| """ |
| Various tests for synchronization primitives. |
| """ |
| |
| import sys |
| import time |
| from _thread import start_new_thread, TIMEOUT_MAX |
| import threading |
| import unittest |
| |
| from test import support |
| |
| |
| def _wait(): |
| # A crude wait/yield function not relying on synchronization primitives. |
| time.sleep(0.01) |
| |
| class Bunch(object): |
| """ |
| A bunch of threads. |
| """ |
| def __init__(self, f, n, wait_before_exit=False): |
| """ |
| Construct a bunch of `n` threads running the same function `f`. |
| If `wait_before_exit` is True, the threads won't terminate until |
| do_finish() is called. |
| """ |
| self.f = f |
| self.n = n |
| self.started = [] |
| self.finished = [] |
| self._can_exit = not wait_before_exit |
| def task(): |
| tid = threading.get_ident() |
| self.started.append(tid) |
| try: |
| f() |
| finally: |
| self.finished.append(tid) |
| while not self._can_exit: |
| _wait() |
| for i in range(n): |
| start_new_thread(task, ()) |
| |
| def wait_for_started(self): |
| while len(self.started) < self.n: |
| _wait() |
| |
| def wait_for_finished(self): |
| while len(self.finished) < self.n: |
| _wait() |
| |
| def do_finish(self): |
| self._can_exit = True |
| |
| |
| class BaseTestCase(unittest.TestCase): |
| def setUp(self): |
| self._threads = support.threading_setup() |
| |
| def tearDown(self): |
| support.threading_cleanup(*self._threads) |
| support.reap_children() |
| |
| def assertTimeout(self, actual, expected): |
| # The waiting and/or time.time() can be imprecise, which |
| # is why comparing to the expected value would sometimes fail |
| # (especially under Windows). |
| self.assertGreaterEqual(actual, expected * 0.6) |
| # Test nothing insane happened |
| self.assertLess(actual, expected * 10.0) |
| |
| |
| class BaseLockTests(BaseTestCase): |
| """ |
| Tests for both recursive and non-recursive locks. |
| """ |
| |
| def test_constructor(self): |
| lock = self.locktype() |
| del lock |
| |
| def test_repr(self): |
| lock = self.locktype() |
| repr(lock) |
| del lock |
| |
| def test_acquire_destroy(self): |
| lock = self.locktype() |
| lock.acquire() |
| del lock |
| |
| def test_acquire_release(self): |
| lock = self.locktype() |
| lock.acquire() |
| lock.release() |
| del lock |
| |
| def test_try_acquire(self): |
| lock = self.locktype() |
| self.assertTrue(lock.acquire(False)) |
| lock.release() |
| |
| def test_try_acquire_contended(self): |
| lock = self.locktype() |
| lock.acquire() |
| result = [] |
| def f(): |
| result.append(lock.acquire(False)) |
| Bunch(f, 1).wait_for_finished() |
| self.assertFalse(result[0]) |
| lock.release() |
| |
| def test_acquire_contended(self): |
| lock = self.locktype() |
| lock.acquire() |
| N = 5 |
| def f(): |
| lock.acquire() |
| lock.release() |
| |
| b = Bunch(f, N) |
| b.wait_for_started() |
| _wait() |
| self.assertEqual(len(b.finished), 0) |
| lock.release() |
| b.wait_for_finished() |
| self.assertEqual(len(b.finished), N) |
| |
| def test_with(self): |
| lock = self.locktype() |
| def f(): |
| lock.acquire() |
| lock.release() |
| def _with(err=None): |
| with lock: |
| if err is not None: |
| raise err |
| _with() |
| # Check the lock is unacquired |
| Bunch(f, 1).wait_for_finished() |
| self.assertRaises(TypeError, _with, TypeError) |
| # Check the lock is unacquired |
| Bunch(f, 1).wait_for_finished() |
