.elts; |
| break; |
| case Lambda_kind: |
| expr_name = "lambda"; |
| break; |
| case Call_kind: |
| expr_name = "function call"; |
| break; |
| case BoolOp_kind: |
| case BinOp_kind: |
| case UnaryOp_kind: |
| expr_name = "operator"; |
| break; |
| case GeneratorExp_kind: |
| expr_name = "generator expression"; |
| break; |
| case Yield_kind: |
| case YieldFrom_kind: |
| expr_name = "yield expression"; |
| break; |
| case Await_kind: |
| expr_name = "await expression"; |
| break; |
| case ListComp_kind: |
| expr_name = "list comprehension"; |
| break; |
| case SetComp_kind: |
| expr_name = "set comprehension"; |
| break; |
| case DictComp_kind: |
| expr_name = "dict comprehension"; |
| break; |
| case Dict_kind: |
| case Set_kind: |
| case Num_kind: |
| case Str_kind: |
| case Bytes_kind: |
| case JoinedStr_kind: |
| case FormattedValue_kind: |
| expr_name = "literal"; |
| break; |
| case NameConstant_kind: |
| expr_name = "keyword"; |
| break; |
| case Ellipsis_kind: |
| expr_name = "Ellipsis"; |
| break; |
| case Compare_kind: |
| expr_name = "comparison"; |
| break; |
| case IfExp_kind: |
| expr_name = "conditional expression"; |
| break; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "unexpected expression in assignment %d (line %d)", |
| e->kind, e->lineno); |
| return 0; |
| } |
| /* Check for error string set by switch */ |
| if (expr_name) { |
| char buf[300]; |
| PyOS_snprintf(buf, sizeof(buf), |
| "can't %s %s", |
| ctx == Store ? "assign to" : "delete", |
| expr_name); |
| return ast_error(c, n, buf); |
| } |
| |
| /* If the LHS is a list or tuple, we need to set the assignment |
| context for all the contained elements. |
| */ |
| if (s) { |
| int i; |
| |
| for (i = 0; i < asdl_seq_LEN(s); i++) { |
| if (!set_context(c, (expr_ty)asdl_seq_GET(s, i), ctx, n)) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static operator_ty |
| ast_for_augassign(struct compiling *c, const node *n) |
| { |
| REQ(n, augassign); |
| n = CHILD(n, 0); |
| switch (STR(n)[0]) { |
| case '+': |
| return Add; |
| case '-': |
| return Sub; |
| case '/': |
| if (STR(n)[1] == '/') |
| return FloorDiv; |
| else |
| return Div; |
| case '%': |
| return Mod; |
| case '<': |
| return LShift; |
| case '>': |
| return RShift; |
| case '&': |
| return BitAnd; |
| case '^': |
| return BitXor; |
| case '|': |
| return BitOr; |
| case '*': |
| if (STR(n)[1] == '*') |
| return Pow; |
| else |
| return Mult; |
| case '@': |
| return MatMult; |
| default: |
| PyErr_Format(PyExc_SystemError, "invalid augassign: %s", STR(n)); |
| return (operator_ty)0; |
| } |
| } |
| |
| static cmpop_ty |
| ast_for_comp_op(struct compiling *c, const node *n) |
| { |
| /* comp_op: '<'|'>'|'=='|'>='|'<='|'!='|'in'|'not' 'in'|'is' |
| |'is' 'not' |
| */ |
| REQ(n, comp_op); |
| if (NCH(n) == 1) { |
| n = CHILD(n, 0); |
| switch (TYPE(n)) { |
| case LESS: |
| return Lt; |
| case GREATER: |
| return Gt; |
| case EQEQUAL: /* == */ |
| return Eq; |
| case LESSEQUAL: |
| return LtE; |
| case GREATEREQUAL: |
| return GtE; |
| case NOTEQUAL: |
| return NotEq; |
| case NAME: |
| if (strcmp(STR(n), "in") == 0) |
| return In; |
| if (strcmp(STR(n), "is") == 0) |
| return Is; |
| /* fall through */ |
| default: |
| PyErr_Format(PyExc_SystemError, "invalid comp_op: %s", |
| STR(n)); |
| return (cmpop_ty)0; |
| } |
| } |
| else if (NCH(n) == 2) { |
| /* handle "not in" and "is not" */ |
| switch (TYPE(CHILD(n, 0))) { |
| case NAME: |
| if (strcmp(STR(CHILD(n, 1)), "in") == 0) |
| return NotIn; |
| if (strcmp(STR(CHILD(n, 0)), "is") == 0) |
| return IsNot; |
| /* fall through */ |
| default: |
| PyErr_Format(PyExc_SystemError, "invalid comp_op: %s %s", |
| STR(CHILD(n, 0)), STR(CHILD(n, 1))); |
| return (cmpop_ty)0; |
| } |
| } |
| PyErr_Format(PyExc_SystemError, "invalid comp_op: has %d children", |
| NCH(n)); |
| return (cmpop_ty)0; |
| } |
| |
| static asdl_seq * |
| seq_for_testlist(struct compiling *c, const node *n) |
| { |
| /* testlist: test (',' test)* [','] |
| testlist_star_expr: test|star_expr (',' test|star_expr)* [','] |
| */ |
| asdl_seq *seq; |
| expr_ty expression; |
| int i; |
| assert(TYPE(n) == testlist || TYPE(n) == testlist_star_expr || TYPE(n) == testlist_comp); |
| |
| seq = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena); |
| if (!seq) |
| return NULL; |
| |
| for (i = 0; i < NCH(n); i += 2) { |
| const node *ch = CHILD(n, i); |
| assert(TYPE(ch) == test || TYPE(ch) == test_nocond || TYPE(ch) == star_expr); |
| |
| expression = ast_for_expr(c, ch); |
| if (!expression) |
| return NULL; |
| |
| assert(i / 2 < seq->size); |
| asdl_seq_SET(seq, i / 2, expression); |
| } |
| return seq; |
| } |
| |
| static arg_ty |
| ast_for_arg(struct compiling *c, const node *n) |
| { |
| identifier name; |
| expr_ty annotation = NULL; |
| node *ch; |
| arg_ty ret; |
| |
| assert(TYPE(n) == tfpdef || TYPE(n) == vfpdef); |
| ch = CHILD(n, 0); |
| name = NEW_IDENTIFIER(ch); |
| if (!name) |
| return NULL; |
| if (forbidden_name(c, name, ch, 0)) |
| return NULL; |
| |
| if (NCH(n) == 3 && TYPE(CHILD(n, 1)) == COLON) { |
| annotation = ast_for_expr(c, CHILD(n, 2)); |
| if (!annotation) |
| return NULL; |
| } |
| |
| ret = arg(name, annotation, LINENO(n), n->n_col_offset, c->c_arena); |
| if (!ret) |
| return NULL; |
| return ret; |
| } |
| |
| /* returns -1 if failed to handle keyword only arguments |
| returns new position to keep processing if successful |
| (',' tfpdef ['=' test])* |
| ^^^ |
| start pointing here |
| */ |
| static int |
| handle_keywordonly_args(struct compiling *c, const node *n, int start, |
| asdl_seq *kwonlyargs, asdl_seq *kwdefaults) |
| { |
| PyObject *argname; |
| node *ch; |
| expr_ty expression, annotation; |
| arg_ty arg; |
| int i = start; |
| int j = 0; /* index for kwdefaults and kwonlyargs */ |
| |
| if (kwonlyargs == NULL) { |
| ast_error(c, CHILD(n, start), "named arguments must follow bare *"); |
| return -1; |
| } |
| assert(kwdefaults != NULL); |
| while (i < NCH(n)) { |
| ch = CHILD(n, i); |
| switch (TYPE(ch)) { |
| case vfpdef: |
| case tfpdef: |
| if (i + 1 < NCH(n) && TYPE(CHILD(n, i + 1)) == EQUAL) { |
| expression = ast_for_expr(c, CHILD(n, i + 2)); |
| if (!expression) |
| goto error; |
| asdl_seq_SET(kwdefaults, j, expression); |
| i += 2; /* '=' and test */ |
| } |
| else { /* setting NULL if no default value exists */ |
| asdl_seq_SET(kwdefaults, j, NULL); |
| } |
| if (NCH(ch) == 3) { |
| /* ch is NAME ':' test */ |
| annotation = ast_for_expr(c, CHILD(ch, 2)); |
| if (!annotation) |
| goto error; |
| } |
| else { |
| annotation = NULL; |
| } |
| ch = CHILD(ch, 0); |
| argname = NEW_IDENTIFIER(ch); |
| if (!argname) |
| goto error; |
| if (forbidden_name(c, argname, ch, 0)) |
| goto error; |
| arg = arg(argname, annotation, LINENO(ch), ch->n_col_offset, |
| c->c_arena); |
| if (!arg) |
| goto error; |
| asdl_seq_SET(kwonlyargs, j++, arg); |
| i += 2; /* the name and the comma */ |
| break; |
| case DOUBLESTAR: |
| return i; |
| default: |
| ast_error(c, ch, "unexpected node"); |
| goto error; |
| } |
| } |
| return i; |
| error: |
| return -1; |
| } |
| |
| /* Create AST for argument list. */ |
| |
| static arguments_ty |
| ast_for_arguments(struct compiling *c, const node *n) |
| { |
| /* This function handles both typedargslist (function definition) |
| and varargslist (lambda definition). |
| |
| parameters: '(' [typedargslist] ')' |
| typedargslist: (tfpdef ['=' test] (',' tfpdef ['=' test])* [',' [ |
| '*' [tfpdef] (',' tfpdef ['=' test])* [',' ['**' tfpdef [',']]] |
| | '**' tfpdef [',']]] |
| | '*' [tfpdef] (',' tfpdef ['=' test])* [',' ['**' tfpdef [',']]] |
| | '**' tfpdef [',']) |
| tfpdef: NAME [':' test] |
| varargslist: (vfpdef ['=' test] (',' vfpdef ['=' test])* [',' [ |
| '*' [vfpdef] (',' vfpdef ['=' test])* [',' ['**' vfpdef [',']]] |
| | '**' vfpdef [',']]] |
| | '*' [vfpdef] (',' vfpdef ['=' test])* [',' ['**' vfpdef [',']]] |
| | '**' vfpdef [','] |
| ) |
| vfpdef: NAME |
| |
| */ |
| int i, j, k, nposargs = 0, nkwonlyargs = 0; |
| int nposdefaults = 0, found_default = 0; |
| asdl_seq *posargs, *posdefaults, *kwonlyargs, *kwdefaults; |
| arg_ty vararg = NULL, kwarg = NULL; |
| arg_ty arg; |
| node *ch; |
| |
| if (TYPE(n) == parameters) { |
| if (NCH(n) == 2) /* () as argument list */ |
| return arguments(NULL, NULL, NULL, NULL, NULL, NULL, c->c_arena); |
| n = CHILD(n, 1); |
| } |
| assert(TYPE(n) == typedargslist || TYPE(n) == varargslist); |
| |
| /* First count the number of positional args & defaults. The |
| variable i is the loop index for this for loop and the next. |
| The next loop picks up where the first leaves off. |
| */ |
| for (i = 0; i < NCH(n); i++) { |
| ch = CHILD(n, i); |
| if (TYPE(ch) == STAR) { |
| /* skip star */ |
| i++; |
| if (i < NCH(n) && /* skip argument following star */ |
| (TYPE(CHILD(n, i)) == tfpdef || |
| TYPE(CHILD(n, i)) == vfpdef)) { |
| i++; |
| } |
| break; |
| } |
| if (TYPE(ch) == DOUBLESTAR) break; |
| if (TYPE(ch) == vfpdef || TYPE(ch) == tfpdef) nposargs++; |
| if (TYPE(ch) == EQUAL) nposdefaults++; |
| } |
| /* count the number of keyword only args & |
| defaults for keyword only args */ |
| for ( ; i < NCH(n); ++i) { |
| ch = CHILD(n, i); |
| if (TYPE(ch) == DOUBLESTAR) break; |
| if (TYPE(ch) == tfpdef || TYPE(ch) == vfpdef) nkwonlyargs++; |
| } |
| posargs = (nposargs ? _Py_asdl_seq_new(nposargs, c->c_arena) : NULL); |
| if (!posargs && nposargs) |
| return NULL; |
| kwonlyargs = (nkwonlyargs ? |
| _Py_asdl_seq_new(nkwonlyargs, c->c_arena) : NULL); |
| if (!kwonlyargs && nkwonlyargs) |
| return NULL; |
| posdefaults = (nposdefaults ? |
| _Py_asdl_seq_new(nposdefaults, c->c_arena) : NULL); |
| if (!posdefaults && nposdefaults) |
| return NULL; |
| /* The length of kwonlyargs and kwdefaults are same |
| since we set NULL as default for keyword only argument w/o default |
| - we have sequence data structure, but no dictionary */ |
| kwdefaults = (nkwonlyargs ? |
| _Py_asdl_seq_new(nkwonlyargs, c->c_arena) : NULL); |
| if (!kwdefaults && nkwonlyargs) |
| return NULL; |
| |
| /* tfpdef: NAME [':' test] |
| vfpdef: NAME |
| */ |
| i = 0; |
| j = 0; /* index for defaults */ |
| k = 0; /* index for args */ |
| while (i < NCH(n)) { |
| ch = CHILD(n, i); |
| switch (TYPE(ch)) { |
| case tfpdef: |
| case vfpdef: |
| /* XXX Need to worry about checking if TYPE(CHILD(n, i+1)) is |
| anything other than EQUAL or a comma? */ |
| /* XXX Should NCH(n) check be made a separate check? */ |
| if (i + 1 < NCH(n) && TYPE(CHILD(n, i + 1)) == EQUAL) { |
| expr_ty expression = ast_for_expr(c, CHILD(n, i + 2)); |
| if (!expression) |
| return NULL; |
| assert(posdefaults != NULL); |
| asdl_seq_SET(posdefaults, j++, expression); |
| i += 2; |
| found_default = 1; |
| } |
| else if (found_default) { |
| ast_error(c, n, |
| "non-default argument follows default argument"); |
| return NULL; |
| } |
| arg = ast_for_arg(c, ch); |
| if (!arg) |
| return NULL; |
| asdl_seq_SET(posargs, k++, arg); |
| i += 2; /* the name and the comma */ |
| break; |
| case STAR: |
| if (i+1 >= NCH(n) || |
| (i+2 == NCH(n) && TYPE(CHILD(n, i+1)) == COMMA)) { |
| ast_error(c, CHILD(n, i), |
| "named arguments must follow bare *"); |
| return NULL; |
| } |
| ch = CHILD(n, i+1); /* tfpdef or COMMA */ |
| if (TYPE(ch) == COMMA) { |
| int res = 0; |
| i += 2; /* now follows keyword only arguments */ |
| res = handle_keywordonly_args(c, n, i, |
| kwonlyargs, kwdefaults); |
| if (res == -1) return NULL; |
| i = res; /* res has new position to process */ |
| } |
| else { |
| vararg = ast_for_arg(c, ch); |
| if (!vararg) |
| return NULL; |
| |
| i += 3; |
| if (i < NCH(n) && (TYPE(CHILD(n, i)) == tfpdef |
| || TYPE(CHILD(n, i)) == vfpdef)) { |
| int res = 0; |
| res = handle_keywordonly_args(c, n, i, |
| kwonlyargs, kwdefaults); |
| if (res == -1) return NULL; |
| i = res; /* res has new position to process */ |
| } |
| } |
| break; |
| case DOUBLESTAR: |
| ch = CHILD(n, i+1); /* tfpdef */ |
| assert(TYPE(ch) == tfpdef || TYPE(ch) == vfpdef); |
| kwarg = ast_for_arg(c, ch); |
| if (!kwarg) |
| return NULL; |
| i += 3; |
| break; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "unexpected node in varargslist: %d @ %d", |
| TYPE(ch), i); |
| return NULL; |
| } |
| } |
| return arguments(posargs, vararg, kwonlyargs, kwdefaults, kwarg, posdefaults, c->c_arena); |
| } |
| |
| static expr_ty |
| ast_for_dotted_name(struct compiling *c, const node *n) |
| { |
| expr_ty e; |
| identifier id; |
| int lineno, col_offset; |
| int i; |
| |
| REQ(n, dotted_name); |
| |
| lineno = LINENO(n); |
| col_offset = n->n_col_offset; |
| |
| id = NEW_IDENTIFIER(CHILD(n, 0)); |
| if (!id) |
| return NULL; |
| e = Name(id, Load, lineno, col_offset, c->c_arena); |
| if (!e) |
| return NULL; |
| |
| for (i = 2; i < NCH(n); i+=2) { |
| id = NEW_IDENTIFIER(CHILD(n, i)); |
| if (!id) |
| return NULL; |
| e = Attribute(e, id, Load, lineno, col_offset, c->c_arena); |
| if (!e) |
| return NULL; |
| } |
| |
| return e; |
| } |
| |
| static expr_ty |
| ast_for_decorator(struct compiling *c, const node *n) |
| { |
| /* decorator: '@' dotted_name [ '(' [arglist] ')' ] NEWLINE */ |
| expr_ty d = NULL; |
| expr_ty name_expr; |
| |
| REQ(n, decorator); |
| REQ(CHILD(n, 0), AT); |
| REQ(RCHILD(n, -1), NEWLINE); |
| |
| name_expr = ast_for_dotted_name(c, CHILD(n, 1)); |
| if (!name_expr) |
| return NULL; |
| |
| if (NCH(n) == 3) { /* No arguments */ |
| d = name_expr; |
| name_expr = NULL; |
| } |
| else if (NCH(n) == 5) { /* Call with no arguments */ |
| d = Call(name_expr, NULL, NULL, LINENO(n), |
| n->n_col_offset, c->c_arena); |
| if (!d) |
| return NULL; |
| name_expr = NULL; |
| } |
| else { |
| d = ast_for_call(c, CHILD(n, 3), name_expr); |
| if (!d) |
| return NULL; |
| name_expr = NULL; |
| } |
| |
| return d; |
| } |
| |
| static asdl_seq* |
| ast_for_decorators(struct compiling *c, const node *n) |
| { |
| asdl_seq* decorator_seq; |
| expr_ty d; |
| int i; |
| |
| REQ(n, decorators); |
| decorator_seq = _Py_asdl_seq_new(NCH(n), c->c_arena); |
| if (!decorator_seq) |
| return NULL; |
| |
| for (i = 0; i < NCH(n); i++) { |
| d = ast_for_decorator(c, CHILD(n, i)); |
| if (!d) |
| return NULL; |
| asdl_seq_SET(decorator_seq, i, d); |
| } |
| return decorator_seq; |
| } |
| |
