blob: 9a497a683688a9e1349078e646c848bb47b65149 [file] [log] [blame]
#ifndef Py_ATOMIC_H
#define Py_ATOMIC_H
#ifdef Py_BUILD_CORE
#include "dynamic_annotations.h"
#include "pyconfig.h"
#if defined(HAVE_STD_ATOMIC)
#include <stdatomic.h>
#endif
#if defined(_MSC_VER)
#include <intrin.h>
#include <immintrin.h>
#endif
/* This is modeled after the atomics interface from C1x, according to
* the draft at
* http://www.open-std.org/JTC1/SC22/wg14/www/docs/n1425.pdf.
* Operations and types are named the same except with a _Py_ prefix
* and have the same semantics.
*
* Beware, the implementations here are deep magic.
*/
#if defined(HAVE_STD_ATOMIC)
typedef enum _Py_memory_order {
_Py_memory_order_relaxed = memory_order_relaxed,
_Py_memory_order_acquire = memory_order_acquire,
_Py_memory_order_release = memory_order_release,
_Py_memory_order_acq_rel = memory_order_acq_rel,
_Py_memory_order_seq_cst = memory_order_seq_cst
} _Py_memory_order;
typedef struct _Py_atomic_address {
atomic_uintptr_t _value;
} _Py_atomic_address;
typedef struct _Py_atomic_int {
atomic_int _value;
} _Py_atomic_int;
#define _Py_atomic_signal_fence(/*memory_order*/ ORDER) \
atomic_signal_fence(ORDER)
#define _Py_atomic_thread_fence(/*memory_order*/ ORDER) \
atomic_thread_fence(ORDER)
#define _Py_atomic_store_explicit(ATOMIC_VAL, NEW_VAL, ORDER) \
atomic_store_explicit(&(ATOMIC_VAL)->_value, NEW_VAL, ORDER)
#define _Py_atomic_load_explicit(ATOMIC_VAL, ORDER) \
atomic_load_explicit(&(ATOMIC_VAL)->_value, ORDER)
/* Use builtin atomic operations in GCC >= 4.7 */
#elif defined(HAVE_BUILTIN_ATOMIC)
typedef enum _Py_memory_order {
_Py_memory_order_relaxed = __ATOMIC_RELAXED,
_Py_memory_order_acquire = __ATOMIC_ACQUIRE,
_Py_memory_order_release = __ATOMIC_RELEASE,
_Py_memory_order_acq_rel = __ATOMIC_ACQ_REL,
_Py_memory_order_seq_cst = __ATOMIC_SEQ_CST
} _Py_memory_order;
typedef struct _Py_atomic_address {
uintptr_t _value;
} _Py_atomic_address;
typedef struct _Py_atomic_int {
int _value;
} _Py_atomic_int;
#define _Py_atomic_signal_fence(/*memory_order*/ ORDER) \
__atomic_signal_fence(ORDER)
#define _Py_atomic_thread_fence(/*memory_order*/ ORDER) \
__atomic_thread_fence(ORDER)
#define _Py_atomic_store_explicit(ATOMIC_VAL, NEW_VAL, ORDER) \
(assert((ORDER) == __ATOMIC_RELAXED \
|| (ORDER) == __ATOMIC_SEQ_CST \
|| (ORDER) == __ATOMIC_RELEASE), \
__atomic_store_n(&(ATOMIC_VAL)->_value, NEW_VAL, ORDER))
#define _Py_atomic_load_explicit(ATOMIC_VAL, ORDER) \
(assert((ORDER) == __ATOMIC_RELAXED \
|| (ORDER) == __ATOMIC_SEQ_CST \
|| (ORDER) == __ATOMIC_ACQUIRE \
|| (ORDER) == __ATOMIC_CONSUME), \
__atomic_load_n(&(ATOMIC_VAL)->_value, ORDER))
/* Only support GCC (for expression statements) and x86 (for simple
* atomic semantics) and MSVC x86/x64/ARM */
#elif defined(__GNUC__) && (defined(__i386__) || defined(__amd64))
typedef enum _Py_memory_order {
_Py_memory_order_relaxed,
_Py_memory_order_acquire,
_Py_memory_order_release,
_Py_memory_order_acq_rel,
_Py_memory_order_seq_cst
} _Py_memory_order;
typedef struct _Py_atomic_address {
uintptr_t _value;
} _Py_atomic_address;
typedef struct _Py_atomic_int {
int _value;
} _Py_atomic_int;
static __inline__ void
_Py_atomic_signal_fence(_Py_memory_order order)