| |
| def test_thread_leak(self): |
| # The lock shouldn't leak a Thread instance when used from a foreign |
| # (non-threading) thread. |
| lock = self.locktype() |
| def f(): |
| lock.acquire() |
| lock.release() |
| n = len(threading.enumerate()) |
| # We run many threads in the hope that existing threads ids won't |
| # be recycled. |
| Bunch(f, 15).wait_for_finished() |
| if len(threading.enumerate()) != n: |
| # There is a small window during which a Thread instance's |
| # target function has finished running, but the Thread is still |
| # alive and registered. Avoid spurious failures by waiting a |
| # bit more (seen on a buildbot). |
| time.sleep(0.4) |
| self.assertEqual(n, len(threading.enumerate())) |
| |
| def test_timeout(self): |
| lock = self.locktype() |
| # Can't set timeout if not blocking |
| self.assertRaises(ValueError, lock.acquire, 0, 1) |
| # Invalid timeout values |
| self.assertRaises(ValueError, lock.acquire, timeout=-100) |
| self.assertRaises(OverflowError, lock.acquire, timeout=1e100) |
| self.assertRaises(OverflowError, lock.acquire, timeout=TIMEOUT_MAX + 1) |
| # TIMEOUT_MAX is ok |
| lock.acquire(timeout=TIMEOUT_MAX) |
| lock.release() |
| t1 = time.time() |
| self.assertTrue(lock.acquire(timeout=5)) |
| t2 = time.time() |
| # Just a sanity test that it didn't actually wait for the timeout. |
| self.assertLess(t2 - t1, 5) |
| results = [] |
| def f(): |
| t1 = time.time() |
| results.append(lock.acquire(timeout=0.5)) |
| t2 = time.time() |
| results.append(t2 - t1) |
| Bunch(f, 1).wait_for_finished() |
| self.assertFalse(results[0]) |
| self.assertTimeout(results[1], 0.5) |
| |
| |
| class LockTests(BaseLockTests): |
| """ |
| Tests for non-recursive, weak locks |
| (which can be acquired and released from different threads). |
| """ |
| def test_reacquire(self): |
| # Lock needs to be released before re-acquiring. |
| lock = self.locktype() |
| phase = [] |
| def f(): |
| lock.acquire() |
| phase.append(None) |
| lock.acquire() |
| phase.append(None) |
| start_new_thread(f, ()) |
| while len(phase) == 0: |
| _wait() |
| _wait() |
| self.assertEqual(len(phase), 1) |
| lock.release() |
| while len(phase) == 1: |
| _wait() |
| self.assertEqual(len(phase), 2) |
| |
| def test_different_thread(self): |
| # Lock can be released from a different thread. |
| lock = self.locktype() |
| lock.acquire() |
| def f(): |
| lock.release() |
| b = Bunch(f, 1) |
| b.wait_for_finished() |
| lock.acquire() |
| lock.release() |
| |
| def test_state_after_timeout(self): |
| # Issue #11618: check that lock is in a proper state after a |
| # (non-zero) timeout. |
| lock = self.locktype() |
| lock.acquire() |
| self.assertFalse(lock.acquire(timeout=0.01)) |
| lock.release() |
| self.assertFalse(lock.locked()) |
| self.assertTrue(lock.acquire(blocking=False)) |
| |
| |
| class RLockTests(BaseLockTests): |
| """ |
| Tests for recursive locks. |
| """ |
| def test_reacquire(self): |
| lock = self.locktype() |
| lock.acquire() |
| lock.acquire() |
| lock.release() |
| lock.acquire() |
| lock.release() |
| lock.release() |
| |
| def test_release_unacquired(self): |
| # Cannot release an unacquired lock |
| lock = self.locktype() |
| self.assertRaises(RuntimeError, lock.release) |
| lock.acquire() |
| lock.acquire() |
| lock.release() |
| lock.acquire() |
| lock.release() |
| lock.release() |
| self.assertRaises(RuntimeError, lock.release) |