| static stmt_ty |
| ast_for_funcdef_impl(struct compiling *c, const node *n, |
| asdl_seq *decorator_seq, int is_async) |
| { |
| /* funcdef: 'def' NAME parameters ['->' test] ':' suite */ |
| identifier name; |
| arguments_ty args; |
| asdl_seq *body; |
| expr_ty returns = NULL; |
| string docstring; |
| int name_i = 1; |
| |
| REQ(n, funcdef); |
| |
| name = NEW_IDENTIFIER(CHILD(n, name_i)); |
| if (!name) |
| return NULL; |
| if (forbidden_name(c, name, CHILD(n, name_i), 0)) |
| return NULL; |
| args = ast_for_arguments(c, CHILD(n, name_i + 1)); |
| if (!args) |
| return NULL; |
| if (TYPE(CHILD(n, name_i+2)) == RARROW) { |
| returns = ast_for_expr(c, CHILD(n, name_i + 3)); |
| if (!returns) |
| return NULL; |
| name_i += 2; |
| } |
| body = ast_for_body(c, CHILD(n, name_i + 3), &docstring); |
| if (!body) |
| return NULL; |
| |
| if (is_async) |
| return AsyncFunctionDef(name, args, body, decorator_seq, returns, |
| docstring, LINENO(n), |
| n->n_col_offset, c->c_arena); |
| else |
| return FunctionDef(name, args, body, decorator_seq, returns, |
| docstring, LINENO(n), |
| n->n_col_offset, c->c_arena); |
| } |
| |
| static stmt_ty |
| ast_for_async_funcdef(struct compiling *c, const node *n, asdl_seq *decorator_seq) |
| { |
| /* async_funcdef: 'async' funcdef */ |
| REQ(n, async_funcdef); |
| REQ(CHILD(n, 0), NAME); |
| assert(strcmp(STR(CHILD(n, 0)), "async") == 0); |
| REQ(CHILD(n, 1), funcdef); |
| |
| return ast_for_funcdef_impl(c, CHILD(n, 1), decorator_seq, |
| 1 /* is_async */); |
| } |
| |
| static stmt_ty |
| ast_for_funcdef(struct compiling *c, const node *n, asdl_seq *decorator_seq) |
| { |
| /* funcdef: 'def' NAME parameters ['->' test] ':' suite */ |
| return ast_for_funcdef_impl(c, n, decorator_seq, |
| 0 /* is_async */); |
| } |
| |
| |
| static stmt_ty |
| ast_for_async_stmt(struct compiling *c, const node *n) |
| { |
| /* async_stmt: 'async' (funcdef | with_stmt | for_stmt) */ |
| REQ(n, async_stmt); |
| REQ(CHILD(n, 0), NAME); |
| assert(strcmp(STR(CHILD(n, 0)), "async") == 0); |
| |
| switch (TYPE(CHILD(n, 1))) { |
| case funcdef: |
| return ast_for_funcdef_impl(c, CHILD(n, 1), NULL, |
| 1 /* is_async */); |
| case with_stmt: |
| return ast_for_with_stmt(c, CHILD(n, 1), |
| 1 /* is_async */); |
| |
| case for_stmt: |
| return ast_for_for_stmt(c, CHILD(n, 1), |
| 1 /* is_async */); |
| |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "invalid async stament: %s", |
| STR(CHILD(n, 1))); |
| return NULL; |
| } |
| } |
| |
| static stmt_ty |
| ast_for_decorated(struct compiling *c, const node *n) |
| { |
| /* decorated: decorators (classdef | funcdef | async_funcdef) */ |
| stmt_ty thing = NULL; |
| asdl_seq *decorator_seq = NULL; |
| |
| REQ(n, decorated); |
| |
| decorator_seq = ast_for_decorators(c, CHILD(n, 0)); |
| if (!decorator_seq) |
| return NULL; |
| |
| assert(TYPE(CHILD(n, 1)) == funcdef || |
| TYPE(CHILD(n, 1)) == async_funcdef || |
| TYPE(CHILD(n, 1)) == classdef); |
| |
| if (TYPE(CHILD(n, 1)) == funcdef) { |
| thing = ast_for_funcdef(c, CHILD(n, 1), decorator_seq); |
| } else if (TYPE(CHILD(n, 1)) == classdef) { |
| thing = ast_for_classdef(c, CHILD(n, 1), decorator_seq); |
| } else if (TYPE(CHILD(n, 1)) == async_funcdef) { |
| thing = ast_for_async_funcdef(c, CHILD(n, 1), decorator_seq); |
| } |
| /* we count the decorators in when talking about the class' or |
| * function's line number */ |
| if (thing) { |
| thing->lineno = LINENO(n); |
| thing->col_offset = n->n_col_offset; |
| } |
| return thing; |
| } |
| |
| static expr_ty |
| ast_for_lambdef(struct compiling *c, const node *n) |
| { |
| /* lambdef: 'lambda' [varargslist] ':' test |
| lambdef_nocond: 'lambda' [varargslist] ':' test_nocond */ |
| arguments_ty args; |
| expr_ty expression; |
| |
| if (NCH(n) == 3) { |
| args = arguments(NULL, NULL, NULL, NULL, NULL, NULL, c->c_arena); |
| if (!args) |
| return NULL; |
| expression = ast_for_expr(c, CHILD(n, 2)); |
| if (!expression) |
| return NULL; |
| } |
| else { |
| args = ast_for_arguments(c, CHILD(n, 1)); |
| if (!args) |
| return NULL; |
| expression = ast_for_expr(c, CHILD(n, 3)); |
| if (!expression) |
| return NULL; |
| } |
| |
| return Lambda(args, expression, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| static expr_ty |
| ast_for_ifexpr(struct compiling *c, const node *n) |
| { |
| /* test: or_test 'if' or_test 'else' test */ |
| expr_ty expression, body, orelse; |
| |
| assert(NCH(n) == 5); |
| body = ast_for_expr(c, CHILD(n, 0)); |
| if (!body) |
| return NULL; |
| expression = ast_for_expr(c, CHILD(n, 2)); |
| if (!expression) |
| return NULL; |
| orelse = ast_for_expr(c, CHILD(n, 4)); |
| if (!orelse) |
| return NULL; |
| return IfExp(expression, body, orelse, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| } |
| |
| /* |
| Count the number of 'for' loops in a comprehension. |
| |
| Helper for ast_for_comprehension(). |
| */ |
| |
| static int |
| count_comp_fors(struct compiling *c, const node *n) |
| { |
| int n_fors = 0; |
| |
| count_comp_for: |
| n_fors++; |
| REQ(n, comp_for); |
| if (NCH(n) == 2) { |
| REQ(CHILD(n, 0), NAME); |
| assert(strcmp(STR(CHILD(n, 0)), "async") == 0); |
| n = CHILD(n, 1); |
| } |
| else if (NCH(n) == 1) { |
| n = CHILD(n, 0); |
| } |
| else { |
| goto error; |
| } |
| if (NCH(n) == (5)) { |
| n = CHILD(n, 4); |
| } |
| else { |
| return n_fors; |
| } |
| count_comp_iter: |
| REQ(n, comp_iter); |
| n = CHILD(n, 0); |
| if (TYPE(n) == comp_for) |
| goto count_comp_for; |
| else if (TYPE(n) == comp_if) { |
| if (NCH(n) == 3) { |
| n = CHILD(n, 2); |
| goto count_comp_iter; |
| } |
| else |
| return n_fors; |
| } |
| |
| error: |
| /* Should never be reached */ |
| PyErr_SetString(PyExc_SystemError, |
| "logic error in count_comp_fors"); |
| return -1; |
| } |
| |
| /* Count the number of 'if' statements in a comprehension. |
| |
| Helper for ast_for_comprehension(). |
| */ |
| |
| static int |
| count_comp_ifs(struct compiling *c, const node *n) |
| { |
| int n_ifs = 0; |
| |
| while (1) { |
| REQ(n, comp_iter); |
| if (TYPE(CHILD(n, 0)) == comp_for) |
| return n_ifs; |
| n = CHILD(n, 0); |
| REQ(n, comp_if); |
| n_ifs++; |
| if (NCH(n) == 2) |
| return n_ifs; |
| n = CHILD(n, 2); |
| } |
| } |
| |
| static asdl_seq * |
| ast_for_comprehension(struct compiling *c, const node *n) |
| { |
| int i, n_fors; |
| asdl_seq *comps; |
| |
| n_fors = count_comp_fors(c, n); |
| if (n_fors == -1) |
| return NULL; |
| |
| comps = _Py_asdl_seq_new(n_fors, c->c_arena); |
| if (!comps) |
| return NULL; |
| |
| for (i = 0; i < n_fors; i++) { |
| comprehension_ty comp; |
| asdl_seq *t; |
| expr_ty expression, first; |
| node *for_ch; |
| node *sync_n; |
| int is_async = 0; |
| |
| REQ(n, comp_for); |
| |
| if (NCH(n) == 2) { |
| is_async = 1; |
| REQ(CHILD(n, 0), NAME); |
| assert(strcmp(STR(CHILD(n, 0)), "async") == 0); |
| sync_n = CHILD(n, 1); |
| } |
| else { |
| sync_n = CHILD(n, 0); |
| } |
| REQ(sync_n, sync_comp_for); |
| |
| for_ch = CHILD(sync_n, 1); |
| t = ast_for_exprlist(c, for_ch, Store); |
| if (!t) |
| return NULL; |
| expression = ast_for_expr(c, CHILD(sync_n, 3)); |
| if (!expression) |
| return NULL; |
| |
| /* Check the # of children rather than the length of t, since |
| (x for x, in ...) has 1 element in t, but still requires a Tuple. */ |
| first = (expr_ty)asdl_seq_GET(t, 0); |
| if (NCH(for_ch) == 1) |
| comp = comprehension(first, expression, NULL, |
| is_async, c->c_arena); |
| else |
| comp = comprehension(Tuple(t, Store, first->lineno, |
| first->col_offset, c->c_arena), |
| expression, NULL, is_async, c->c_arena); |
| if (!comp) |
| return NULL; |
| |
| if (NCH(sync_n) == 5) { |
| int j, n_ifs; |
| asdl_seq *ifs; |
| |
| n = CHILD(sync_n, 4); |
| n_ifs = count_comp_ifs(c, n); |
| if (n_ifs == -1) |
| return NULL; |
| |
| ifs = _Py_asdl_seq_new(n_ifs, c->c_arena); |
| if (!ifs) |
| return NULL; |
| |
| for (j = 0; j < n_ifs; j++) { |
| REQ(n, comp_iter); |
| n = CHILD(n, 0); |
| REQ(n, comp_if); |
| |
| expression = ast_for_expr(c, CHILD(n, 1)); |
| if (!expression) |
| return NULL; |
| asdl_seq_SET(ifs, j, expression); |
| if (NCH(n) == 3) |
| n = CHILD(n, 2); |
| } |
| /* on exit, must guarantee that n is a comp_for */ |
| if (TYPE(n) == comp_iter) |
| n = CHILD(n, 0); |
| comp->ifs = ifs; |
| } |
| asdl_seq_SET(comps, i, comp); |
| } |
| return comps; |
| } |
| |
| static expr_ty |
| ast_for_itercomp(struct compiling *c, const node *n, int type) |
| { |
| /* testlist_comp: (test|star_expr) |
| * ( comp_for | (',' (test|star_expr))* [','] ) */ |
| expr_ty elt; |
| asdl_seq *comps; |
| node *ch; |
| |
| assert(NCH(n) > 1); |
| |
| ch = CHILD(n, 0); |
| elt = ast_for_expr(c, ch); |
| if (!elt) |
| return NULL; |
| if (elt->kind == Starred_kind) { |
| ast_error(c, ch, "iterable unpacking cannot be used in comprehension"); |
| return NULL; |
| } |
| |
| comps = ast_for_comprehension(c, CHILD(n, 1)); |
| if (!comps) |
| return NULL; |
| |
| if (type == COMP_GENEXP) |
| return GeneratorExp(elt, comps, LINENO(n), n->n_col_offset, c->c_arena); |
| else if (type == COMP_LISTCOMP) |
| return ListComp(elt, comps, LINENO(n), n->n_col_offset, c->c_arena); |
| else if (type == COMP_SETCOMP) |
| return SetComp(elt, comps, LINENO(n), n->n_col_offset, c->c_arena); |
| else |
| /* Should never happen */ |
| return NULL; |
| } |
| |
| /* Fills in the key, value pair corresponding to the dict element. In case |
| * of an unpacking, key is NULL. *i is advanced by the number of ast |
| * elements. Iff successful, nonzero is returned. |
| */ |
| static int |
| ast_for_dictelement(struct compiling *c, const node *n, int *i, |
| expr_ty *key, expr_ty *value) |
| { |
| expr_ty expression; |
| if (TYPE(CHILD(n, *i)) == DOUBLESTAR) { |
| assert(NCH(n) - *i >= 2); |
| |
| expression = ast_for_expr(c, CHILD(n, *i + 1)); |
| if (!expression) |
| return 0; |
| *key = NULL; |
| *value = expression; |
| |
| *i += 2; |
| } |
| else { |
| assert(NCH(n) - *i >= 3); |
| |
| expression = ast_for_expr(c, CHILD(n, *i)); |
| if (!expression) |
| return 0; |
| *key = expression; |
| |
| REQ(CHILD(n, *i + 1), COLON); |
| |
| expression = ast_for_expr(c, CHILD(n, *i + 2)); |
| if (!expression) |
| return 0; |
| *value = expression; |
| |
| *i += 3; |
| } |
| return 1; |
| } |
| |
| static expr_ty |
| ast_for_dictcomp(struct compiling *c, const node *n) |
| { |
| expr_ty key, value; |
| asdl_seq *comps; |
| int i = 0; |
| |
| if (!ast_for_dictelement(c, n, &i, &key, &value)) |
| return NULL; |
| assert(key); |
| assert(NCH(n) - i >= 1); |
| |
| comps = ast_for_comprehension(c, CHILD(n, i)); |
| if (!comps) |
| return NULL; |
| |
| return DictComp(key, value, comps, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| static expr_ty |
| ast_for_dictdisplay(struct compiling *c, const node *n) |
| { |
| int i; |
| int j; |
| int size; |
| asdl_seq *keys, *values; |
| |
| size = (NCH(n) + 1) / 3; /* +1 in case no trailing comma */ |
| keys = _Py_asdl_seq_new(size, c->c_arena); |
| if (!keys) |
| return NULL; |
| |
| values = _Py_asdl_seq_new(size, c->c_arena); |
| if (!values) |
| return NULL; |
| |
| j = 0; |
| for (i = 0; i < NCH(n); i++) { |
| expr_ty key, value; |
| |
| if (!ast_for_dictelement(c, n, &i, &key, &value)) |
| return NULL; |
| asdl_seq_SET(keys, j, key); |
| asdl_seq_SET(values, j, value); |
| |
| j++; |
| } |
| keys->size = j; |
| values->size = j; |
| return Dict(keys, values, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| static expr_ty |
| ast_for_genexp(struct compiling *c, const node *n) |
| { |
| assert(TYPE(n) == (testlist_comp) || TYPE(n) == (argument)); |
| return ast_for_itercomp(c, n, COMP_GENEXP); |
| } |
| |
| static expr_ty |
| ast_for_listcomp(struct compiling *c, const node *n) |
| { |
| assert(TYPE(n) == (testlist_comp)); |
| return ast_for_itercomp(c, n, COMP_LISTCOMP); |
| } |
| |
| static expr_ty |
| ast_for_setcomp(struct compiling *c, const node *n) |
| { |
| assert(TYPE(n) == (dictorsetmaker)); |
| return ast_for_itercomp(c, n, COMP_SETCOMP); |
| } |
| |
| static expr_ty |
| ast_for_setdisplay(struct compiling *c, const node *n) |
| { |
| int i; |
| int size; |
| asdl_seq *elts; |
| |
| assert(TYPE(n) == (dictorsetmaker)); |
| size = (NCH(n) + 1) / 2; /* +1 in case no trailing comma */ |
| elts = _Py_asdl_seq_new(size, c->c_arena); |
| if (!elts) |
| return NULL; |
| for (i = 0; i < NCH(n); i += 2) { |
| expr_ty expression; |
| expression = ast_for_expr(c, CHILD(n, i)); |
| if (!expression) |
| return NULL; |
| asdl_seq_SET(elts, i / 2, expression); |
| } |
| return Set(elts, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| static expr_ty |
| ast_for_atom(struct compiling *c, const node *n) |
| { |
| /* atom: '(' [yield_expr|testlist_comp] ')' | '[' [testlist_comp] ']' |
| | '{' [dictmaker|testlist_comp] '}' | NAME | NUMBER | STRING+ |
| | '...' | 'None' | 'True' | 'False' |
| */ |
| node *ch = CHILD(n, 0); |
| |
| switch (TYPE(ch)) { |
| case NAME: { |
| PyObject *name; |
| const char *s = STR(ch); |
| size_t len = strlen(s); |
| if (len >= 4 && len <= 5) { |
| if (!strcmp(s, "None")) |
| return NameConstant(Py_None, LINENO(n), n->n_col_offset, c->c_arena); |
| if (!strcmp(s, "True")) |
| return NameConstant(Py_True, LINENO(n), n->n_col_offset, c->c_arena); |
| if (!strcmp(s, "False")) |
| return NameConstant(Py_False, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| name = new_identifier(s, c); |
| if (!name) |
| return NULL; |
| /* All names start in Load context, but may later be changed. */ |
| return Name(name, Load, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| case STRING: { |
| expr_ty str = parsestrplus(c, n); |
| if (!str) { |
| const char *errtype = NULL; |
| if (PyErr_ExceptionMatches(PyExc_UnicodeError)) |
| errtype = "unicode error"; |
| else if (PyErr_ExceptionMatches(PyExc_ValueError)) |
| errtype = "value error"; |
| if (errtype) { |
| char buf[128]; |
| const char *s = NULL; |
| PyObject *type, *value, *tback, *errstr; |
| PyErr_Fetch(&type, &value, &tback); |
| errstr = PyObject_Str(value); |
| if (errstr) |
| s = PyUnicode_AsUTF8(errstr); |
| if (s) { |
| PyOS_snprintf(buf, sizeof(buf), "(%s) %s", errtype, s); |
| } else { |
| PyErr_Clear(); |
| PyOS_snprintf(buf, sizeof(buf), "(%s) unknown error", errtype); |
| } |