{
if (order != _Py_memory_order_relaxed)
__asm__ volatile("":::"memory");
}
static __inline__ void
_Py_atomic_thread_fence(_Py_memory_order order)
{
if (order != _Py_memory_order_relaxed)
__asm__ volatile("mfence":::"memory");
}
/* Tell the race checker about this operation's effects. */
static __inline__ void
_Py_ANNOTATE_MEMORY_ORDER(const volatile void *address, _Py_memory_order order)
{
(void)address; /* shut up -Wunused-parameter */
switch(order) {
case _Py_memory_order_release:
case _Py_memory_order_acq_rel:
case _Py_memory_order_seq_cst:
_Py_ANNOTATE_HAPPENS_BEFORE(address);
break;
case _Py_memory_order_relaxed:
case _Py_memory_order_acquire:
break;
}
switch(order) {
case _Py_memory_order_acquire:
case _Py_memory_order_acq_rel:
case _Py_memory_order_seq_cst:
_Py_ANNOTATE_HAPPENS_AFTER(address);
break;
case _Py_memory_order_relaxed:
case _Py_memory_order_release:
break;
}
}
#define _Py_atomic_store_explicit(ATOMIC_VAL, NEW_VAL, ORDER) \
__extension__ ({ \
__typeof__(ATOMIC_VAL) atomic_val = ATOMIC_VAL; \
__typeof__(atomic_val->_value) new_val = NEW_VAL;\
volatile __typeof__(new_val) *volatile_data = &atomic_val->_value; \
_Py_memory_order order = ORDER; \
_Py_ANNOTATE_MEMORY_ORDER(atomic_val, order); \
\
/* Perform the operation. */ \
_Py_ANNOTATE_IGNORE_WRITES_BEGIN(); \
switch(order) { \
case _Py_memory_order_release: \
_Py_atomic_signal_fence(_Py_memory_order_release); \
/* fallthrough */ \
case _Py_memory_order_relaxed: \
*volatile_data = new_val; \
break; \
\
case _Py_memory_order_acquire: \
case _Py_memory_order_acq_rel: \
case _Py_memory_order_seq_cst: \
__asm__ volatile("xchg %0, %1" \
: "+r"(new_val) \
: "m"(atomic_val->_value) \
: "memory"); \
break; \
} \
_Py_ANNOTATE_IGNORE_WRITES_END(); \
})
#define _Py_atomic_load_explicit(ATOMIC_VAL, ORDER) \
__extension__ ({ \
__typeof__(ATOMIC_VAL) atomic_val = ATOMIC_VAL; \
__typeof__(atomic_val->_value) result; \
volatile __typeof__(result) *volatile_data = &atomic_val->_value; \
_Py_memory_order order = ORDER; \
_Py_ANNOTATE_MEMORY_ORDER(atomic_val, order); \
\
/* Perform the operation. */ \
_Py_ANNOTATE_IGNORE_READS_BEGIN(); \
switch(order) { \
case _Py_memory_order_release: \
case _Py_memory_order_acq_rel: \
case _Py_memory_order_seq_cst: \
/* Loads on x86 are not releases by default, so need a */ \
/* thread fence. */ \
_Py_atomic_thread_fence(_Py_memory_order_release); \
break; \
default: \
/* No fence */ \
break; \
} \
result = *volatile_data; \
switch(order) { \
case _Py_memory_order_acquire: \
case _Py_memory_order_acq_rel: \
case _Py_memory_order_seq_cst: \
/* Loads on x86 are automatically acquire operations so */ \
/* can get by with just a compiler fence. */ \
_Py_atomic_signal_fence(_Py_memory_order_acquire); \
break; \
default: \
/* No fence */ \
break; \
} \
_Py_ANNOTATE_IGNORE_READS_END(); \
result; \
})
#elif defined(_MSC_VER)
/* _Interlocked* functions provide a full memory barrier and are therefore
enough for acq_rel and seq_cst. If the HLE variants aren't available
in hardware they will fall back to a full memory barrier as well.
This might affect performance but likely only in some very specific and
hard to meassure scenario.