| |
| def test_release_save_unacquired(self): |
| # Cannot _release_save an unacquired lock |
| lock = self.locktype() |
| self.assertRaises(RuntimeError, lock._release_save) |
| lock.acquire() |
| lock.acquire() |
| lock.release() |
| lock.acquire() |
| lock.release() |
| lock.release() |
| self.assertRaises(RuntimeError, lock._release_save) |
| |
| def test_different_thread(self): |
| # Cannot release from a different thread |
| lock = self.locktype() |
| def f(): |
| lock.acquire() |
| b = Bunch(f, 1, True) |
| try: |
| self.assertRaises(RuntimeError, lock.release) |
| finally: |
| b.do_finish() |
| |
| def test__is_owned(self): |
| lock = self.locktype() |
| self.assertFalse(lock._is_owned()) |
| lock.acquire() |
| self.assertTrue(lock._is_owned()) |
| lock.acquire() |
| self.assertTrue(lock._is_owned()) |
| result = [] |
| def f(): |
| result.append(lock._is_owned()) |
| Bunch(f, 1).wait_for_finished() |
| self.assertFalse(result[0]) |
| lock.release() |
| self.assertTrue(lock._is_owned()) |
| lock.release() |
| self.assertFalse(lock._is_owned()) |
| |
| |
| class EventTests(BaseTestCase): |
| """ |
| Tests for Event objects. |
| """ |
| |
| def test_is_set(self): |
| evt = self.eventtype() |
| self.assertFalse(evt.is_set()) |
| evt.set() |
| self.assertTrue(evt.is_set()) |
| evt.set() |
| self.assertTrue(evt.is_set()) |
| evt.clear() |
| self.assertFalse(evt.is_set()) |
| evt.clear() |
| self.assertFalse(evt.is_set()) |
| |
| def _check_notify(self, evt): |
| # All threads get notified |
| N = 5 |
| results1 = [] |
| results2 = [] |
| def f(): |
| results1.append(evt.wait()) |
| results2.append(evt.wait()) |
| b = Bunch(f, N) |
| b.wait_for_started() |
| _wait() |
| self.assertEqual(len(results1), 0) |
| evt.set() |
| b.wait_for_finished() |
| self.assertEqual(results1, [True] * N) |
| self.assertEqual(results2, [True] * N) |
| |
| def test_notify(self): |
| evt = self.eventtype() |
| self._check_notify(evt) |
| # Another time, after an explicit clear() |
| evt.set() |
| evt.clear() |
| self._check_notify(evt) |
| |
| def test_timeout(self): |
| evt = self.eventtype() |
| results1 = [] |
| results2 = [] |
| N = 5 |
| def f(): |
| results1.append(evt.wait(0.0)) |
| t1 = time.time() |
| r = evt.wait(0.5) |
| t2 = time.time() |
| results2.append((r, t2 - t1)) |
| Bunch(f, N).wait_for_finished() |
| self.assertEqual(results1, [False] * N) |
| for r, dt in results2: |
| self.assertFalse(r) |
| self.assertTimeout(dt, 0.5) |
| # The event is set |
| results1 = [] |
| results2 = [] |
| evt.set() |
| Bunch(f, N).wait_for_finished() |
| self.assertEqual(results1, [True] * N) |
| for r, dt in results2: |
| self.assertTrue(r) |
| |
| def test_set_and_clear(self): |
| # Issue #13502: check that wait() returns true even when the event is |
| # cleared before the waiting thread is woken up. |
| evt = self.eventtype() |
| results = [] |
| N = 5 |
| def f(): |
| results.append(evt.wait(1)) |
| b = Bunch(f, N) |
| b.wait_for_started() |
| time.sleep(0.5) |
| evt.set() |
| evt.clear() |
| b.wait_for_finished() |
| self.assertEqual(results, [True] * N) |
| |
| |
| class ConditionTests(BaseTestCase): |
| """ |
| Tests for condition variables. |
| """ |
| |
| def test_acquire(self): |
| cond = self.condtype() |
| # Be default we have an RLock: the condition can be acquired multiple |
| # times. |
| cond.acquire() |
| cond.acquire() |