| Py_XDECREF(errstr); |
| ast_error(c, n, buf); |
| Py_DECREF(type); |
| Py_XDECREF(value); |
| Py_XDECREF(tback); |
| } |
| return NULL; |
| } |
| return str; |
| } |
| case NUMBER: { |
| PyObject *pynum = parsenumber(c, STR(ch)); |
| if (!pynum) |
| return NULL; |
| |
| if (PyArena_AddPyObject(c->c_arena, pynum) < 0) { |
| Py_DECREF(pynum); |
| return NULL; |
| } |
| return Num(pynum, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| case ELLIPSIS: /* Ellipsis */ |
| return Ellipsis(LINENO(n), n->n_col_offset, c->c_arena); |
| case LPAR: /* some parenthesized expressions */ |
| ch = CHILD(n, 1); |
| |
| if (TYPE(ch) == RPAR) |
| return Tuple(NULL, Load, LINENO(n), n->n_col_offset, c->c_arena); |
| |
| if (TYPE(ch) == yield_expr) |
| return ast_for_expr(c, ch); |
| |
| /* testlist_comp: test ( comp_for | (',' test)* [','] ) */ |
| if ((NCH(ch) > 1) && (TYPE(CHILD(ch, 1)) == comp_for)) |
| return ast_for_genexp(c, ch); |
| |
| return ast_for_testlist(c, ch); |
| case LSQB: /* list (or list comprehension) */ |
| ch = CHILD(n, 1); |
| |
| if (TYPE(ch) == RSQB) |
| return List(NULL, Load, LINENO(n), n->n_col_offset, c->c_arena); |
| |
| REQ(ch, testlist_comp); |
| if (NCH(ch) == 1 || TYPE(CHILD(ch, 1)) == COMMA) { |
| asdl_seq *elts = seq_for_testlist(c, ch); |
| if (!elts) |
| return NULL; |
| |
| return List(elts, Load, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| else |
| return ast_for_listcomp(c, ch); |
| case LBRACE: { |
| /* dictorsetmaker: ( ((test ':' test | '**' test) |
| * (comp_for | (',' (test ':' test | '**' test))* [','])) | |
| * ((test | '*' test) |
| * (comp_for | (',' (test | '*' test))* [','])) ) */ |
| expr_ty res; |
| ch = CHILD(n, 1); |
| if (TYPE(ch) == RBRACE) { |
| /* It's an empty dict. */ |
| return Dict(NULL, NULL, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| else { |
| int is_dict = (TYPE(CHILD(ch, 0)) == DOUBLESTAR); |
| if (NCH(ch) == 1 || |
| (NCH(ch) > 1 && |
| TYPE(CHILD(ch, 1)) == COMMA)) { |
| /* It's a set display. */ |
| res = ast_for_setdisplay(c, ch); |
| } |
| else if (NCH(ch) > 1 && |
| TYPE(CHILD(ch, 1)) == comp_for) { |
| /* It's a set comprehension. */ |
| res = ast_for_setcomp(c, ch); |
| } |
| else if (NCH(ch) > 3 - is_dict && |
| TYPE(CHILD(ch, 3 - is_dict)) == comp_for) { |
| /* It's a dictionary comprehension. */ |
| if (is_dict) { |
| ast_error(c, n, "dict unpacking cannot be used in " |
| "dict comprehension"); |
| return NULL; |
| } |
| res = ast_for_dictcomp(c, ch); |
| } |
| else { |
| /* It's a dictionary display. */ |
| res = ast_for_dictdisplay(c, ch); |
| } |
| if (res) { |
| res->lineno = LINENO(n); |
| res->col_offset = n->n_col_offset; |
| } |
| return res; |
| } |
| } |
| default: |
| PyErr_Format(PyExc_SystemError, "unhandled atom %d", TYPE(ch)); |
| return NULL; |
| } |
| } |
| |
| static slice_ty |
| ast_for_slice(struct compiling *c, const node *n) |
| { |
| node *ch; |
| expr_ty lower = NULL, upper = NULL, step = NULL; |
| |
| REQ(n, subscript); |
| |
| /* |
| subscript: test | [test] ':' [test] [sliceop] |
| sliceop: ':' [test] |
| */ |
| ch = CHILD(n, 0); |
| if (NCH(n) == 1 && TYPE(ch) == test) { |
| /* 'step' variable hold no significance in terms of being used over |
| other vars */ |
| step = ast_for_expr(c, ch); |
| if (!step) |
| return NULL; |
| |
| return Index(step, c->c_arena); |
| } |
| |
| if (TYPE(ch) == test) { |
| lower = ast_for_expr(c, ch); |
| if (!lower) |
| return NULL; |
| } |
| |
| /* If there's an upper bound it's in the second or third position. */ |
| if (TYPE(ch) == COLON) { |
| if (NCH(n) > 1) { |
| node *n2 = CHILD(n, 1); |
| |
| if (TYPE(n2) == test) { |
| upper = ast_for_expr(c, n2); |
| if (!upper) |
| return NULL; |
| } |
| } |
| } else if (NCH(n) > 2) { |
| node *n2 = CHILD(n, 2); |
| |
| if (TYPE(n2) == test) { |
| upper = ast_for_expr(c, n2); |
| if (!upper) |
| return NULL; |
| } |
| } |
| |
| ch = CHILD(n, NCH(n) - 1); |
| if (TYPE(ch) == sliceop) { |
| if (NCH(ch) != 1) { |
| ch = CHILD(ch, 1); |
| if (TYPE(ch) == test) { |
| step = ast_for_expr(c, ch); |
| if (!step) |
| return NULL; |
| } |
| } |
| } |
| |
| return Slice(lower, upper, step, c->c_arena); |
| } |
| |
| static expr_ty |
| ast_for_binop(struct compiling *c, const node *n) |
| { |
| /* Must account for a sequence of expressions. |
| How should A op B op C by represented? |
| BinOp(BinOp(A, op, B), op, C). |
| */ |
| |
| int i, nops; |
| expr_ty expr1, expr2, result; |
| operator_ty newoperator; |
| |
| expr1 = ast_for_expr(c, CHILD(n, 0)); |
| if (!expr1) |
| return NULL; |
| |
| expr2 = ast_for_expr(c, CHILD(n, 2)); |
| if (!expr2) |
| return NULL; |
| |
| newoperator = get_operator(CHILD(n, 1)); |
| if (!newoperator) |
| return NULL; |
| |
| result = BinOp(expr1, newoperator, expr2, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| if (!result) |
| return NULL; |
| |
| nops = (NCH(n) - 1) / 2; |
| for (i = 1; i < nops; i++) { |
| expr_ty tmp_result, tmp; |
| const node* next_oper = CHILD(n, i * 2 + 1); |
| |
| newoperator = get_operator(next_oper); |
| if (!newoperator) |
| return NULL; |
| |
| tmp = ast_for_expr(c, CHILD(n, i * 2 + 2)); |
| if (!tmp) |
| return NULL; |
| |
| tmp_result = BinOp(result, newoperator, tmp, |
| LINENO(next_oper), next_oper->n_col_offset, |
| c->c_arena); |
| if (!tmp_result) |
| return NULL; |
| result = tmp_result; |
| } |
| return result; |
| } |
| |
| static expr_ty |
| ast_for_trailer(struct compiling *c, const node *n, expr_ty left_expr) |
| { |
| /* trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME |
| subscriptlist: subscript (',' subscript)* [','] |
| subscript: '.' '.' '.' | test | [test] ':' [test] [sliceop] |
| */ |
| REQ(n, trailer); |
| if (TYPE(CHILD(n, 0)) == LPAR) { |
| if (NCH(n) == 2) |
| return Call(left_expr, NULL, NULL, LINENO(n), |
| n->n_col_offset, c->c_arena); |
| else |
| return ast_for_call(c, CHILD(n, 1), left_expr); |
| } |
| else if (TYPE(CHILD(n, 0)) == DOT) { |
| PyObject *attr_id = NEW_IDENTIFIER(CHILD(n, 1)); |
| if (!attr_id) |
| return NULL; |
| return Attribute(left_expr, attr_id, Load, |
| LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| else { |
| REQ(CHILD(n, 0), LSQB); |
| REQ(CHILD(n, 2), RSQB); |
| n = CHILD(n, 1); |
| if (NCH(n) == 1) { |
| slice_ty slc = ast_for_slice(c, CHILD(n, 0)); |
| if (!slc) |
| return NULL; |
| return Subscript(left_expr, slc, Load, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| } |
| else { |
| /* The grammar is ambiguous here. The ambiguity is resolved |
| by treating the sequence as a tuple literal if there are |
| no slice features. |
| */ |
| int j; |
| slice_ty slc; |
| expr_ty e; |
| int simple = 1; |
| asdl_seq *slices, *elts; |
| slices = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena); |
| if (!slices) |
| return NULL; |
| for (j = 0; j < NCH(n); j += 2) { |
| slc = ast_for_slice(c, CHILD(n, j)); |
| if (!slc) |
| return NULL; |
| if (slc->kind != Index_kind) |
| simple = 0; |
| asdl_seq_SET(slices, j / 2, slc); |
| } |
| if (!simple) { |
| return Subscript(left_expr, ExtSlice(slices, c->c_arena), |
| Load, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| /* extract Index values and put them in a Tuple */ |
| elts = _Py_asdl_seq_new(asdl_seq_LEN(slices), c->c_arena); |
| if (!elts) |
| return NULL; |
| for (j = 0; j < asdl_seq_LEN(slices); ++j) { |
| slc = (slice_ty)asdl_seq_GET(slices, j); |
| assert(slc->kind == Index_kind && slc->v.Index.value); |
| asdl_seq_SET(elts, j, slc->v.Index.value); |
| } |
| e = Tuple(elts, Load, LINENO(n), n->n_col_offset, c->c_arena); |
| if (!e) |
| return NULL; |
| return Subscript(left_expr, Index(e, c->c_arena), |
| Load, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| } |
| } |
| |
| static expr_ty |
| ast_for_factor(struct compiling *c, const node *n) |
| { |
| expr_ty expression; |
| |
| expression = ast_for_expr(c, CHILD(n, 1)); |
| if (!expression) |
| return NULL; |
| |
| switch (TYPE(CHILD(n, 0))) { |
| case PLUS: |
| return UnaryOp(UAdd, expression, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| case MINUS: |
| return UnaryOp(USub, expression, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| case TILDE: |
| return UnaryOp(Invert, expression, LINENO(n), |
| n->n_col_offset, c->c_arena); |
| } |
| PyErr_Format(PyExc_SystemError, "unhandled factor: %d", |
| TYPE(CHILD(n, 0))); |
| return NULL; |
| } |
| |
| static expr_ty |
| ast_for_atom_expr(struct compiling *c, const node *n) |
| { |
| int i, nch, start = 0; |
| expr_ty e, tmp; |
| |
| REQ(n, atom_expr); |
| nch = NCH(n); |
| |
| if (TYPE(CHILD(n, 0)) == NAME && strcmp(STR(CHILD(n, 0)), "await") == 0) { |
| start = 1; |
| assert(nch > 1); |
| } |
| |
| e = ast_for_atom(c, CHILD(n, start)); |
| if (!e) |
| return NULL; |
| if (nch == 1) |
| return e; |
| if (start && nch == 2) { |
| return Await(e, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| for (i = start + 1; i < nch; i++) { |
| node *ch = CHILD(n, i); |
| if (TYPE(ch) != trailer) |
| break; |
| tmp = ast_for_trailer(c, ch, e); |
| if (!tmp) |
| return NULL; |
| tmp->lineno = e->lineno; |
| tmp->col_offset = e->col_offset; |
| e = tmp; |
| } |
| |
| if (start) { |
| /* there was an 'await' */ |
| return Await(e, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| else { |
| return e; |
| } |
| } |
| |
| static expr_ty |
| ast_for_power(struct compiling *c, const node *n) |
| { |
| /* power: atom trailer* ('**' factor)* |
| */ |
| expr_ty e; |
| REQ(n, power); |
| e = ast_for_atom_expr(c, CHILD(n, 0)); |
| if (!e) |
| return NULL; |
| if (NCH(n) == 1) |
| return e; |
| if (TYPE(CHILD(n, NCH(n) - 1)) == factor) { |
| expr_ty f = ast_for_expr(c, CHILD(n, NCH(n) - 1)); |
| if (!f) |
| return NULL; |
| e = BinOp(e, Pow, f, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| return e; |
| } |
| |
| static expr_ty |
| ast_for_starred(struct compiling *c, const node *n) |
| { |
| expr_ty tmp; |
| REQ(n, star_expr); |
| |
| tmp = ast_for_expr(c, CHILD(n, 1)); |
| if (!tmp) |
| return NULL; |
| |
| /* The Load context is changed later. */ |
| return Starred(tmp, Load, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| |
| /* Do not name a variable 'expr'! Will cause a compile error. |
| */ |
| |
| static expr_ty |
| ast_for_expr(struct compiling *c, const node *n) |
| { |
| /* handle the full range of simple expressions |
| test: or_test ['if' or_test 'else' test] | lambdef |
| test_nocond: or_test | lambdef_nocond |
| or_test: and_test ('or' and_test)* |
| and_test: not_test ('and' not_test)* |
| not_test: 'not' not_test | comparison |
| comparison: expr (comp_op expr)* |
| expr: xor_expr ('|' xor_expr)* |
| xor_expr: and_expr ('^' and_expr)* |
| and_expr: shift_expr ('&' shift_expr)* |
| shift_expr: arith_expr (('<<'|'>>') arith_expr)* |
| arith_expr: term (('+'|'-') term)* |
| term: factor (('*'|'@'|'/'|'%'|'//') factor)* |
| factor: ('+'|'-'|'~') factor | power |
| power: atom_expr ['**' factor] |
| atom_expr: ['await'] atom trailer* |
| yield_expr: 'yield' [yield_arg] |
| */ |
| |
| asdl_seq *seq; |
| int i; |
| |
| loop: |
| switch (TYPE(n)) { |
| case test: |
| case test_nocond: |
| if (TYPE(CHILD(n, 0)) == lambdef || |
| TYPE(CHILD(n, 0)) == lambdef_nocond) |
| return ast_for_lambdef(c, CHILD(n, 0)); |
| else if (NCH(n) > 1) |
| return ast_for_ifexpr(c, n); |
| /* Fallthrough */ |
| case or_test: |
| case and_test: |
| if (NCH(n) == 1) { |
| n = CHILD(n, 0); |
| goto loop; |
| } |
| seq = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena); |
| if (!seq) |
| return NULL; |
| for (i = 0; i < NCH(n); i += 2) { |
| expr_ty e = ast_for_expr(c, CHILD(n, i)); |
| if (!e) |
| return NULL; |
| asdl_seq_SET(seq, i / 2, e); |
| } |
| if (!strcmp(STR(CHILD(n, 1)), "and")) |
| return BoolOp(And, seq, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| assert(!strcmp(STR(CHILD(n, 1)), "or")); |
| return BoolOp(Or, seq, LINENO(n), n->n_col_offset, c->c_arena); |
| case not_test: |
| if (NCH(n) == 1) { |
| n = CHILD(n, 0); |
| goto loop; |
| } |
| else { |
| expr_ty expression = ast_for_expr(c, CHILD(n, 1)); |
| if (!expression) |
| return NULL; |
| |
| return UnaryOp(Not, expression, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| } |
| case comparison: |
| if (NCH(n) == 1) { |
| n = CHILD(n, 0); |
| goto loop; |
| } |
| else { |
| expr_ty expression; |
| asdl_int_seq *ops; |
| asdl_seq *cmps; |
| ops = _Py_asdl_int_seq_new(NCH(n) / 2, c->c_arena); |
| if (!ops) |
| return NULL; |
| cmps = _Py_asdl_seq_new(NCH(n) / 2, c->c_arena); |
| if (!cmps) { |
| return NULL; |
| } |
| for (i = 1; i < NCH(n); i += 2) { |
| cmpop_ty newoperator; |
| |
| newoperator = ast_for_comp_op(c, CHILD(n, i)); |
| if (!newoperator) { |
| return NULL; |
| } |
| |
| expression = ast_for_expr(c, CHILD(n, i + 1)); |
| if (!expression) { |
| return NULL; |
| } |
| |
| asdl_seq_SET(ops, i / 2, newoperator); |
| asdl_seq_SET(cmps, i / 2, expression); |
| } |
| expression = ast_for_expr(c, CHILD(n, 0)); |
| if (!expression) { |
| return NULL; |
| } |
| |
| return Compare(expression, ops, cmps, LINENO(n), |
| n->n_col_offset, c->c_arena); |
| } |
| break; |
| |
| case star_expr: |
| return ast_for_starred(c, n); |
| /* The next five cases all handle BinOps. The main body of code |
| is the same in each case, but the switch turned inside out to |
| reuse the code for each type of operator. |
| */ |
| case expr: |
| case xor_expr: |
| case and_expr: |
| case shift_expr: |
| case arith_expr: |
| case term: |
| if (NCH(n) == 1) { |
| n = CHILD(n, 0); |
| goto loop; |
| } |
| return ast_for_binop(c, n); |
| case yield_expr: { |
| node *an = NULL; |
| node *en = NULL; |
| int is_from = 0; |
| expr_ty exp = NULL; |
| if (NCH(n) > 1) |
| an = CHILD(n, 1); /* yield_arg */ |
| if (an) { |
| en = CHILD(an, NCH(an) - 1); |
| if (NCH(an) == 2) { |
| is_from = 1; |
| exp = ast_for_expr(c, en); |
| } |
| else |
| exp = ast_for_testlist(c, en); |
| if (!exp) |
| return NULL; |
| } |
| if (is_from) |
| return YieldFrom(exp, LINENO(n), n->n_col_offset, c->c_arena); |
| return Yield(exp, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| case factor: |
| if (NCH(n) == 1) { |
| n = CHILD(n, 0); |
| goto loop; |
| } |
| return ast_for_factor(c, n); |
| case power: |
| return ast_for_power(c, n); |
| default: |