*/
#if defined(_M_IX86) || defined(_M_X64)
typedef enum _Py_memory_order {
_Py_memory_order_relaxed,
_Py_memory_order_acquire,
_Py_memory_order_release,
_Py_memory_order_acq_rel,
_Py_memory_order_seq_cst
} _Py_memory_order;
typedef struct _Py_atomic_address {
volatile uintptr_t _value;
} _Py_atomic_address;
typedef struct _Py_atomic_int {
volatile int _value;
} _Py_atomic_int;
#if defined(_M_X64)
#define _Py_atomic_store_64bit(ATOMIC_VAL, NEW_VAL, ORDER) \
switch (ORDER) { \
case _Py_memory_order_acquire: \
_InterlockedExchange64_HLEAcquire((__int64 volatile*)ATOMIC_VAL, (__int64)NEW_VAL); \
break; \
case _Py_memory_order_release: \
_InterlockedExchange64_HLERelease((__int64 volatile*)ATOMIC_VAL, (__int64)NEW_VAL); \
break; \
default: \
_InterlockedExchange64((__int64 volatile*)ATOMIC_VAL, (__int64)NEW_VAL); \
break; \
}
#else
#define _Py_atomic_store_64bit(ATOMIC_VAL, NEW_VAL, ORDER) ((void)0);
#endif
#define _Py_atomic_store_32bit(ATOMIC_VAL, NEW_VAL, ORDER) \
switch (ORDER) { \
case _Py_memory_order_acquire: \
_InterlockedExchange_HLEAcquire((volatile long*)ATOMIC_VAL, (int)NEW_VAL); \
break; \
case _Py_memory_order_release: \
_InterlockedExchange_HLERelease((volatile long*)ATOMIC_VAL, (int)NEW_VAL); \
break; \
default: \
_InterlockedExchange((volatile long*)ATOMIC_VAL, (int)NEW_VAL); \
break; \
}
#if defined(_M_X64)
/* This has to be an intptr_t for now.
gil_created() uses -1 as a sentinel value, if this returns
a uintptr_t it will do an unsigned compare and crash
*/
inline intptr_t _Py_atomic_load_64bit(volatile uintptr_t* value, int order) {
__int64 old;
switch (order) {
case _Py_memory_order_acquire:
{
do {
old = *value;
} while(_InterlockedCompareExchange64_HLEAcquire((volatile __int64*)value, old, old) != old);
break;
}
case _Py_memory_order_release:
{
do {
old = *value;
} while(_InterlockedCompareExchange64_HLERelease((volatile __int64*)value, old, old) != old);
break;
}
case _Py_memory_order_relaxed:
old = *value;
break;
default:
{
do {
old = *value;
} while(_InterlockedCompareExchange64((volatile __int64*)value, old, old) != old);
break;
}
}
return old;
}
#else
#define _Py_atomic_load_64bit(ATOMIC_VAL, ORDER) *ATOMIC_VAL
#endif
inline int _Py_atomic_load_32bit(volatile int* value, int order) {
long old;
switch (order) {
case _Py_memory_order_acquire:
{
do {
old = *value;
} while(_InterlockedCompareExchange_HLEAcquire((volatile long*)value, old, old) != old);
break;
}
case _Py_memory_order_release:
{
do {
old = *value;
} while(_InterlockedCompareExchange_HLERelease((volatile long*)value, old, old) != old);
break;
}
case _Py_memory_order_relaxed:
old = *value;
break;
default:
{
do {
old = *value;
} while(_InterlockedCompareExchange((volatile long*)value, old, old) != old);
break;
}
}
return old;
}
#define _Py_atomic_store_explicit(ATOMIC_VAL, NEW_VAL, ORDER) \
if (sizeof(*ATOMIC_VAL._value) == 8) { \
_Py_atomic_store_64bit((volatile long long*)ATOMIC_VAL._value, NEW_VAL, ORDER) } else { \
_Py_atomic_store_32bit((volatile long*)ATOMIC_VAL._value, NEW_VAL, ORDER) }
#define _Py_atomic_load_explicit(ATOMIC_VAL, ORDER) \
( \
sizeof(*(ATOMIC_VAL._value)) == 8 ? \
_Py_atomic_load_64bit((volatile long long*)ATOMIC_VAL._value, ORDER) : \
_Py_atomic_load_32bit((volatile long*)ATOMIC_VAL._value, ORDER) \
)
#elif defined(_M_ARM) || defined(_M_ARM64)
typedef enum _Py_memory_order {
_Py_memory_order_relaxed,
_Py_memory_order_acquire,
_Py_memory_order_release,
_Py_memory_order_acq_rel,
_Py_memory_order_seq_cst
} _Py_memory_order;
typedef struct _Py_atomic_address {
volatile uintptr_t _value;
} _Py_atomic_address;
typedef struct _Py_atomic_int {
volatile int _value;
} _Py_atomic_int;
#if defined(_M_ARM64)
#define _Py_atomic_store_64bit(ATOMIC_VAL, NEW_VAL, ORDER) \
switch (ORDER) { \
case _Py_memory_order_acquire: \
_InterlockedExchange64_acq((__int64 volatile*)ATOMIC_VAL, (__int64)NEW_VAL); \
break; \
case _Py_memory_order_release: \
_InterlockedExchange64_rel((__int64 volatile*)ATOMIC_VAL, (__int64)NEW_VAL); \
break; \
default: \
_InterlockedExchange64((__int64 volatile*)ATOMIC_VAL, (__int64)NEW_VAL); \
break; \
}
#else
#define _Py_atomic_store_64bit(ATOMIC_VAL, NEW_VAL, ORDER) ((void)0);
#endif
#define _Py_atomic_store_32bit(ATOMIC_VAL, NEW_VAL, ORDER) \
switch (ORDER) { \
case _Py_memory_order_acquire: \
_InterlockedExchange_acq((volatile long*)ATOMIC_VAL, (int)NEW_VAL); \
break; \
case _Py_memory_order_release: \
_InterlockedExchange_rel((volatile long*)ATOMIC_VAL, (int)NEW_VAL); \
break; \
default: \
_InterlockedExchange((volatile long*)ATOMIC_VAL, (int)NEW_VAL); \
break; \
}
#if defined(_M_ARM64)
/* This has to be an intptr_t for now.