| cond.release() |
| cond.release() |
| lock = threading.Lock() |
| cond = self.condtype(lock) |
| cond.acquire() |
| self.assertFalse(lock.acquire(False)) |
| cond.release() |
| self.assertTrue(lock.acquire(False)) |
| self.assertFalse(cond.acquire(False)) |
| lock.release() |
| with cond: |
| self.assertFalse(lock.acquire(False)) |
| |
| def test_unacquired_wait(self): |
| cond = self.condtype() |
| self.assertRaises(RuntimeError, cond.wait) |
| |
| def test_unacquired_notify(self): |
| cond = self.condtype() |
| self.assertRaises(RuntimeError, cond.notify) |
| |
| def _check_notify(self, cond): |
| # Note that this test is sensitive to timing. If the worker threads |
| # don't execute in a timely fashion, the main thread may think they |
| # are further along then they are. The main thread therefore issues |
| # _wait() statements to try to make sure that it doesn't race ahead |
| # of the workers. |
| # Secondly, this test assumes that condition variables are not subject |
| # to spurious wakeups. The absence of spurious wakeups is an implementation |
| # detail of Condition Cariables in current CPython, but in general, not |
| # a guaranteed property of condition variables as a programming |
| # construct. In particular, it is possible that this can no longer |
| # be conveniently guaranteed should their implementation ever change. |
| N = 5 |
| results1 = [] |
| results2 = [] |
| phase_num = 0 |
| def f(): |
| cond.acquire() |
| result = cond.wait() |
| cond.release() |
| results1.append((result, phase_num)) |
| cond.acquire() |
| result = cond.wait() |
| cond.release() |
| results2.append((result, phase_num)) |
| b = Bunch(f, N) |
| b.wait_for_started() |
| _wait() |
| self.assertEqual(results1, []) |
| # Notify 3 threads at first |
| cond.acquire() |
| cond.notify(3) |
| _wait() |
| phase_num = 1 |
| cond.release() |
| while len(results1) < 3: |
| _wait() |
| self.assertEqual(results1, [(True, 1)] * 3) |
| self.assertEqual(results2, []) |
| # first wait, to ensure all workers settle into cond.wait() before |
| # we continue. See issue #8799 |
| _wait() |
| # Notify 5 threads: they might be in their first or second wait |
| cond.acquire() |
| cond.notify(5) |
| _wait() |
| phase_num = 2 |
| cond.release() |
| while len(results1) + len(results2) < 8: |
| _wait() |
| self.assertEqual(results1, [(True, 1)] * 3 + [(True, 2)] * 2) |
| self.assertEqual(results2, [(True, 2)] * 3) |
| _wait() # make sure all workers settle into cond.wait() |
| # Notify all threads: they are all in their second wait |
| cond.acquire() |
| cond.notify_all() |
| _wait() |
| phase_num = 3 |
| cond.release() |
| while len(results2) < 5: |
| _wait() |
| self.assertEqual(results1, [(True, 1)] * 3 + [(True,2)] * 2) |
| self.assertEqual(results2, [(True, 2)] * 3 + [(True, 3)] * 2) |
| b.wait_for_finished() |
| |
| def test_notify(self): |
| cond = self.condtype() |
| self._check_notify(cond) |
| # A second time, to check internal state is still ok. |
| self._check_notify(cond) |
| |
| def test_timeout(self): |
| cond = self.condtype() |
| results = [] |
| N = 5 |
| def f(): |
| cond.acquire() |
| t1 = time.time() |
| result = cond.wait(0.5) |
| t2 = time.time() |
| cond.release() |
| results.append((t2 - t1, result)) |
| Bunch(f, N).wait_for_finished() |
| self.assertEqual(len(results), N) |
| for dt, result in results: |
| self.assertTimeout(dt, 0.5) |