| PyErr_Format(PyExc_SystemError, "unhandled expr: %d", TYPE(n)); |
| return NULL; |
| } |
| /* should never get here unless if error is set */ |
| return NULL; |
| } |
| |
| static expr_ty |
| ast_for_call(struct compiling *c, const node *n, expr_ty func) |
| { |
| /* |
| arglist: argument (',' argument)* [','] |
| argument: ( test [comp_for] | '*' test | test '=' test | '**' test ) |
| */ |
| |
| int i, nargs, nkeywords, ngens; |
| int ndoublestars; |
| asdl_seq *args; |
| asdl_seq *keywords; |
| |
| REQ(n, arglist); |
| |
| nargs = 0; |
| nkeywords = 0; |
| ngens = 0; |
| for (i = 0; i < NCH(n); i++) { |
| node *ch = CHILD(n, i); |
| if (TYPE(ch) == argument) { |
| if (NCH(ch) == 1) |
| nargs++; |
| else if (TYPE(CHILD(ch, 1)) == comp_for) |
| ngens++; |
| else if (TYPE(CHILD(ch, 0)) == STAR) |
| nargs++; |
| else |
| /* TYPE(CHILD(ch, 0)) == DOUBLESTAR or keyword argument */ |
| nkeywords++; |
| } |
| } |
| if (ngens > 1 || (ngens && (nargs || nkeywords))) { |
| ast_error(c, n, "Generator expression must be parenthesized " |
| "if not sole argument"); |
| return NULL; |
| } |
| |
| args = _Py_asdl_seq_new(nargs + ngens, c->c_arena); |
| if (!args) |
| return NULL; |
| keywords = _Py_asdl_seq_new(nkeywords, c->c_arena); |
| if (!keywords) |
| return NULL; |
| |
| nargs = 0; /* positional arguments + iterable argument unpackings */ |
| nkeywords = 0; /* keyword arguments + keyword argument unpackings */ |
| ndoublestars = 0; /* just keyword argument unpackings */ |
| for (i = 0; i < NCH(n); i++) { |
| node *ch = CHILD(n, i); |
| if (TYPE(ch) == argument) { |
| expr_ty e; |
| node *chch = CHILD(ch, 0); |
| if (NCH(ch) == 1) { |
| /* a positional argument */ |
| if (nkeywords) { |
| if (ndoublestars) { |
| ast_error(c, chch, |
| "positional argument follows " |
| "keyword argument unpacking"); |
| } |
| else { |
| ast_error(c, chch, |
| "positional argument follows " |
| "keyword argument"); |
| } |
| return NULL; |
| } |
| e = ast_for_expr(c, chch); |
| if (!e) |
| return NULL; |
| asdl_seq_SET(args, nargs++, e); |
| } |
| else if (TYPE(chch) == STAR) { |
| /* an iterable argument unpacking */ |
| expr_ty starred; |
| if (ndoublestars) { |
| ast_error(c, chch, |
| "iterable argument unpacking follows " |
| "keyword argument unpacking"); |
| return NULL; |
| } |
| e = ast_for_expr(c, CHILD(ch, 1)); |
| if (!e) |
| return NULL; |
| starred = Starred(e, Load, LINENO(chch), |
| chch->n_col_offset, |
| c->c_arena); |
| if (!starred) |
| return NULL; |
| asdl_seq_SET(args, nargs++, starred); |
| |
| } |
| else if (TYPE(chch) == DOUBLESTAR) { |
| /* a keyword argument unpacking */ |
| keyword_ty kw; |
| i++; |
| e = ast_for_expr(c, CHILD(ch, 1)); |
| if (!e) |
| return NULL; |
| kw = keyword(NULL, e, c->c_arena); |
| asdl_seq_SET(keywords, nkeywords++, kw); |
| ndoublestars++; |
| } |
| else if (TYPE(CHILD(ch, 1)) == comp_for) { |
| /* the lone generator expression */ |
| e = ast_for_genexp(c, ch); |
| if (!e) |
| return NULL; |
| asdl_seq_SET(args, nargs++, e); |
| } |
| else { |
| /* a keyword argument */ |
| keyword_ty kw; |
| identifier key, tmp; |
| int k; |
| |
| /* chch is test, but must be an identifier? */ |
| e = ast_for_expr(c, chch); |
| if (!e) |
| return NULL; |
| /* f(lambda x: x[0] = 3) ends up getting parsed with |
| * LHS test = lambda x: x[0], and RHS test = 3. |
| * SF bug 132313 points out that complaining about a keyword |
| * then is very confusing. |
| */ |
| if (e->kind == Lambda_kind) { |
| ast_error(c, chch, |
| "lambda cannot contain assignment"); |
| return NULL; |
| } |
| else if (e->kind != Name_kind) { |
| ast_error(c, chch, |
| "keyword can't be an expression"); |
| return NULL; |
| } |
| else if (forbidden_name(c, e->v.Name.id, ch, 1)) { |
| return NULL; |
| } |
| key = e->v.Name.id; |
| for (k = 0; k < nkeywords; k++) { |
| tmp = ((keyword_ty)asdl_seq_GET(keywords, k))->arg; |
| if (tmp && !PyUnicode_Compare(tmp, key)) { |
| ast_error(c, chch, |
| "keyword argument repeated"); |
| return NULL; |
| } |
| } |
| e = ast_for_expr(c, CHILD(ch, 2)); |
| if (!e) |
| return NULL; |
| kw = keyword(key, e, c->c_arena); |
| if (!kw) |
| return NULL; |
| asdl_seq_SET(keywords, nkeywords++, kw); |
| } |
| } |
| } |
| |
| return Call(func, args, keywords, func->lineno, func->col_offset, c->c_arena); |
| } |
| |
| static expr_ty |
| ast_for_testlist(struct compiling *c, const node* n) |
| { |
| /* testlist_comp: test (comp_for | (',' test)* [',']) */ |
| /* testlist: test (',' test)* [','] */ |
| assert(NCH(n) > 0); |
| if (TYPE(n) == testlist_comp) { |
| if (NCH(n) > 1) |
| assert(TYPE(CHILD(n, 1)) != comp_for); |
| } |
| else { |
| assert(TYPE(n) == testlist || |
| TYPE(n) == testlist_star_expr); |
| } |
| if (NCH(n) == 1) |
| return ast_for_expr(c, CHILD(n, 0)); |
| else { |
| asdl_seq *tmp = seq_for_testlist(c, n); |
| if (!tmp) |
| return NULL; |
| return Tuple(tmp, Load, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| } |
| |
| static stmt_ty |
| ast_for_expr_stmt(struct compiling *c, const node *n) |
| { |
| REQ(n, expr_stmt); |
| /* expr_stmt: testlist_star_expr (annassign | augassign (yield_expr|testlist) | |
| ('=' (yield_expr|testlist_star_expr))*) |
| annassign: ':' test ['=' test] |
| testlist_star_expr: (test|star_expr) (',' test|star_expr)* [','] |
| augassign: '+=' | '-=' | '*=' | '@=' | '/=' | '%=' | '&=' | '|=' | '^=' |
| | '<<=' | '>>=' | '**=' | '//=' |
| test: ... here starts the operator precedence dance |
| */ |
| |
| if (NCH(n) == 1) { |
| expr_ty e = ast_for_testlist(c, CHILD(n, 0)); |
| if (!e) |
| return NULL; |
| |
| return Expr(e, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| else if (TYPE(CHILD(n, 1)) == augassign) { |
| expr_ty expr1, expr2; |
| operator_ty newoperator; |
| node *ch = CHILD(n, 0); |
| |
| expr1 = ast_for_testlist(c, ch); |
| if (!expr1) |
| return NULL; |
| if(!set_context(c, expr1, Store, ch)) |
| return NULL; |
| /* set_context checks that most expressions are not the left side. |
| Augmented assignments can only have a name, a subscript, or an |
| attribute on the left, though, so we have to explicitly check for |
| those. */ |
| switch (expr1->kind) { |
| case Name_kind: |
| case Attribute_kind: |
| case Subscript_kind: |
| break; |
| default: |
| ast_error(c, ch, "illegal expression for augmented assignment"); |
| return NULL; |
| } |
| |
| ch = CHILD(n, 2); |
| if (TYPE(ch) == testlist) |
| expr2 = ast_for_testlist(c, ch); |
| else |
| expr2 = ast_for_expr(c, ch); |
| if (!expr2) |
| return NULL; |
| |
| newoperator = ast_for_augassign(c, CHILD(n, 1)); |
| if (!newoperator) |
| return NULL; |
| |
| return AugAssign(expr1, newoperator, expr2, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| else if (TYPE(CHILD(n, 1)) == annassign) { |
| expr_ty expr1, expr2, expr3; |
| node *ch = CHILD(n, 0); |
| node *deep, *ann = CHILD(n, 1); |
| int simple = 1; |
| |
| /* we keep track of parens to qualify (x) as expression not name */ |
| deep = ch; |
| while (NCH(deep) == 1) { |
| deep = CHILD(deep, 0); |
| } |
| if (NCH(deep) > 0 && TYPE(CHILD(deep, 0)) == LPAR) { |
| simple = 0; |
| } |
| expr1 = ast_for_testlist(c, ch); |
| if (!expr1) { |
| return NULL; |
| } |
| switch (expr1->kind) { |
| case Name_kind: |
| if (forbidden_name(c, expr1->v.Name.id, n, 0)) { |
| return NULL; |
| } |
| expr1->v.Name.ctx = Store; |
| break; |
| case Attribute_kind: |
| if (forbidden_name(c, expr1->v.Attribute.attr, n, 1)) { |
| return NULL; |
| } |
| expr1->v.Attribute.ctx = Store; |
| break; |
| case Subscript_kind: |
| expr1->v.Subscript.ctx = Store; |
| break; |
| case List_kind: |
| ast_error(c, ch, |
| "only single target (not list) can be annotated"); |
| return NULL; |
| case Tuple_kind: |
| ast_error(c, ch, |
| "only single target (not tuple) can be annotated"); |
| return NULL; |
| default: |
| ast_error(c, ch, |
| "illegal target for annotation"); |
| return NULL; |
| } |
| |
| if (expr1->kind != Name_kind) { |
| simple = 0; |
| } |
| ch = CHILD(ann, 1); |
| expr2 = ast_for_expr(c, ch); |
| if (!expr2) { |
| return NULL; |
| } |
| if (NCH(ann) == 2) { |
| return AnnAssign(expr1, expr2, NULL, simple, |
| LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| else { |
| ch = CHILD(ann, 3); |
| expr3 = ast_for_expr(c, ch); |
| if (!expr3) { |
| return NULL; |
| } |
| return AnnAssign(expr1, expr2, expr3, simple, |
| LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| } |
| else { |
| int i; |
| asdl_seq *targets; |
| node *value; |
| expr_ty expression; |
| |
| /* a normal assignment */ |
| REQ(CHILD(n, 1), EQUAL); |
| targets = _Py_asdl_seq_new(NCH(n) / 2, c->c_arena); |
| if (!targets) |
| return NULL; |
| for (i = 0; i < NCH(n) - 2; i += 2) { |
| expr_ty e; |
| node *ch = CHILD(n, i); |
| if (TYPE(ch) == yield_expr) { |
| ast_error(c, ch, "assignment to yield expression not possible"); |
| return NULL; |
| } |
| e = ast_for_testlist(c, ch); |
| if (!e) |
| return NULL; |
| |
| /* set context to assign */ |
| if (!set_context(c, e, Store, CHILD(n, i))) |
| return NULL; |
| |
| asdl_seq_SET(targets, i / 2, e); |
| } |
| value = CHILD(n, NCH(n) - 1); |
| if (TYPE(value) == testlist_star_expr) |
| expression = ast_for_testlist(c, value); |
| else |
| expression = ast_for_expr(c, value); |
| if (!expression) |
| return NULL; |
| return Assign(targets, expression, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| } |
| |
| |
| static asdl_seq * |
| ast_for_exprlist(struct compiling *c, const node *n, expr_context_ty context) |
| { |
| asdl_seq *seq; |
| int i; |
| expr_ty e; |
| |
| REQ(n, exprlist); |
| |
| seq = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena); |
| if (!seq) |
| return NULL; |
| for (i = 0; i < NCH(n); i += 2) { |
| e = ast_for_expr(c, CHILD(n, i)); |
| if (!e) |
| return NULL; |
| asdl_seq_SET(seq, i / 2, e); |
| if (context && !set_context(c, e, context, CHILD(n, i))) |
| return NULL; |
| } |
| return seq; |
| } |
| |
| static stmt_ty |
| ast_for_del_stmt(struct compiling *c, const node *n) |
| { |
| asdl_seq *expr_list; |
| |
| /* del_stmt: 'del' exprlist */ |
| REQ(n, del_stmt); |
| |
| expr_list = ast_for_exprlist(c, CHILD(n, 1), Del); |
| if (!expr_list) |
| return NULL; |
| return Delete(expr_list, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| static stmt_ty |
| ast_for_flow_stmt(struct compiling *c, const node *n) |
| { |
| /* |
| flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt |
| | yield_stmt |
| break_stmt: 'break' |
| continue_stmt: 'continue' |
| return_stmt: 'return' [testlist] |
| yield_stmt: yield_expr |
| yield_expr: 'yield' testlist | 'yield' 'from' test |
| raise_stmt: 'raise' [test [',' test [',' test]]] |
| */ |
| node *ch; |
| |
| REQ(n, flow_stmt); |
| ch = CHILD(n, 0); |
| switch (TYPE(ch)) { |
| case break_stmt: |
| return Break(LINENO(n), n->n_col_offset, c->c_arena); |
| case continue_stmt: |
| return Continue(LINENO(n), n->n_col_offset, c->c_arena); |
| case yield_stmt: { /* will reduce to yield_expr */ |
| expr_ty exp = ast_for_expr(c, CHILD(ch, 0)); |
| if (!exp) |
| return NULL; |
| return Expr(exp, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| case return_stmt: |
| if (NCH(ch) == 1) |
| return Return(NULL, LINENO(n), n->n_col_offset, c->c_arena); |
| else { |
| expr_ty expression = ast_for_testlist(c, CHILD(ch, 1)); |
| if (!expression) |
| return NULL; |
| return Return(expression, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| case raise_stmt: |
| if (NCH(ch) == 1) |
| return Raise(NULL, NULL, LINENO(n), n->n_col_offset, c->c_arena); |
| else if (NCH(ch) >= 2) { |
| expr_ty cause = NULL; |
| expr_ty expression = ast_for_expr(c, CHILD(ch, 1)); |
| if (!expression) |
| return NULL; |
| if (NCH(ch) == 4) { |
| cause = ast_for_expr(c, CHILD(ch, 3)); |
| if (!cause) |
| return NULL; |
| } |
| return Raise(expression, cause, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| /* fall through */ |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "unexpected flow_stmt: %d", TYPE(ch)); |
| return NULL; |
| } |
| } |
| |
| static alias_ty |
| alias_for_import_name(struct compiling *c, const node *n, int store) |
| { |
| /* |
| import_as_name: NAME ['as' NAME] |
| dotted_as_name: dotted_name ['as' NAME] |
| dotted_name: NAME ('.' NAME)* |
| */ |
| identifier str, name; |
| |
| loop: |
| switch (TYPE(n)) { |
| case import_as_name: { |
| node *name_node = CHILD(n, 0); |
| str = NULL; |
| name = NEW_IDENTIFIER(name_node); |
| if (!name) |
| return NULL; |
| if (NCH(n) == 3) { |
| node *str_node = CHILD(n, 2); |
| str = NEW_IDENTIFIER(str_node); |
| if (!str) |
| return NULL; |
| if (store && forbidden_name(c, str, str_node, 0)) |
| return NULL; |
| } |
| else { |
| if (forbidden_name(c, name, name_node, 0)) |
| return NULL; |
| } |
| return alias(name, str, c->c_arena); |
| } |
| case dotted_as_name: |
| if (NCH(n) == 1) { |
| n = CHILD(n, 0); |
| goto loop; |
| } |
| else { |
| node *asname_node = CHILD(n, 2); |
| alias_ty a = alias_for_import_name(c, CHILD(n, 0), 0); |
| if (!a) |
| return NULL; |
| assert(!a->asname); |
| a->asname = NEW_IDENTIFIER(asname_node); |
| if (!a->asname) |
| return NULL; |
| if (forbidden_name(c, a->asname, asname_node, 0)) |
| return NULL; |
| return a; |
| } |
| break; |
| case dotted_name: |
| if (NCH(n) == 1) { |
| node *name_node = CHILD(n, 0); |
| name = NEW_IDENTIFIER(name_node); |
| if (!name) |
| return NULL; |
| if (store && forbidden_name(c, name, name_node, 0)) |
| return NULL; |
| return alias(name, NULL, c->c_arena); |
| } |
| else { |
| /* Create a string of the form "a.b.c" */ |
| int i; |
| size_t len; |
| char *s; |
| PyObject *uni; |
| |
| len = 0; |
| for (i = 0; i < NCH(n); i += 2) |
| /* length of string plus one for the dot */ |
| len += strlen(STR(CHILD(n, i))) + 1; |
| len--; /* the last name doesn't have a dot */ |
| str = PyBytes_FromStringAndSize(NULL, len); |
| if (!str) |
| return NULL; |
| s = PyBytes_AS_STRING(str); |
| if (!s) |
| return NULL; |
| for (i = 0; i < NCH(n); i += 2) { |
| char *sch = STR(CHILD(n, i)); |
| strcpy(s, STR(CHILD(n, i))); |
| s += strlen(sch); |
| *s++ = '.'; |
| } |
| --s; |
| *s = '\0'; |
| uni = PyUnicode_DecodeUTF8(PyBytes_AS_STRING(str), |
| PyBytes_GET_SIZE(str), |
| NULL); |
| Py_DECREF(str); |
| if (!uni) |
| return NULL; |