gil_created() uses -1 as a sentinel value, if this returns
a uintptr_t it will do an unsigned compare and crash
*/
inline intptr_t _Py_atomic_load_64bit(volatile uintptr_t* value, int order) {
uintptr_t old;
switch (order) {
case _Py_memory_order_acquire:
{
do {
old = *value;
} while(_InterlockedCompareExchange64_acq(value, old, old) != old);
break;
}
case _Py_memory_order_release:
{
do {
old = *value;
} while(_InterlockedCompareExchange64_rel(value, old, old) != old);
break;
}
case _Py_memory_order_relaxed:
old = *value;
break;
default:
{
do {
old = *value;
} while(_InterlockedCompareExchange64(value, old, old) != old);
break;
}
}
return old;
}
#else
#define _Py_atomic_load_64bit(ATOMIC_VAL, ORDER) *ATOMIC_VAL
#endif
inline int _Py_atomic_load_32bit(volatile int* value, int order) {
int old;
switch (order) {
case _Py_memory_order_acquire:
{
do {
old = *value;
} while(_InterlockedCompareExchange_acq(value, old, old) != old);
break;
}
case _Py_memory_order_release:
{
do {
old = *value;
} while(_InterlockedCompareExchange_rel(value, old, old) != old);
break;
}
case _Py_memory_order_relaxed:
old = *value;
break;
default:
{
do {
old = *value;
} while(_InterlockedCompareExchange(value, old, old) != old);
break;
}
}
return old;
}
#define _Py_atomic_store_explicit(ATOMIC_VAL, NEW_VAL, ORDER) \
if (sizeof(*ATOMIC_VAL._value) == 8) { \
_Py_atomic_store_64bit(ATOMIC_VAL._value, NEW_VAL, ORDER) } else { \
_Py_atomic_store_32bit(ATOMIC_VAL._value, NEW_VAL, ORDER) }
#define _Py_atomic_load_explicit(ATOMIC_VAL, ORDER) \
( \
sizeof(*(ATOMIC_VAL._value)) == 8 ? \
_Py_atomic_load_64bit(ATOMIC_VAL._value, ORDER) : \
_Py_atomic_load_32bit(ATOMIC_VAL._value, ORDER) \
)
#endif
#else /* !gcc x86 !_msc_ver */
typedef enum _Py_memory_order {
_Py_memory_order_relaxed,
_Py_memory_order_acquire,
_Py_memory_order_release,
_Py_memory_order_acq_rel,
_Py_memory_order_seq_cst
} _Py_memory_order;
typedef struct _Py_atomic_address {
uintptr_t _value;
} _Py_atomic_address;
typedef struct _Py_atomic_int {
int _value;
} _Py_atomic_int;
/* Fall back to other compilers and processors by assuming that simple
volatile accesses are atomic. This is false, so people should port
this. */
#define _Py_atomic_signal_fence(/*memory_order*/ ORDER) ((void)0)
#define _Py_atomic_thread_fence(/*memory_order*/ ORDER) ((void)0)
#define _Py_atomic_store_explicit(ATOMIC_VAL, NEW_VAL, ORDER) \
((ATOMIC_VAL)->_value = NEW_VAL)
#define _Py_atomic_load_explicit(ATOMIC_VAL, ORDER) \
((ATOMIC_VAL)->_value)
#endif
/* Standardized shortcuts. */
#define _Py_atomic_store(ATOMIC_VAL, NEW_VAL) \
_Py_atomic_store_explicit(ATOMIC_VAL, NEW_VAL, _Py_memory_order_seq_cst)
#define _Py_atomic_load(ATOMIC_VAL) \
_Py_atomic_load_explicit(ATOMIC_VAL, _Py_memory_order_seq_cst)
/* Python-local extensions */
#define _Py_atomic_store_relaxed(ATOMIC_VAL, NEW_VAL) \
_Py_atomic_store_explicit(ATOMIC_VAL, NEW_VAL, _Py_memory_order_relaxed)
#define _Py_atomic_load_relaxed(ATOMIC_VAL) \
_Py_atomic_load_explicit(ATOMIC_VAL, _Py_memory_order_relaxed)
#endif /* Py_BUILD_CORE */
#endif /* Py_ATOMIC_H */