| # Note that conceptually (that"s the condition variable protocol) |
| # a wait() may succeed even if no one notifies us and before any |
| # timeout occurs. Spurious wakeups can occur. |
| # This makes it hard to verify the result value. |
| # In practice, this implementation has no spurious wakeups. |
| self.assertFalse(result) |
| |
| def test_waitfor(self): |
| cond = self.condtype() |
| state = 0 |
| def f(): |
| with cond: |
| result = cond.wait_for(lambda : state==4) |
| self.assertTrue(result) |
| self.assertEqual(state, 4) |
| b = Bunch(f, 1) |
| b.wait_for_started() |
| for i in range(4): |
| time.sleep(0.01) |
| with cond: |
| state += 1 |
| cond.notify() |
| b.wait_for_finished() |
| |
| def test_waitfor_timeout(self): |
| cond = self.condtype() |
| state = 0 |
| success = [] |
| def f(): |
| with cond: |
| dt = time.time() |
| result = cond.wait_for(lambda : state==4, timeout=0.1) |
| dt = time.time() - dt |
| self.assertFalse(result) |
| self.assertTimeout(dt, 0.1) |
| success.append(None) |
| b = Bunch(f, 1) |
| b.wait_for_started() |
| # Only increment 3 times, so state == 4 is never reached. |
| for i in range(3): |
| time.sleep(0.01) |
| with cond: |
| state += 1 |
| cond.notify() |
| b.wait_for_finished() |
| self.assertEqual(len(success), 1) |
| |
| |
| class BaseSemaphoreTests(BaseTestCase): |
| """ |
| Common tests for {bounded, unbounded} semaphore objects. |
| """ |
| |
| def test_constructor(self): |
| self.assertRaises(ValueError, self.semtype, value = -1) |
| self.assertRaises(ValueError, self.semtype, value = -sys.maxsize) |
| |
| def test_acquire(self): |
| sem = self.semtype(1) |
| sem.acquire() |
| sem.release() |
| sem = self.semtype(2) |
| sem.acquire() |
| sem.acquire() |
| sem.release() |
| sem.release() |
| |
| def test_acquire_destroy(self): |
| sem = self.semtype() |
| sem.acquire() |
| del sem |
| |
| def test_acquire_contended(self): |
| sem = self.semtype(7) |
| sem.acquire() |
| N = 10 |
| results1 = [] |
| results2 = [] |
| phase_num = 0 |
| def f(): |
| sem.acquire() |
| results1.append(phase_num) |
| sem.acquire() |
| results2.append(phase_num) |
| b = Bunch(f, 10) |
| b.wait_for_started() |
| while len(results1) + len(results2) < 6: |
| _wait() |
| self.assertEqual(results1 + results2, [0] * 6) |
| phase_num = 1 |
| for i in range(7): |
| sem.release() |
| while len(results1) + len(results2) < 13: |
| _wait() |
| self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7) |
| phase_num = 2 |
| for i in range(6): |
| sem.release() |
| while len(results1) + len(results2) < 19: |
| _wait() |
| self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7 + [2] * 6) |
| # The semaphore is still locked |
| self.assertFalse(sem.acquire(False)) |
| # Final release, to let the last thread finish |
| sem.release() |
| b.wait_for_finished() |
| |
| def test_try_acquire(self): |
| sem = self.semtype(2) |
| self.assertTrue(sem.acquire(False)) |
| self.assertTrue(sem.acquire(False)) |
| self.assertFalse(sem.acquire(False)) |
| sem.release() |
| self.assertTrue(sem.acquire(False)) |
| |
| def test_try_acquire_contended(self): |
| sem = self.semtype(4) |
| sem.acquire() |
| results = [] |
| def f(): |
| results.append(sem.acquire(False)) |
| results.append(sem.acquire(False)) |
| Bunch(f, 5).wait_for_finished() |
| # There can be a thread switch between acquiring the semaphore and |