| str = uni; |
| PyUnicode_InternInPlace(&str); |
| if (PyArena_AddPyObject(c->c_arena, str) < 0) { |
| Py_DECREF(str); |
| return NULL; |
| } |
| return alias(str, NULL, c->c_arena); |
| } |
| break; |
| case STAR: |
| str = PyUnicode_InternFromString("*"); |
| if (PyArena_AddPyObject(c->c_arena, str) < 0) { |
| Py_DECREF(str); |
| return NULL; |
| } |
| return alias(str, NULL, c->c_arena); |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "unexpected import name: %d", TYPE(n)); |
| return NULL; |
| } |
| |
| PyErr_SetString(PyExc_SystemError, "unhandled import name condition"); |
| return NULL; |
| } |
| |
| static stmt_ty |
| ast_for_import_stmt(struct compiling *c, const node *n) |
| { |
| /* |
| import_stmt: import_name | import_from |
| import_name: 'import' dotted_as_names |
| import_from: 'from' (('.' | '...')* dotted_name | ('.' | '...')+) |
| 'import' ('*' | '(' import_as_names ')' | import_as_names) |
| */ |
| int lineno; |
| int col_offset; |
| int i; |
| asdl_seq *aliases; |
| |
| REQ(n, import_stmt); |
| lineno = LINENO(n); |
| col_offset = n->n_col_offset; |
| n = CHILD(n, 0); |
| if (TYPE(n) == import_name) { |
| n = CHILD(n, 1); |
| REQ(n, dotted_as_names); |
| aliases = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena); |
| if (!aliases) |
| return NULL; |
| for (i = 0; i < NCH(n); i += 2) { |
| alias_ty import_alias = alias_for_import_name(c, CHILD(n, i), 1); |
| if (!import_alias) |
| return NULL; |
| asdl_seq_SET(aliases, i / 2, import_alias); |
| } |
| return Import(aliases, lineno, col_offset, c->c_arena); |
| } |
| else if (TYPE(n) == import_from) { |
| int n_children; |
| int idx, ndots = 0; |
| alias_ty mod = NULL; |
| identifier modname = NULL; |
| |
| /* Count the number of dots (for relative imports) and check for the |
| optional module name */ |
| for (idx = 1; idx < NCH(n); idx++) { |
| if (TYPE(CHILD(n, idx)) == dotted_name) { |
| mod = alias_for_import_name(c, CHILD(n, idx), 0); |
| if (!mod) |
| return NULL; |
| idx++; |
| break; |
| } else if (TYPE(CHILD(n, idx)) == ELLIPSIS) { |
| /* three consecutive dots are tokenized as one ELLIPSIS */ |
| ndots += 3; |
| continue; |
| } else if (TYPE(CHILD(n, idx)) != DOT) { |
| break; |
| } |
| ndots++; |
| } |
| idx++; /* skip over the 'import' keyword */ |
| switch (TYPE(CHILD(n, idx))) { |
| case STAR: |
| /* from ... import * */ |
| n = CHILD(n, idx); |
| n_children = 1; |
| break; |
| case LPAR: |
| /* from ... import (x, y, z) */ |
| n = CHILD(n, idx + 1); |
| n_children = NCH(n); |
| break; |
| case import_as_names: |
| /* from ... import x, y, z */ |
| n = CHILD(n, idx); |
| n_children = NCH(n); |
| if (n_children % 2 == 0) { |
| ast_error(c, n, "trailing comma not allowed without" |
| " surrounding parentheses"); |
| return NULL; |
| } |
| break; |
| default: |
| ast_error(c, n, "Unexpected node-type in from-import"); |
| return NULL; |
| } |
| |
| aliases = _Py_asdl_seq_new((n_children + 1) / 2, c->c_arena); |
| if (!aliases) |
| return NULL; |
| |
| /* handle "from ... import *" special b/c there's no children */ |
| if (TYPE(n) == STAR) { |
| alias_ty import_alias = alias_for_import_name(c, n, 1); |
| if (!import_alias) |
| return NULL; |
| asdl_seq_SET(aliases, 0, import_alias); |
| } |
| else { |
| for (i = 0; i < NCH(n); i += 2) { |
| alias_ty import_alias = alias_for_import_name(c, CHILD(n, i), 1); |
| if (!import_alias) |
| return NULL; |
| asdl_seq_SET(aliases, i / 2, import_alias); |
| } |
| } |
| if (mod != NULL) |
| modname = mod->name; |
| return ImportFrom(modname, aliases, ndots, lineno, col_offset, |
| c->c_arena); |
| } |
| PyErr_Format(PyExc_SystemError, |
| "unknown import statement: starts with command '%s'", |
| STR(CHILD(n, 0))); |
| return NULL; |
| } |
| |
| static stmt_ty |
| ast_for_global_stmt(struct compiling *c, const node *n) |
| { |
| /* global_stmt: 'global' NAME (',' NAME)* */ |
| identifier name; |
| asdl_seq *s; |
| int i; |
| |
| REQ(n, global_stmt); |
| s = _Py_asdl_seq_new(NCH(n) / 2, c->c_arena); |
| if (!s) |
| return NULL; |
| for (i = 1; i < NCH(n); i += 2) { |
| name = NEW_IDENTIFIER(CHILD(n, i)); |
| if (!name) |
| return NULL; |
| asdl_seq_SET(s, i / 2, name); |
| } |
| return Global(s, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| static stmt_ty |
| ast_for_nonlocal_stmt(struct compiling *c, const node *n) |
| { |
| /* nonlocal_stmt: 'nonlocal' NAME (',' NAME)* */ |
| identifier name; |
| asdl_seq *s; |
| int i; |
| |
| REQ(n, nonlocal_stmt); |
| s = _Py_asdl_seq_new(NCH(n) / 2, c->c_arena); |
| if (!s) |
| return NULL; |
| for (i = 1; i < NCH(n); i += 2) { |
| name = NEW_IDENTIFIER(CHILD(n, i)); |
| if (!name) |
| return NULL; |
| asdl_seq_SET(s, i / 2, name); |
| } |
| return Nonlocal(s, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| static stmt_ty |
| ast_for_assert_stmt(struct compiling *c, const node *n) |
| { |
| /* assert_stmt: 'assert' test [',' test] */ |
| REQ(n, assert_stmt); |
| if (NCH(n) == 2) { |
| expr_ty expression = ast_for_expr(c, CHILD(n, 1)); |
| if (!expression) |
| return NULL; |
| return Assert(expression, NULL, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| else if (NCH(n) == 4) { |
| expr_ty expr1, expr2; |
| |
| expr1 = ast_for_expr(c, CHILD(n, 1)); |
| if (!expr1) |
| return NULL; |
| expr2 = ast_for_expr(c, CHILD(n, 3)); |
| if (!expr2) |
| return NULL; |
| |
| return Assert(expr1, expr2, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| PyErr_Format(PyExc_SystemError, |
| "improper number of parts to 'assert' statement: %d", |
| NCH(n)); |
| return NULL; |
| } |
| |
| static asdl_seq * |
| ast_for_suite(struct compiling *c, const node *n) |
| { |
| /* suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT */ |
| asdl_seq *seq; |
| stmt_ty s; |
| int i, total, num, end, pos = 0; |
| node *ch; |
| |
| REQ(n, suite); |
| |
| total = num_stmts(n); |
| seq = _Py_asdl_seq_new(total, c->c_arena); |
| if (!seq) |
| return NULL; |
| if (TYPE(CHILD(n, 0)) == simple_stmt) { |
| n = CHILD(n, 0); |
| /* simple_stmt always ends with a NEWLINE, |
| and may have a trailing SEMI |
| */ |
| end = NCH(n) - 1; |
| if (TYPE(CHILD(n, end - 1)) == SEMI) |
| end--; |
| /* loop by 2 to skip semi-colons */ |
| for (i = 0; i < end; i += 2) { |
| ch = CHILD(n, i); |
| s = ast_for_stmt(c, ch); |
| if (!s) |
| return NULL; |
| asdl_seq_SET(seq, pos++, s); |
| } |
| } |
| else { |
| for (i = 2; i < (NCH(n) - 1); i++) { |
| ch = CHILD(n, i); |
| REQ(ch, stmt); |
| num = num_stmts(ch); |
| if (num == 1) { |
| /* small_stmt or compound_stmt with only one child */ |
| s = ast_for_stmt(c, ch); |
| if (!s) |
| return NULL; |
| asdl_seq_SET(seq, pos++, s); |
| } |
| else { |
| int j; |
| ch = CHILD(ch, 0); |
| REQ(ch, simple_stmt); |
| for (j = 0; j < NCH(ch); j += 2) { |
| /* statement terminates with a semi-colon ';' */ |
| if (NCH(CHILD(ch, j)) == 0) { |
| assert((j + 1) == NCH(ch)); |
| break; |
| } |
| s = ast_for_stmt(c, CHILD(ch, j)); |
| if (!s) |
| return NULL; |
| asdl_seq_SET(seq, pos++, s); |
| } |
| } |
| } |
| } |
| assert(pos == seq->size); |
| return seq; |
| } |
| |
| static string |
| docstring_from_stmts(asdl_seq *stmts) |
| { |
| if (stmts && stmts->size) { |
| stmt_ty s = (stmt_ty)asdl_seq_GET(stmts, 0); |
| /* If first statement is a literal string, it's the doc string. */ |
| if (s->kind == Expr_kind && s->v.Expr.value->kind == Str_kind) { |
| string doc = s->v.Expr.value->v.Str.s; |
| /* not very efficient, but simple */ |
| memmove(&asdl_seq_GET(stmts, 0), &asdl_seq_GET(stmts, 1), |
| (stmts->size - 1) * sizeof(void*)); |
| stmts->size--; |
| return doc; |
| } |
| } |
| return NULL; |
| } |
| |
| static asdl_seq * |
| ast_for_body(struct compiling *c, const node *n, string *docstring) |
| { |
| asdl_seq *stmts = ast_for_suite(c, n); |
| *docstring = docstring_from_stmts(stmts); |
| return stmts; |
| } |
| |
| static stmt_ty |
| ast_for_if_stmt(struct compiling *c, const node *n) |
| { |
| /* if_stmt: 'if' test ':' suite ('elif' test ':' suite)* |
| ['else' ':' suite] |
| */ |
| char *s; |
| |
| REQ(n, if_stmt); |
| |
| if (NCH(n) == 4) { |
| expr_ty expression; |
| asdl_seq *suite_seq; |
| |
| expression = ast_for_expr(c, CHILD(n, 1)); |
| if (!expression) |
| return NULL; |
| suite_seq = ast_for_suite(c, CHILD(n, 3)); |
| if (!suite_seq) |
| return NULL; |
| |
| return If(expression, suite_seq, NULL, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| } |
| |
| s = STR(CHILD(n, 4)); |
| /* s[2], the third character in the string, will be |
| 's' for el_s_e, or |
| 'i' for el_i_f |
| */ |
| if (s[2] == 's') { |
| expr_ty expression; |
| asdl_seq *seq1, *seq2; |
| |
| expression = ast_for_expr(c, CHILD(n, 1)); |
| if (!expression) |
| return NULL; |
| seq1 = ast_for_suite(c, CHILD(n, 3)); |
| if (!seq1) |
| return NULL; |
| seq2 = ast_for_suite(c, CHILD(n, 6)); |
| if (!seq2) |
| return NULL; |
| |
| return If(expression, seq1, seq2, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| } |
| else if (s[2] == 'i') { |
| int i, n_elif, has_else = 0; |
| expr_ty expression; |
| asdl_seq *suite_seq; |
| asdl_seq *orelse = NULL; |
| n_elif = NCH(n) - 4; |
| /* must reference the child n_elif+1 since 'else' token is third, |
| not fourth, child from the end. */ |
| if (TYPE(CHILD(n, (n_elif + 1))) == NAME |
| && STR(CHILD(n, (n_elif + 1)))[2] == 's') { |
| has_else = 1; |
| n_elif -= 3; |
| } |
| n_elif /= 4; |
| |
| if (has_else) { |
| asdl_seq *suite_seq2; |
| |
| orelse = _Py_asdl_seq_new(1, c->c_arena); |
| if (!orelse) |
| return NULL; |
| expression = ast_for_expr(c, CHILD(n, NCH(n) - 6)); |
| if (!expression) |
| return NULL; |
| suite_seq = ast_for_suite(c, CHILD(n, NCH(n) - 4)); |
| if (!suite_seq) |
| return NULL; |
| suite_seq2 = ast_for_suite(c, CHILD(n, NCH(n) - 1)); |
| if (!suite_seq2) |
| return NULL; |
| |
| asdl_seq_SET(orelse, 0, |
| If(expression, suite_seq, suite_seq2, |
| LINENO(CHILD(n, NCH(n) - 6)), |
| CHILD(n, NCH(n) - 6)->n_col_offset, |
| c->c_arena)); |
| /* the just-created orelse handled the last elif */ |
| n_elif--; |
| } |
| |
| for (i = 0; i < n_elif; i++) { |
| int off = 5 + (n_elif - i - 1) * 4; |
| asdl_seq *newobj = _Py_asdl_seq_new(1, c->c_arena); |
| if (!newobj) |
| return NULL; |
| expression = ast_for_expr(c, CHILD(n, off)); |
| if (!expression) |
| return NULL; |
| suite_seq = ast_for_suite(c, CHILD(n, off + 2)); |
| if (!suite_seq) |
| return NULL; |
| |
| asdl_seq_SET(newobj, 0, |
| If(expression, suite_seq, orelse, |
| LINENO(CHILD(n, off)), |
| CHILD(n, off)->n_col_offset, c->c_arena)); |
| orelse = newobj; |
| } |
| expression = ast_for_expr(c, CHILD(n, 1)); |
| if (!expression) |
| return NULL; |
| suite_seq = ast_for_suite(c, CHILD(n, 3)); |
| if (!suite_seq) |
| return NULL; |
| return If(expression, suite_seq, orelse, |
| LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| PyErr_Format(PyExc_SystemError, |
| "unexpected token in 'if' statement: %s", s); |
| return NULL; |
| } |
| |
| static stmt_ty |
| ast_for_while_stmt(struct compiling *c, const node *n) |
| { |
| /* while_stmt: 'while' test ':' suite ['else' ':' suite] */ |
| REQ(n, while_stmt); |
| |
| if (NCH(n) == 4) { |
| expr_ty expression; |
| asdl_seq *suite_seq; |
| |
| expression = ast_for_expr(c, CHILD(n, 1)); |
| if (!expression) |
| return NULL; |
| suite_seq = ast_for_suite(c, CHILD(n, 3)); |
| if (!suite_seq) |
| return NULL; |
| return While(expression, suite_seq, NULL, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| else if (NCH(n) == 7) { |
| expr_ty expression; |
| asdl_seq *seq1, *seq2; |
| |
| expression = ast_for_expr(c, CHILD(n, 1)); |
| if (!expression) |
| return NULL; |
| seq1 = ast_for_suite(c, CHILD(n, 3)); |
| if (!seq1) |
| return NULL; |
| seq2 = ast_for_suite(c, CHILD(n, 6)); |
| if (!seq2) |
| return NULL; |
| |
| return While(expression, seq1, seq2, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| PyErr_Format(PyExc_SystemError, |
| "wrong number of tokens for 'while' statement: %d", |
| NCH(n)); |
| return NULL; |
| } |
| |
| static stmt_ty |
| ast_for_for_stmt(struct compiling *c, const node *n, int is_async) |
| { |
| asdl_seq *_target, *seq = NULL, *suite_seq; |
| expr_ty expression; |
| expr_ty target, first; |
| const node *node_target; |
| /* for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite] */ |
| REQ(n, for_stmt); |
| |
| if (NCH(n) == 9) { |
| seq = ast_for_suite(c, CHILD(n, 8)); |
| if (!seq) |
| return NULL; |
| } |
| |
| node_target = CHILD(n, 1); |
| _target = ast_for_exprlist(c, node_target, Store); |
| if (!_target) |
| return NULL; |
| /* Check the # of children rather than the length of _target, since |
| for x, in ... has 1 element in _target, but still requires a Tuple. */ |
| first = (expr_ty)asdl_seq_GET(_target, 0); |
| if (NCH(node_target) == 1) |
| target = first; |
| else |
| target = Tuple(_target, Store, first->lineno, first->col_offset, c->c_arena); |
| |
| expression = ast_for_testlist(c, CHILD(n, 3)); |
| if (!expression) |
| return NULL; |
| suite_seq = ast_for_suite(c, CHILD(n, 5)); |
| if (!suite_seq) |
| return NULL; |
| |
| if (is_async) |
| return AsyncFor(target, expression, suite_seq, seq, |
| LINENO(n), n->n_col_offset, |
| c->c_arena); |
| else |
| return For(target, expression, suite_seq, seq, |
| LINENO(n), n->n_col_offset, |
| c->c_arena); |
| } |
| |
| static excepthandler_ty |
| ast_for_except_clause(struct compiling *c, const node *exc, node *body) |
| { |
| /* except_clause: 'except' [test ['as' test]] */ |
| REQ(exc, except_clause); |
| REQ(body, suite); |
| |
| if (NCH(exc) == 1) { |
| asdl_seq *suite_seq = ast_for_suite(c, body); |
| if (!suite_seq) |
| return NULL; |
| |
| return ExceptHandler(NULL, NULL, suite_seq, LINENO(exc), |
| exc->n_col_offset, c->c_arena); |
| } |
| else if (NCH(exc) == 2) { |
| expr_ty expression; |
| asdl_seq *suite_seq; |
| |
| expression = ast_for_expr(c, CHILD(exc, 1)); |
| if (!expression) |
| return NULL; |
| suite_seq = ast_for_suite(c, body); |
| if (!suite_seq) |
| return NULL; |
| |
| return ExceptHandler(expression, NULL, suite_seq, LINENO(exc), |
| exc->n_col_offset, c->c_arena); |
| } |
| else if (NCH(exc) == 4) { |
| asdl_seq *suite_seq; |
| expr_ty expression; |
| identifier e = NEW_IDENTIFIER(CHILD(exc, 3)); |
| if (!e) |
| return NULL; |
| if (forbidden_name(c, e, CHILD(exc, 3), 0)) |
| return NULL; |
| expression = ast_for_expr(c, CHILD(exc, 1)); |
| if (!expression) |
| return NULL; |
| suite_seq = ast_for_suite(c, body); |
| if (!suite_seq) |
| return NULL; |
| |
| return ExceptHandler(expression, e, suite_seq, LINENO(exc), |
| exc->n_col_offset, c->c_arena); |
| } |
| |
| PyErr_Format(PyExc_SystemError, |
| "wrong number of children for 'except' clause: %d", |
| NCH(exc)); |
| return NULL; |
| } |
| |
| static stmt_ty |
| ast_for_try_stmt(struct compiling *c, const node *n) |
| { |
| const int nch = NCH(n); |
| int n_except = (nch - 3)/3; |
| asdl_seq *body, *handlers = NULL, *orelse = NULL, *finally = NULL; |
| |
| REQ(n, try_stmt); |
| |
| body = ast_for_suite(c, CHILD(n, 2)); |
| if (body == NULL) |
| return NULL; |
| |
| if (TYPE(CHILD(n, nch - 3)) == NAME) { |
| if (strcmp(STR(CHILD(n, nch - 3)), "finally") == 0) { |
| if (nch >= 9 && TYPE(CHILD(n, nch - 6)) == NAME) { |
| /* we can assume it's an "else", |
| because nch >= 9 for try-else-finally and |
| it would otherwise have a type of except_clause */ |
| orelse = ast_for_suite(c, CHILD(n, nch - 4)); |
| if (orelse == NULL) |
| return NULL; |
| n_except--; |
| } |
| |
| finally = ast_for_suite(c, CHILD(n, nch - 1)); |
| if (finally == NULL) |
| return NULL; |
| n_except--; |
| } |
| else { |
| /* we can assume it's an "else", |
| otherwise it would have a type of except_clause */ |
| orelse = ast_for_suite(c, CHILD(n, nch - 1)); |
| if (orelse == NULL) |
| return NULL; |
| n_except--; |
| } |
| } |
| else if (TYPE(CHILD(n, nch - 3)) != except_clause) { |
| ast_error(c, n, "malformed 'try' statement"); |
| return NULL; |
| } |
| |
| if (n_except > 0) { |
| int i; |
| /* process except statements to create a try ... except */ |
| handlers = _Py_asdl_seq_new(n_except, c->c_arena); |
| if (handlers == NULL) |
| return NULL; |
| |
| for (i = 0; i < n_except; i++) { |
| excepthandler_ty e = ast_for_except_clause(c, CHILD(n, 3 + i * 3), |
| CHILD(n, 5 + i * 3)); |
| if (!e) |
| return NULL; |
| asdl_seq_SET(handlers, i, e); |
| } |
| } |
| |
| assert(finally != NULL || asdl_seq_LEN(handlers)); |
| return Try(body, handlers, orelse, finally, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| /* with_item: test ['as' expr] */ |
| static withitem_ty |
| ast_for_with_item(struct compiling *c, const node *n) |
| { |
| expr_ty context_expr, optional_vars = NULL; |
| |
| REQ(n, with_item); |
| context_expr = ast_for_expr(c, CHILD(n, 0)); |
| if (!context_expr) |
| return NULL; |
| if (NCH(n) == 3) { |
| optional_vars = ast_for_expr(c, CHILD(n, 2)); |
| |
| if (!optional_vars) { |
| return NULL; |
| } |
| if (!set_context(c, optional_vars, Store, n)) { |
| return NULL; |
| } |
| } |
| |
| return withitem(context_expr, optional_vars, c->c_arena); |
| } |
| |
| /* with_stmt: 'with' with_item (',' with_item)* ':' suite */ |
| static stmt_ty |
| ast_for_with_stmt(struct compiling *c, const node *n, int is_async) |
| { |
| int i, n_items; |
| asdl_seq *items, *body; |
| |
| REQ(n, with_stmt); |
| |
| n_items = (NCH(n) - 2) / 2; |
| items = _Py_asdl_seq_new(n_items, c->c_arena); |
| if (!items) |
| return NULL; |
| for (i = 1; i < NCH(n) - 2; i += 2) { |
| withitem_ty item = ast_for_with_item(c, CHILD(n, i)); |
| if (!item) |
| return NULL; |
| asdl_seq_SET(items, (i - 1) / 2, item); |
| } |
| |
| body = ast_for_suite(c, CHILD(n, NCH(n) - 1)); |
| if (!body) |
| return NULL; |
| |
| if (is_async) |
| return AsyncWith(items, body, LINENO(n), n->n_col_offset, c->c_arena); |
| else |
| return With(items, body, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| static stmt_ty |
| ast_for_classdef(struct compiling *c, const node *n, asdl_seq *decorator_seq) |
| { |
| /* classdef: 'class' NAME ['(' arglist ')'] ':' suite */ |
| PyObject *classname; |
| asdl_seq *s; |
| string docstring; |
| expr_ty call; |
| |
| REQ(n, classdef); |
| |
| if (NCH(n) == 4) { /* class NAME ':' suite */ |
| s = ast_for_body(c, CHILD(n, 3), &docstring); |
| if (!s) |
| return NULL; |
| classname = NEW_IDENTIFIER(CHILD(n, 1)); |
| if (!classname) |
| return NULL; |
| if (forbidden_name(c, classname, CHILD(n, 3), 0)) |
| return NULL; |
| return ClassDef(classname, NULL, NULL, s, decorator_seq, docstring, |
| LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| if (TYPE(CHILD(n, 3)) == RPAR) { /* class NAME '(' ')' ':' suite */ |
| s = ast_for_body(c, CHILD(n, 5), &docstring); |
| if (!s) |
| return NULL; |
| classname = NEW_IDENTIFIER(CHILD(n, 1)); |
| if (!classname) |
| return NULL; |
| if (forbidden_name(c, classname, CHILD(n, 3), 0)) |
| return NULL; |
| return ClassDef(classname, NULL, NULL, s, decorator_seq, docstring, |
| LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| /* class NAME '(' arglist ')' ':' suite */ |
| /* build up a fake Call node so we can extract its pieces */ |
| { |
| PyObject *dummy_name; |
| expr_ty dummy; |
| dummy_name = NEW_IDENTIFIER(CHILD(n, 1)); |
| if (!dummy_name) |
| return NULL; |
| dummy = Name(dummy_name, Load, LINENO(n), n->n_col_offset, c->c_arena); |
| call = ast_for_call(c, CHILD(n, 3), dummy); |
| if (!call) |
| return NULL; |
| } |
| s = ast_for_body(c, CHILD(n, 6), &docstring); |
| if (!s) |
| return NULL; |
| classname = NEW_IDENTIFIER(CHILD(n, 1)); |
| if (!classname) |
| return NULL; |
| if (forbidden_name(c, classname, CHILD(n, 1), 0)) |
| return NULL; |
| |
| return ClassDef(classname, call->v.Call.args, call->v.Call.keywords, s, |
| decorator_seq, docstring, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| } |
| |
| static stmt_ty |
| ast_for_stmt(struct compiling *c, const node *n) |
| { |
| if (TYPE(n) == stmt) { |
| assert(NCH(n) == 1); |
| n = CHILD(n, 0); |
| } |
| if (TYPE(n) == simple_stmt) { |
| assert(num_stmts(n) == 1); |
| n = CHILD(n, 0); |
| } |
| if (TYPE(n) == small_stmt) { |
| n = CHILD(n, 0); |
| /* small_stmt: expr_stmt | del_stmt | pass_stmt | flow_stmt |
| | import_stmt | global_stmt | nonlocal_stmt | assert_stmt |
| */ |
| switch (TYPE(n)) { |
| case expr_stmt: |
| return ast_for_expr_stmt(c, n); |
| case del_stmt: |
| return ast_for_del_stmt(c, n); |
| case pass_stmt: |
| return Pass(LINENO(n), n->n_col_offset, c->c_arena); |
| case flow_stmt: |
| return ast_for_flow_stmt(c, n); |
| case import_stmt: |
| return ast_for_import_stmt(c, n); |
| case global_stmt: |
| return ast_for_global_stmt(c, n); |
| case nonlocal_stmt: |
| return ast_for_nonlocal_stmt(c, n); |
| case assert_stmt: |
| return ast_for_assert_stmt(c, n); |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "unhandled small_stmt: TYPE=%d NCH=%d\n", |
| TYPE(n), NCH(n)); |
| return NULL; |
| } |
| } |
| else { |
| /* compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt |
| | funcdef | classdef | decorated | async_stmt |
| */ |
| node *ch = CHILD(n, 0); |
| REQ(n, compound_stmt); |
| switch (TYPE(ch)) { |
| case if_stmt: |
| return ast_for_if_stmt(c, ch); |
| case while_stmt: |
| return ast_for_while_stmt(c, ch); |
| case for_stmt: |
| return ast_for_for_stmt(c, ch, 0); |
| case try_stmt: |
| return ast_for_try_stmt(c, ch); |
| case with_stmt: |
| return ast_for_with_stmt(c, ch, 0); |
| case funcdef: |
| return ast_for_funcdef(c, ch, NULL); |
| case classdef: |
| return ast_for_classdef(c, ch, NULL); |
| case decorated: |
| return ast_for_decorated(c, ch); |
| case async_stmt: |
| return ast_for_async_stmt(c, ch); |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "unhandled small_stmt: TYPE=%d NCH=%d\n", |
| TYPE(n), NCH(n)); |
| return NULL; |
| } |
| } |
| } |
| |
| static PyObject * |
| parsenumber_raw(struct compiling *c, const char *s) |
| { |
| const char *end; |
| long x; |
| double dx; |
| Py_complex compl; |
| int imflag; |
| |
| assert(s != NULL); |
| errno = 0; |
| end = s + strlen(s) - 1; |
| imflag = *end == 'j' || *end == 'J'; |
| if (s[0] == '0') { |
| x = (long) PyOS_strtoul(s, (char **)&end, 0); |
| if (x < 0 && errno == 0) { |
| return PyLong_FromString(s, (char **)0, 0); |
| } |
| } |
| else |
| x = PyOS_strtol(s, (char **)&end, 0); |
| if (*end == '\0') { |
| if (errno != 0) |
| return PyLong_FromString(s, (char **)0, 0); |
| return PyLong_FromLong(x); |
| } |
| /* XXX Huge floats may silently fail */ |
| if (imflag) { |
| compl.real = 0.; |
| compl.imag = PyOS_string_to_double(s, (char **)&end, NULL); |
| if (compl.imag == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyComplex_FromCComplex(compl); |
| } |
| else |
| { |
| dx = PyOS_string_to_double(s, NULL, NULL); |
| if (dx == -1.0 && PyErr_Occurred()) |
| return NULL; |
| return PyFloat_FromDouble(dx); |
| } |
| } |
| |
| static PyObject * |
| parsenumber(struct compiling *c, const char *s) |
| { |
| char *dup, *end; |
| PyObject *res = NULL; |
| |
| assert(s != NULL); |
| |
| if (strchr(s, '_') == NULL) { |
| return parsenumber_raw(c, s); |
| } |
| /* Create a duplicate without underscores. */ |
| dup = PyMem_Malloc(strlen(s) + 1); |
| end = dup; |
| for (; *s; s++) { |
| if (*s != '_') { |
| *end++ = *s; |
| } |
| } |
| *end = '\0'; |
| res = parsenumber_raw(c, dup); |
| PyMem_Free(dup); |
| return res; |
| } |
| |
| static PyObject * |
| decode_utf8(struct compiling *c, const char **sPtr, const char *end) |
| { |
| const char *s, *t; |
| t = s = *sPtr; |
| /* while (s < end && *s != '\\') s++; */ /* inefficient for u".." */ |
| while (s < end && (*s & 0x80)) s++; |
| *sPtr = s; |
| return PyUnicode_DecodeUTF8(t, s - t, NULL); |
| } |
| |
| static int |
| warn_invalid_escape_sequence(struct compiling *c, const node *n, |
| char first_invalid_escape_char) |
| { |
| PyObject *msg = PyUnicode_FromFormat("invalid escape sequence \\%c", |
| first_invalid_escape_char); |
| if (msg == NULL) { |
| return -1; |
| } |
| if (PyErr_WarnExplicitObject(PyExc_DeprecationWarning, msg, |
| c->c_filename, LINENO(n), |
| NULL, NULL) < 0 && |
| PyErr_ExceptionMatches(PyExc_DeprecationWarning)) |
| { |
| const char *s; |
| |
| /* Replace the DeprecationWarning exception with a SyntaxError |
| to get a more accurate error report */ |
| PyErr_Clear(); |
| |
| s = PyUnicode_AsUTF8(msg); |
| if (s != NULL) { |
| ast_error(c, n, s); |
| } |
| Py_DECREF(msg); |
| return -1; |
| } |
| Py_DECREF(msg); |
| return 0; |
| } |
| |
| static PyObject * |
| decode_unicode_with_escapes(struct compiling *c, const node *n, const char *s, |
| size_t len) |
| { |
| PyObject *v, *u; |
| char *buf; |
| char *p; |
| const char *end; |
| |
| /* check for integer overflow */ |
| if (len > SIZE_MAX / 6) |
| return NULL; |
| /* "ä" (2 bytes) may become "\U000000E4" (10 bytes), or 1:5 |
| "\ä" (3 bytes) may become "\u005c\U000000E4" (16 bytes), or ~1:6 */ |
| u = PyBytes_FromStringAndSize((char *)NULL, len * 6); |
| if (u == NULL) |
| return NULL; |
| p = buf = PyBytes_AsString(u); |
| end = s + len; |
| while (s < end) { |
| if (*s == '\\') { |
| *p++ = *s++; |
| if (s >= end || *s & 0x80) { |
| strcpy(p, "u005c"); |
| p += 5; |
| if (s >= end) |
| break; |
| } |
| } |
| if (*s & 0x80) { /* XXX inefficient */ |
| PyObject *w; |
| int kind; |
| void *data; |
| Py_ssize_t len, i; |
| w = decode_utf8(c, &s, end); |
| if (w == NULL) { |
| Py_DECREF(u); |
| return NULL; |
| } |
| kind = PyUnicode_KIND(w); |
| data = PyUnicode_DATA(w); |
| len = PyUnicode_GET_LENGTH(w); |
| for (i = 0; i < len; i++) { |
| Py_UCS4 chr = PyUnicode_READ(kind, data, i); |
| sprintf(p, "\\U%08x", chr); |
| p += 10; |
| } |
| /* Should be impossible to overflow */ |
| assert(p - buf <= PyBytes_GET_SIZE(u)); |
| Py_DECREF(w); |
| } else { |
| *p++ = *s++; |
| } |
| } |
| len = p - buf; |
| s = buf; |
| |
| const char *first_invalid_escape; |
| v = _PyUnicode_DecodeUnicodeEscape(s, len, NULL, &first_invalid_escape); |
| |
| if (v != NULL && first_invalid_escape != NULL) { |
| if (warn_invalid_escape_sequence(c, n, *first_invalid_escape) < 0) { |
| /* We have not decref u before because first_invalid_escape points |
| inside u. */ |
| Py_XDECREF(u); |
| Py_DECREF(v); |
| return NULL; |
| } |
| } |
| Py_XDECREF(u); |
| return v; |
| } |
| |
| static PyObject * |
| decode_bytes_with_escapes(struct compiling *c, const node *n, const char *s, |
| size_t len) |
| { |
| const char *first_invalid_escape; |
| PyObject *result = _PyBytes_DecodeEscape(s, len, NULL, 0, NULL, |
| &first_invalid_escape); |
| if (result == NULL) |
| return NULL; |
| |
| if (first_invalid_escape != NULL) { |
| if (warn_invalid_escape_sequence(c, n, *first_invalid_escape) < 0) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| } |
| return result; |
| } |
| |
| /* Shift locations for the given node and all its children by adding `lineno` |
| and `col_offset` to existing locations. */ |
| static void fstring_shift_node_locations(node *n, int lineno, int col_offset) |
| { |
| n->n_col_offset = n->n_col_offset + col_offset; |
| for (int i = 0; i < NCH(n); ++i) { |
| if (n->n_lineno && n->n_lineno < CHILD(n, i)->n_lineno) { |
| /* Shifting column offsets unnecessary if there's been newlines. */ |
| col_offset = 0; |
| } |
| fstring_shift_node_locations(CHILD(n, i), lineno, col_offset); |
| } |
| n->n_lineno = n->n_lineno + lineno; |
| } |
| |
| /* Fix locations for the given node and its children. |
| |
| `parent` is the enclosing node. |
| `n` is the node which locations are going to be fixed relative to parent. |
| `expr_str` is the child node's string representation, incuding braces. |
| */ |
| static void |
| fstring_fix_node_location(const node *parent, node *n, char *expr_str) |
| { |
| char *substr = NULL; |
| char *start; |
| int lines = LINENO(parent) - 1; |
| int cols = parent->n_col_offset; |
| /* Find the full fstring to fix location information in `n`. */ |
| while (parent && parent->n_type != STRING) |
| parent = parent->n_child; |
| if (parent && parent->n_str) { |
| substr = strstr(parent->n_str, expr_str); |
| if (substr) { |
| start = substr; |
| while (start > parent->n_str) { |
| if (start[0] == '\n') |
| break; |
| start--; |
| } |
| cols += substr - start; |
| /* Fix lineno in mulitline strings. */ |
| while ((substr = strchr(substr + 1, '\n'))) |
| lines--; |
| } |
| } |
| fstring_shift_node_locations(n, lines, cols); |
| } |
| |
| /* Compile this expression in to an expr_ty. Add parens around the |
| expression, in order to allow leading spaces in the expression. */ |