| # appending the result, therefore results will not necessarily be |
| # ordered. |
| self.assertEqual(sorted(results), [False] * 7 + [True] * 3 ) |
| |
| def test_acquire_timeout(self): |
| sem = self.semtype(2) |
| self.assertRaises(ValueError, sem.acquire, False, timeout=1.0) |
| self.assertTrue(sem.acquire(timeout=0.005)) |
| self.assertTrue(sem.acquire(timeout=0.005)) |
| self.assertFalse(sem.acquire(timeout=0.005)) |
| sem.release() |
| self.assertTrue(sem.acquire(timeout=0.005)) |
| t = time.time() |
| self.assertFalse(sem.acquire(timeout=0.5)) |
| dt = time.time() - t |
| self.assertTimeout(dt, 0.5) |
| |
| def test_default_value(self): |
| # The default initial value is 1. |
| sem = self.semtype() |
| sem.acquire() |
| def f(): |
| sem.acquire() |
| sem.release() |
| b = Bunch(f, 1) |
| b.wait_for_started() |
| _wait() |
| self.assertFalse(b.finished) |
| sem.release() |
| b.wait_for_finished() |
| |
| def test_with(self): |
| sem = self.semtype(2) |
| def _with(err=None): |
| with sem: |
| self.assertTrue(sem.acquire(False)) |
| sem.release() |
| with sem: |
| self.assertFalse(sem.acquire(False)) |
| if err: |
| raise err |
| _with() |
| self.assertTrue(sem.acquire(False)) |
| sem.release() |
| self.assertRaises(TypeError, _with, TypeError) |
| self.assertTrue(sem.acquire(False)) |
| sem.release() |
| |
| class SemaphoreTests(BaseSemaphoreTests): |
| """ |
| Tests for unbounded semaphores. |
| """ |
| |
| def test_release_unacquired(self): |
| # Unbounded releases are allowed and increment the semaphore's value |
| sem = self.semtype(1) |
| sem.release() |
| sem.acquire() |
| sem.acquire() |
| sem.release() |
| |
| |
| class BoundedSemaphoreTests(BaseSemaphoreTests): |
| """ |
| Tests for bounded semaphores. |
| """ |
| |
| def test_release_unacquired(self): |
| # Cannot go past the initial value |
| sem = self.semtype() |
| self.assertRaises(ValueError, sem.release) |
| sem.acquire() |
| sem.release() |
| self.assertRaises(ValueError, sem.release) |
| |
| |
| class BarrierTests(BaseTestCase): |
| """ |
| Tests for Barrier objects. |
| """ |
| N = 5 |
| defaultTimeout = 2.0 |
| |
| def setUp(self): |
| self.barrier = self.barriertype(self.N, timeout=self.defaultTimeout) |
| def tearDown(self): |
| self.barrier.abort() |
| |
| def run_threads(self, f): |
| b = Bunch(f, self.N-1) |
| f() |
| b.wait_for_finished() |
| |
| def multipass(self, results, n): |
| m = self.barrier.parties |
| self.assertEqual(m, self.N) |
| for i in range(n): |
| results[0].append(True) |
| self.assertEqual(len(results[1]), i * m) |
| self.barrier.wait() |
| results[1].append(True) |
| self.assertEqual(len(results[0]), (i + 1) * m) |
| self.barrier.wait() |
| self.assertEqual(self.barrier.n_waiting, 0) |
| self.assertFalse(self.barrier.broken) |
| |
| def test_barrier(self, passes=1): |
| """ |
| Test that a barrier is passed in lockstep |
| """ |
| results = [[],[]] |
| def f(): |
| self.multipass(results, passes) |
| self.run_threads(f) |
| |
| def test_barrier_10(self): |
| """ |
| Test that a barrier works for 10 consecutive runs |
| """ |
| return self.test_barrier(10) |
| |
| def test_wait_return(self): |
| """ |
| test the return value from barrier.wait |
| """ |
| results = [] |
| def f(): |
| r = self.barrier.wait() |
| results.append(r) |
| |
| self.run_threads(f) |
| self.assertEqual(sum(results), sum(range(self.N))) |
| |
| def test_action(self): |