| static expr_ty |
| fstring_compile_expr(const char *expr_start, const char *expr_end, |
| struct compiling *c, const node *n) |
| |
| { |
| PyCompilerFlags cf; |
| node *mod_n; |
| mod_ty mod; |
| char *str; |
| Py_ssize_t len; |
| const char *s; |
| |
| assert(expr_end >= expr_start); |
| assert(*(expr_start-1) == '{'); |
| assert(*expr_end == '}' || *expr_end == '!' || *expr_end == ':'); |
| |
| /* If the substring is all whitespace, it's an error. We need to catch this |
| here, and not when we call PyParser_SimpleParseStringFlagsFilename, |
| because turning the expression '' in to '()' would go from being invalid |
| to valid. */ |
| for (s = expr_start; s != expr_end; s++) { |
| char c = *s; |
| /* The Python parser ignores only the following whitespace |
| characters (\r already is converted to \n). */ |
| if (!(c == ' ' || c == '\t' || c == '\n' || c == '\f')) { |
| break; |
| } |
| } |
| if (s == expr_end) { |
| ast_error(c, n, "f-string: empty expression not allowed"); |
| return NULL; |
| } |
| |
| len = expr_end - expr_start; |
| /* Allocate 3 extra bytes: open paren, close paren, null byte. */ |
| str = PyMem_RawMalloc(len + 3); |
| if (str == NULL) |
| return NULL; |
| |
| str[0] = '('; |
| memcpy(str+1, expr_start, len); |
| str[len+1] = ')'; |
| str[len+2] = 0; |
| |
| cf.cf_flags = PyCF_ONLY_AST; |
| mod_n = PyParser_SimpleParseStringFlagsFilename(str, "<fstring>", |
| Py_eval_input, 0); |
| if (!mod_n) { |
| PyMem_RawFree(str); |
| return NULL; |
| } |
| /* Reuse str to find the correct column offset. */ |
| str[0] = '{'; |
| str[len+1] = '}'; |
| fstring_fix_node_location(n, mod_n, str); |
| mod = PyAST_FromNode(mod_n, &cf, "<fstring>", c->c_arena); |
| PyMem_RawFree(str); |
| PyNode_Free(mod_n); |
| if (!mod) |
| return NULL; |
| return mod->v.Expression.body; |
| } |
| |
| /* Return -1 on error. |
| |
| Return 0 if we reached the end of the literal. |
| |
| Return 1 if we haven't reached the end of the literal, but we want |
| the caller to process the literal up to this point. Used for |
| doubled braces. |
| */ |
| static int |
| fstring_find_literal(const char **str, const char *end, int raw, |
| PyObject **literal, int recurse_lvl, |
| struct compiling *c, const node *n) |
| { |
| /* Get any literal string. It ends when we hit an un-doubled left |
| brace (which isn't part of a unicode name escape such as |
| "\N{EULER CONSTANT}"), or the end of the string. */ |
| |
| const char *s = *str; |
| const char *literal_start = s; |
| int result = 0; |
| |
| assert(*literal == NULL); |
| while (s < end) { |
| char ch = *s++; |
| if (!raw && ch == '\\' && s < end) { |
| ch = *s++; |
| if (ch == 'N') { |
| if (s < end && *s++ == '{') { |
| while (s < end && *s++ != '}') { |
| } |
| continue; |
| } |
| break; |
| } |
| if (ch == '{' && warn_invalid_escape_sequence(c, n, ch) < 0) { |
| return -1; |
| } |
| } |
| if (ch == '{' || ch == '}') { |
| /* Check for doubled braces, but only at the top level. If |
| we checked at every level, then f'{0:{3}}' would fail |
| with the two closing braces. */ |
| if (recurse_lvl == 0) { |
| if (s < end && *s == ch) { |
| /* We're going to tell the caller that the literal ends |
| here, but that they should continue scanning. But also |
| skip over the second brace when we resume scanning. */ |
| *str = s + 1; |
| result = 1; |
| goto done; |
| } |
| |
| /* Where a single '{' is the start of a new expression, a |
| single '}' is not allowed. */ |
| if (ch == '}') { |
| *str = s - 1; |
| ast_error(c, n, "f-string: single '}' is not allowed"); |
| return -1; |
| } |
| } |
| /* We're either at a '{', which means we're starting another |
| expression; or a '}', which means we're at the end of this |
| f-string (for a nested format_spec). */ |
| s--; |
| break; |
| } |
| } |
| *str = s; |
| assert(s <= end); |
| assert(s == end || *s == '{' || *s == '}'); |
| done: |
| if (literal_start != s) { |
| if (raw) |
| *literal = PyUnicode_DecodeUTF8Stateful(literal_start, |
| s - literal_start, |
| NULL, NULL); |
| else |
| *literal = decode_unicode_with_escapes(c, n, literal_start, |
| s - literal_start); |
| if (!*literal) |
| return -1; |
| } |
| return result; |
| } |
| |
| /* Forward declaration because parsing is recursive. */ |
| static expr_ty |
| fstring_parse(const char **str, const char *end, int raw, int recurse_lvl, |
| struct compiling *c, const node *n); |
| |
| /* Parse the f-string at *str, ending at end. We know *str starts an |
| expression (so it must be a '{'). Returns the FormattedValue node, |
| which includes the expression, conversion character, and |
| format_spec expression. |
| |
| Note that I don't do a perfect job here: I don't make sure that a |
| closing brace doesn't match an opening paren, for example. It |
| doesn't need to error on all invalid expressions, just correctly |
| find the end of all valid ones. Any errors inside the expression |
| will be caught when we parse it later. */ |
| static int |
| fstring_find_expr(const char **str, const char *end, int raw, int recurse_lvl, |
| expr_ty *expression, struct compiling *c, const node *n) |
| { |
| /* Return -1 on error, else 0. */ |
| |
| const char *expr_start; |
| const char *expr_end; |
| expr_ty simple_expression; |
| expr_ty format_spec = NULL; /* Optional format specifier. */ |
| int conversion = -1; /* The conversion char. -1 if not specified. */ |
| |
| /* 0 if we're not in a string, else the quote char we're trying to |
| match (single or double quote). */ |
| char quote_char = 0; |
| |
| /* If we're inside a string, 1=normal, 3=triple-quoted. */ |
| int string_type = 0; |
| |
| /* Keep track of nesting level for braces/parens/brackets in |
| expressions. */ |
| Py_ssize_t nested_depth = 0; |
| |
| /* Can only nest one level deep. */ |
| if (recurse_lvl >= 2) { |
| ast_error(c, n, "f-string: expressions nested too deeply"); |
| return -1; |
| } |
| |
| /* The first char must be a left brace, or we wouldn't have gotten |
| here. Skip over it. */ |
| assert(**str == '{'); |
| *str += 1; |
| |
| expr_start = *str; |
| for (; *str < end; (*str)++) { |
| char ch; |
| |
| /* Loop invariants. */ |
| assert(nested_depth >= 0); |
| assert(*str >= expr_start && *str < end); |
| if (quote_char) |
| assert(string_type == 1 || string_type == 3); |
| else |
| assert(string_type == 0); |
| |
| ch = **str; |
| /* Nowhere inside an expression is a backslash allowed. */ |
| if (ch == '\\') { |
| /* Error: can't include a backslash character, inside |
| parens or strings or not. */ |
| ast_error(c, n, "f-string expression part " |
| "cannot include a backslash"); |
| return -1; |
| } |
| if (quote_char) { |
| /* We're inside a string. See if we're at the end. */ |
| /* This code needs to implement the same non-error logic |
| as tok_get from tokenizer.c, at the letter_quote |
| label. To actually share that code would be a |
| nightmare. But, it's unlikely to change and is small, |
| so duplicate it here. Note we don't need to catch all |
| of the errors, since they'll be caught when parsing the |
| expression. We just need to match the non-error |
| cases. Thus we can ignore \n in single-quoted strings, |
| for example. Or non-terminated strings. */ |
| if (ch == quote_char) { |
| /* Does this match the string_type (single or triple |
| quoted)? */ |
| if (string_type == 3) { |
| if (*str+2 < end && *(*str+1) == ch && *(*str+2) == ch) { |
| /* We're at the end of a triple quoted string. */ |
| *str += 2; |
| string_type = 0; |
| quote_char = 0; |
| continue; |
| } |
| } else { |
| /* We're at the end of a normal string. */ |
| quote_char = 0; |
| string_type = 0; |
| continue; |
| } |
| } |
| } else if (ch == '\'' || ch == '"') { |
| /* Is this a triple quoted string? */ |
| if (*str+2 < end && *(*str+1) == ch && *(*str+2) == ch) { |
| string_type = 3; |
| *str += 2; |
| } else { |
| /* Start of a normal string. */ |
| string_type = 1; |
| } |
| /* Start looking for the end of the string. */ |
| quote_char = ch; |
| } else if (ch == '[' || ch == '{' || ch == '(') { |
| nested_depth++; |
| } else if (nested_depth != 0 && |
| (ch == ']' || ch == '}' || ch == ')')) { |
| nested_depth--; |
| } else if (ch == '#') { |
| /* Error: can't include a comment character, inside parens |
| or not. */ |
| ast_error(c, n, "f-string expression part cannot include '#'"); |
| return -1; |
| } else if (nested_depth == 0 && |
| (ch == '!' || ch == ':' || ch == '}')) { |
| /* First, test for the special case of "!=". Since '=' is |
| not an allowed conversion character, nothing is lost in |
| this test. */ |
| if (ch == '!' && *str+1 < end && *(*str+1) == '=') { |
| /* This isn't a conversion character, just continue. */ |
| continue; |
| } |
| /* Normal way out of this loop. */ |
| break; |
| } else { |
| /* Just consume this char and loop around. */ |
| } |
| } |
| expr_end = *str; |
| /* If we leave this loop in a string or with mismatched parens, we |
| don't care. We'll get a syntax error when compiling the |
| expression. But, we can produce a better error message, so |
| let's just do that.*/ |
| if (quote_char) { |
| ast_error(c, n, "f-string: unterminated string"); |
| return -1; |
| } |
| if (nested_depth) { |
| ast_error(c, n, "f-string: mismatched '(', '{', or '['"); |
| return -1; |
| } |
| |
| if (*str >= end) |
| goto unexpected_end_of_string; |
| |
| /* Compile the expression as soon as possible, so we show errors |
| related to the expression before errors related to the |
| conversion or format_spec. */ |
| simple_expression = fstring_compile_expr(expr_start, expr_end, c, n); |
| if (!simple_expression) |
| return -1; |
| |
| /* Check for a conversion char, if present. */ |
| if (**str == '!') { |
| *str += 1; |
| if (*str >= end) |
| goto unexpected_end_of_string; |
| |
| conversion = **str; |
| *str += 1; |
| |
| /* Validate the conversion. */ |
| if (!(conversion == 's' || conversion == 'r' |
| || conversion == 'a')) { |
| ast_error(c, n, "f-string: invalid conversion character: " |
| "expected 's', 'r', or 'a'"); |
| return -1; |
| } |
| } |
| |
| /* Check for the format spec, if present. */ |
| if (*str >= end) |
| goto unexpected_end_of_string; |
| if (**str == ':') { |
| *str += 1; |
| if (*str >= end) |
| goto unexpected_end_of_string; |
| |
| /* Parse the format spec. */ |
| format_spec = fstring_parse(str, end, raw, recurse_lvl+1, c, n); |
| if (!format_spec) |
| return -1; |
| } |
| |
| if (*str >= end || **str != '}') |
| goto unexpected_end_of_string; |
| |
| /* We're at a right brace. Consume it. */ |
| assert(*str < end); |
| assert(**str == '}'); |
| *str += 1; |
| |
| /* And now create the FormattedValue node that represents this |
| entire expression with the conversion and format spec. */ |
| *expression = FormattedValue(simple_expression, conversion, |
| format_spec, LINENO(n), n->n_col_offset, |
| c->c_arena); |
| if (!*expression) |
| return -1; |
| |
| return 0; |
| |
| unexpected_end_of_string: |
| ast_error(c, n, "f-string: expecting '}'"); |
| return -1; |
| } |
| |
| /* Return -1 on error. |
| |
| Return 0 if we have a literal (possible zero length) and an |
| expression (zero length if at the end of the string. |
| |
| Return 1 if we have a literal, but no expression, and we want the |
| caller to call us again. This is used to deal with doubled |
| braces. |
| |
| When called multiple times on the string 'a{{b{0}c', this function |
| will return: |
| |
| 1. the literal 'a{' with no expression, and a return value |
| of 1. Despite the fact that there's no expression, the return |
| value of 1 means we're not finished yet. |
| |
| 2. the literal 'b' and the expression '0', with a return value of |
| 0. The fact that there's an expression means we're not finished. |
| |
| 3. literal 'c' with no expression and a return value of 0. The |
| combination of the return value of 0 with no expression means |
| we're finished. |
| */ |
| static int |
| fstring_find_literal_and_expr(const char **str, const char *end, int raw, |
| int recurse_lvl, PyObject **literal, |
| expr_ty *expression, |
| struct compiling *c, const node *n) |
| { |
| int result; |
| |
| assert(*literal == NULL && *expression == NULL); |
| |
| /* Get any literal string. */ |
| result = fstring_find_literal(str, end, raw, literal, recurse_lvl, c, n); |
| if (result < 0) |
| goto error; |
| |
| assert(result == 0 || result == 1); |
| |
| if (result == 1) |
| /* We have a literal, but don't look at the expression. */ |
| return 1; |
| |
| if (*str >= end || **str == '}') |
| /* We're at the end of the string or the end of a nested |
| f-string: no expression. The top-level error case where we |
| expect to be at the end of the string but we're at a '}' is |
| handled later. */ |
| return 0; |
| |
| /* We must now be the start of an expression, on a '{'. */ |
| assert(**str == '{'); |
| |
| if (fstring_find_expr(str, end, raw, recurse_lvl, expression, c, n) < 0) |
| goto error; |
| |
| return 0; |
| |
| error: |
| Py_CLEAR(*literal); |
| return -1; |
| } |
| |
| #define EXPRLIST_N_CACHED 64 |
| |
| typedef struct { |
| /* Incrementally build an array of expr_ty, so be used in an |
| asdl_seq. Cache some small but reasonably sized number of |
| expr_ty's, and then after that start dynamically allocating, |
| doubling the number allocated each time. Note that the f-string |
| f'{0}a{1}' contains 3 expr_ty's: 2 FormattedValue's, and one |
| Str for the literal 'a'. So you add expr_ty's about twice as |
| fast as you add exressions in an f-string. */ |
| |
| Py_ssize_t allocated; /* Number we've allocated. */ |
| Py_ssize_t size; /* Number we've used. */ |
| expr_ty *p; /* Pointer to the memory we're actually |
| using. Will point to 'data' until we |
| start dynamically allocating. */ |
| expr_ty data[EXPRLIST_N_CACHED]; |
| } ExprList; |
| |
| #ifdef NDEBUG |
| #define ExprList_check_invariants(l) |
| #else |
| static void |
| ExprList_check_invariants(ExprList *l) |
| { |
| /* Check our invariants. Make sure this object is "live", and |
| hasn't been deallocated. */ |
| assert(l->size >= 0); |
| assert(l->p != NULL); |
| if (l->size <= EXPRLIST_N_CACHED) |
| assert(l->data == l->p); |
| } |
| #endif |
| |
| static void |
| ExprList_Init(ExprList *l) |
| { |
| l->allocated = EXPRLIST_N_CACHED; |
| l->size = 0; |
| |
| /* Until we start allocating dynamically, p points to data. */ |
| l->p = l->data; |
| |
| ExprList_check_invariants(l); |
| } |
| |
| static int |
| ExprList_Append(ExprList *l, expr_ty exp) |
| { |
| ExprList_check_invariants(l); |
| if (l->size >= l->allocated) { |
| /* We need to alloc (or realloc) the memory. */ |
| Py_ssize_t new_size = l->allocated * 2; |
| |
| /* See if we've ever allocated anything dynamically. */ |
| if (l->p == l->data) { |
| Py_ssize_t i; |
| /* We're still using the cached data. Switch to |
| alloc-ing. */ |
| l->p = PyMem_RawMalloc(sizeof(expr_ty) * new_size); |
| if (!l->p) |
| return -1; |
| /* Copy the cached data into the new buffer. */ |
| for (i = 0; i < l->size; i++) |
| l->p[i] = l->data[i]; |
| } else { |
| /* Just realloc. */ |
| expr_ty *tmp = PyMem_RawRealloc(l->p, sizeof(expr_ty) * new_size); |
| if (!tmp) { |
| PyMem_RawFree(l->p); |
| l->p = NULL; |
| return -1; |
| } |
| l->p = tmp; |
| } |
| |
| l->allocated = new_size; |
| assert(l->allocated == 2 * l->size); |
| } |
| |
| l->p[l->size++] = exp; |
| |
| ExprList_check_invariants(l); |
| return 0; |
| } |
| |
| static void |
| ExprList_Dealloc(ExprList *l) |
| { |
| ExprList_check_invariants(l); |
| |
| /* If there's been an error, or we've never dynamically allocated, |
| do nothing. */ |
| if (!l->p || l->p == l->data) { |
| /* Do nothing. */ |
| } else { |
| /* We have dynamically allocated. Free the memory. */ |
| PyMem_RawFree(l->p); |
| } |
| l->p = NULL; |
| l->size = -1; |
| } |
| |
| static asdl_seq * |
| ExprList_Finish(ExprList *l, PyArena *arena) |
| { |
| asdl_seq *seq; |
| |
| ExprList_check_invariants(l); |
| |
| /* Allocate the asdl_seq and copy the expressions in to it. */ |
| seq = _Py_asdl_seq_new(l->size, arena); |
| if (seq) { |
| Py_ssize_t i; |
| for (i = 0; i < l->size; i++) |
| asdl_seq_SET(seq, i, l->p[i]); |
| } |
| ExprList_Dealloc(l); |
| return seq; |
| } |
| |
| /* The FstringParser is designed to add a mix of strings and |
| f-strings, and concat them together as needed. Ultimately, it |
| generates an expr_ty. */ |
| typedef struct { |
| PyObject *last_str; |
| ExprList expr_list; |
| int fmode; |
| } FstringParser; |
| |
| #ifdef NDEBUG |
| #define FstringParser_check_invariants(state) |
| #else |
| static void |
| FstringParser_check_invariants(FstringParser *state) |
| { |
| if (state->last_str) |
| assert(PyUnicode_CheckExact(state->last_str)); |
| ExprList_check_invariants(&state->expr_list); |
| } |
| #endif |
| |
| static void |
| FstringParser_Init(FstringParser *state) |
| { |
| state->last_str = NULL; |
| state->fmode = 0; |
| ExprList_Init(&state->expr_list); |
| FstringParser_check_invariants(state); |
| } |
| |
| static void |
| FstringParser_Dealloc(FstringParser *state) |
| { |
| FstringParser_check_invariants(state); |
| |
| Py_XDECREF(state->last_str); |
| ExprList_Dealloc(&state->expr_list); |
| } |
| |
| /* Make a Str node, but decref the PyUnicode object being added. */ |
| static expr_ty |
| make_str_node_and_del(PyObject **str, struct compiling *c, const node* n) |
| { |
| PyObject *s = *str; |
| *str = NULL; |
| assert(PyUnicode_CheckExact(s)); |
| if (PyArena_AddPyObject(c->c_arena, s) < 0) { |
| Py_DECREF(s); |
| return NULL; |
| } |
| return Str(s, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| /* Add a non-f-string (that is, a regular literal string). str is |
| decref'd. */ |
| static int |
| FstringParser_ConcatAndDel(FstringParser *state, PyObject *str) |
| { |
| FstringParser_check_invariants(state); |
| |
| assert(PyUnicode_CheckExact(str)); |
| |
| if (PyUnicode_GET_LENGTH(str) == 0) { |
| Py_DECREF(str); |
| return 0; |
| } |
| |
| if (!state->last_str) { |
| /* We didn't have a string before, so just remember this one. */ |
| state->last_str = str; |
| } else { |
| /* Concatenate this with the previous string. */ |
| PyUnicode_AppendAndDel(&state->last_str, str); |
| if (!state->last_str) |
| return -1; |
| } |
| FstringParser_check_invariants(state); |
| return 0; |
| } |
| |
| /* Parse an f-string. The f-string is in *str to end, with no |
| 'f' or quotes. */ |
| static int |
| FstringParser_ConcatFstring(FstringParser *state, const char **str, |
| const char *end, int raw, int recurse_lvl, |
| struct compiling *c, const node *n) |
| { |
| FstringParser_check_invariants(state); |
| state->fmode = 1; |
| |
| /* Parse the f-string. */ |
| while (1) { |
| PyObject *literal = NULL; |
| expr_ty expression = NULL; |
| |
| /* If there's a zero length literal in front of the |
| expression, literal will be NULL. If we're at the end of |
| the f-string, expression will be NULL (unless result == 1, |
| see below). */ |
| int result = fstring_find_literal_and_expr(str, end, raw, recurse_lvl, |
| &literal, &expression, |
| c, n); |
| if (result < 0) |
| return -1; |
| |
| /* Add the literal, if any. */ |
| if (!literal) { |
| /* Do nothing. Just leave last_str alone (and possibly |
| NULL). */ |
| } else if (!state->last_str) { |
| /* Note that the literal can be zero length, if the |
| input string is "\\\n" or "\\\r", among others. */ |
| state->last_str = literal; |
| literal = NULL; |
| } else { |
| /* We have a literal, concatenate it. */ |
| assert(PyUnicode_GET_LENGTH(literal) != 0); |
| if (FstringParser_ConcatAndDel(state, literal) < 0) |
| return -1; |
| literal = NULL; |
| } |
| |
| /* We've dealt with the literal now. It can't be leaked on further |
| errors. */ |
| assert(literal == NULL); |
| |
| /* See if we should just loop around to get the next literal |
| and expression, while ignoring the expression this |
| time. This is used for un-doubling braces, as an |
| optimization. */ |
| if (result == 1) |
| continue; |
| |
| if (!expression) |
| /* We're done with this f-string. */ |
| break; |
| |
| /* We know we have an expression. Convert any existing string |
| to a Str node. */ |
| if (!state->last_str) { |
| /* Do nothing. No previous literal. */ |
| } else { |
| /* Convert the existing last_str literal to a Str node. */ |
| expr_ty str = make_str_node_and_del(&state->last_str, c, n); |
| if (!str || ExprList_Append(&state->expr_list, str) < 0) |
| return -1; |
| } |
| |
| if (ExprList_Append(&state->expr_list, expression) < 0) |
| return -1; |
| } |
| |
| /* If recurse_lvl is zero, then we must be at the end of the |
| string. Otherwise, we must be at a right brace. */ |
| |
| if (recurse_lvl == 0 && *str < end-1) { |
| ast_error(c, n, "f-string: unexpected end of string"); |
| return -1; |
| } |
| if (recurse_lvl != 0 && **str != '}') { |
| ast_error(c, n, "f-string: expecting '}'"); |
| return -1; |
| } |
| |
| FstringParser_check_invariants(state); |
| return 0; |
| } |
| |
| /* Convert the partial state reflected in last_str and expr_list to an |
| expr_ty. The expr_ty can be a Str, or a JoinedStr. */ |
| static expr_ty |
| FstringParser_Finish(FstringParser *state, struct compiling *c, |
| const node *n) |
| { |
| asdl_seq *seq; |
| |
| FstringParser_check_invariants(state); |
| |
| /* If we're just a constant string with no expressions, return |
| that. */ |
| if (!state->fmode) { |
| assert(!state->expr_list.size); |
| if (!state->last_str) { |
| /* Create a zero length string. */ |
| state->last_str = PyUnicode_FromStringAndSize(NULL, 0); |
| if (!state->last_str) |
| goto error; |
| } |
| return make_str_node_and_del(&state->last_str, c, n); |
| } |
| |
| /* Create a Str node out of last_str, if needed. It will be the |
| last node in our expression list. */ |
| if (state->last_str) { |
| expr_ty str = make_str_node_and_del(&state->last_str, c, n); |
| if (!str || ExprList_Append(&state->expr_list, str) < 0) |
| goto error; |
| } |
| /* This has already been freed. */ |
| assert(state->last_str == NULL); |
| |
| seq = ExprList_Finish(&state->expr_list, c->c_arena); |
| if (!seq) |
| goto error; |
| |
| return JoinedStr(seq, LINENO(n), n->n_col_offset, c->c_arena); |
| |
| error: |
| FstringParser_Dealloc(state); |
| return NULL; |
| } |
| |
| /* Given an f-string (with no 'f' or quotes) that's in *str and ends |
| at end, parse it into an expr_ty. Return NULL on error. Adjust |
| str to point past the parsed portion. */ |
| static expr_ty |
| fstring_parse(const char **str, const char *end, int raw, int recurse_lvl, |
| struct compiling *c, const node *n) |
| { |
| FstringParser state; |
| |
| FstringParser_Init(&state); |
| if (FstringParser_ConcatFstring(&state, str, end, raw, recurse_lvl, |
| c, n) < 0) { |
| FstringParser_Dealloc(&state); |
| return NULL; |
| } |
| |
| return FstringParser_Finish(&state, c, n); |
| } |
| |
| /* n is a Python string literal, including the bracketing quote |
| characters, and r, b, u, &/or f prefixes (if any), and embedded |
| escape sequences (if any). parsestr parses it, and sets *result to |
| decoded Python string object. If the string is an f-string, set |
| *fstr and *fstrlen to the unparsed string object. Return 0 if no |
| errors occurred. |
| */ |
| static int |
| parsestr(struct compiling *c, const node *n, int *bytesmode, int *rawmode, |
| PyObject **result, const char **fstr, Py_ssize_t *fstrlen) |
| { |
| size_t len; |
| const char *s = STR(n); |
| int quote = Py_CHARMASK(*s); |
| int fmode = 0; |
| *bytesmode = 0; |
| *rawmode = 0; |
| *result = NULL; |
| *fstr = NULL; |
| if (Py_ISALPHA(quote)) { |
| while (!*bytesmode || !*rawmode) { |
| if (quote == 'b' || quote == 'B') { |
| quote = *++s; |
| *bytesmode = 1; |
| } |
| else if (quote == 'u' || quote == 'U') { |
| quote = *++s; |
| } |
| else if (quote == 'r' || quote == 'R') { |
| quote = *++s; |
| *rawmode = 1; |
| } |
| else if (quote == 'f' || quote == 'F') { |
| quote = *++s; |
| fmode = 1; |
| } |
| else { |
| break; |
| } |
| } |
| } |
| if (fmode && *bytesmode) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (quote != '\'' && quote != '\"') { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| /* Skip the leading quote char. */ |
| s++; |
| len = strlen(s); |
| if (len > INT_MAX) { |
| PyErr_SetString(PyExc_OverflowError, |
| "string to parse is too long"); |
| return -1; |
| } |
| if (s[--len] != quote) { |
| /* Last quote char must match the first. */ |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (len >= 4 && s[0] == quote && s[1] == quote) { |
| /* A triple quoted string. We've already skipped one quote at |
| the start and one at the end of the string. Now skip the |
| two at the start. */ |
| s += 2; |
| len -= 2; |
| /* And check that the last two match. */ |
| if (s[--len] != quote || s[--len] != quote) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| } |
| |
| if (fmode) { |
| /* Just return the bytes. The caller will parse the resulting |
| string. */ |
| *fstr = s; |
| *fstrlen = len; |
| return 0; |
| } |
| |
| /* Not an f-string. */ |
| /* Avoid invoking escape decoding routines if possible. */ |
| *rawmode = *rawmode || strchr(s, '\\') == NULL; |
| if (*bytesmode) { |
| /* Disallow non-ASCII characters. */ |
| const char *ch; |
| for (ch = s; *ch; ch++) { |
| if (Py_CHARMASK(*ch) >= 0x80) { |
| ast_error(c, n, "bytes can only contain ASCII " |
| "literal characters."); |
| return -1; |
| } |
| } |
| if (*rawmode) |
| *result = PyBytes_FromStringAndSize(s, len); |
| else |
| *result = decode_bytes_with_escapes(c, n, s, len); |
| } else { |
| if (*rawmode) |
| *result = PyUnicode_DecodeUTF8Stateful(s, len, NULL, NULL); |
| else |
| *result = decode_unicode_with_escapes(c, n, s, len); |
| } |
| return *result == NULL ? -1 : 0; |
| } |
| |
| /* Accepts a STRING+ atom, and produces an expr_ty node. Run through |
| each STRING atom, and process it as needed. For bytes, just |
| concatenate them together, and the result will be a Bytes node. For |
| normal strings and f-strings, concatenate them together. The result |
| will be a Str node if there were no f-strings; a FormattedValue |
| node if there's just an f-string (with no leading or trailing |
| literals), or a JoinedStr node if there are multiple f-strings or |
| any literals involved. */ |
| static expr_ty |
| parsestrplus(struct compiling *c, const node *n) |
| { |
| int bytesmode = 0; |
| PyObject *bytes_str = NULL; |
| int i; |
| |
| FstringParser state; |
| FstringParser_Init(&state); |
| |
| for (i = 0; i < NCH(n); i++) { |
| int this_bytesmode; |
| int this_rawmode; |
| PyObject *s; |
| const char *fstr; |
| Py_ssize_t fstrlen = -1; /* Silence a compiler warning. */ |
| |
| REQ(CHILD(n, i), STRING); |
| if (parsestr(c, CHILD(n, i), &this_bytesmode, &this_rawmode, &s, |
| &fstr, &fstrlen) != 0) |
| goto error; |
| |
| /* Check that we're not mixing bytes with unicode. */ |
| if (i != 0 && bytesmode != this_bytesmode) { |
| ast_error(c, n, "cannot mix bytes and nonbytes literals"); |
| /* s is NULL if the current string part is an f-string. */ |
| Py_XDECREF(s); |
| goto error; |
| } |
| bytesmode = this_bytesmode; |
| |
| if (fstr != NULL) { |
| int result; |
| assert(s == NULL && !bytesmode); |
| /* This is an f-string. Parse and concatenate it. */ |
| result = FstringParser_ConcatFstring(&state, &fstr, fstr+fstrlen, |
| this_rawmode, 0, c, n); |
| if (result < 0) |
| goto error; |
| } else { |
| /* A string or byte string. */ |
| assert(s != NULL && fstr == NULL); |
| |
| assert(bytesmode ? PyBytes_CheckExact(s) : |
| PyUnicode_CheckExact(s)); |
| |
| if (bytesmode) { |
| /* For bytes, concat as we go. */ |
| if (i == 0) { |
| /* First time, just remember this value. */ |
| bytes_str = s; |
| } else { |
| PyBytes_ConcatAndDel(&bytes_str, s); |
| if (!bytes_str) |
| goto error; |
| } |
| } else { |
| /* This is a regular string. Concatenate it. */ |
| if (FstringParser_ConcatAndDel(&state, s) < 0) |
| goto error; |
| } |
| } |
| } |
| if (bytesmode) { |
| /* Just return the bytes object and we're done. */ |
| if (PyArena_AddPyObject(c->c_arena, bytes_str) < 0) |
| goto error; |
| return Bytes(bytes_str, LINENO(n), n->n_col_offset, c->c_arena); |
| } |
| |
| /* We're not a bytes string, bytes_str should never have been set. */ |
| assert(bytes_str == NULL); |
| |
| return FstringParser_Finish(&state, c, n); |
| |
| error: |
| Py_XDECREF(bytes_str); |
| FstringParser_Dealloc(&state); |
| return NULL; |
| } |