| """ |
| Test the 'action' callback |
| """ |
| results = [] |
| def action(): |
| results.append(True) |
| barrier = self.barriertype(self.N, action) |
| def f(): |
| barrier.wait() |
| self.assertEqual(len(results), 1) |
| |
| self.run_threads(f) |
| |
| def test_abort(self): |
| """ |
| Test that an abort will put the barrier in a broken state |
| """ |
| results1 = [] |
| results2 = [] |
| def f(): |
| try: |
| i = self.barrier.wait() |
| if i == self.N//2: |
| raise RuntimeError |
| self.barrier.wait() |
| results1.append(True) |
| except threading.BrokenBarrierError: |
| results2.append(True) |
| except RuntimeError: |
| self.barrier.abort() |
| pass |
| |
| self.run_threads(f) |
| self.assertEqual(len(results1), 0) |
| self.assertEqual(len(results2), self.N-1) |
| self.assertTrue(self.barrier.broken) |
| |
| def test_reset(self): |
| """ |
| Test that a 'reset' on a barrier frees the waiting threads |
| """ |
| results1 = [] |
| results2 = [] |
| results3 = [] |
| def f(): |
| i = self.barrier.wait() |
| if i == self.N//2: |
| # Wait until the other threads are all in the barrier. |
| while self.barrier.n_waiting < self.N-1: |
| time.sleep(0.001) |
| self.barrier.reset() |
| else: |
| try: |
| self.barrier.wait() |
| results1.append(True) |
| except threading.BrokenBarrierError: |
| results2.append(True) |
| # Now, pass the barrier again |
| self.barrier.wait() |
| results3.append(True) |
| |
| self.run_threads(f) |
| self.assertEqual(len(results1), 0) |
| self.assertEqual(len(results2), self.N-1) |
| self.assertEqual(len(results3), self.N) |
| |
| |
| def test_abort_and_reset(self): |
| """ |
| Test that a barrier can be reset after being broken. |
| """ |
| results1 = [] |
| results2 = [] |
| results3 = [] |
| barrier2 = self.barriertype(self.N) |
| def f(): |
| try: |
| i = self.barrier.wait() |
| if i == self.N//2: |
| raise RuntimeError |
| self.barrier.wait() |
| results1.append(True) |
| except threading.BrokenBarrierError: |
| results2.append(True) |
| except RuntimeError: |
| self.barrier.abort() |
| pass |
| # Synchronize and reset the barrier. Must synchronize first so |
| # that everyone has left it when we reset, and after so that no |
| # one enters it before the reset. |
| if barrier2.wait() == self.N//2: |
| self.barrier.reset() |
| barrier2.wait() |
| self.barrier.wait() |
| results3.append(True) |
| |
| self.run_threads(f) |
| self.assertEqual(len(results1), 0) |
| self.assertEqual(len(results2), self.N-1) |
| self.assertEqual(len(results3), self.N) |
| |
| def test_timeout(self): |
| """ |
| Test wait(timeout) |
| """ |
| def f(): |
| i = self.barrier.wait() |
| if i == self.N // 2: |
| # One thread is late! |
| time.sleep(1.0) |
| # Default timeout is 2.0, so this is shorter. |
| self.assertRaises(threading.BrokenBarrierError, |
| self.barrier.wait, 0.5) |
| self.run_threads(f) |
| |
| def test_default_timeout(self): |
| """ |
| Test the barrier's default timeout |
| """ |
| # create a barrier with a low default timeout |
| barrier = self.barriertype(self.N, timeout=0.3) |
| def f(): |
| i = barrier.wait() |
| if i == self.N // 2: |
| # One thread is later than the default timeout of 0.3s. |
| time.sleep(1.0) |
| self.assertRaises(threading.BrokenBarrierError, barrier.wait) |
| self.run_threads(f) |
| |
| def test_single_thread(self): |
| b = self.barriertype(1) |
| b.wait() |
| b.wait() |